NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of Plant Science

APPROVED Agrobiological Faculty "10" June 2025

CURRICULUM OF ACADEMIC DISCIPLINE PLANT SCIENCE

Area of knowledge ______ Specialty **201 Agronomy** Academic programme **Agronomy** Faculty **Agrobiological** Developed by: **Svitlana Kalenska**, Doctor of Agricultural Sciences, professor **Bohdan Mazurenko**, Ph. D in Agronomy, As. Professor; **Roman Kovalenko**, Candidate of agricultural sciences,

Description of the discipline Plant science

On a global scale, the main task of plant cultivation is to meet the growing needs of the population for food products, the livestock sector for feed, and various branches of industry such as textiles, food, and others for raw materials. Plant cultivation as a science studies various types, forms, and varieties of field crops, the theoretical foundations, and practical measures for obtaining high and sustainable yields with minimal labor and material resources. In a broad sense, plant cultivation involves the cultivation of various cultivated plants. The main goal of the discipline is to prepare the student for future independent professional work with the generalized object of activity: agricultural crops, soil, fertilizers, machinery, land reclamation, and plant protection. As a result of studying the discipline, a young specialist should be able to: develop, improve, and effectively implement cultivation technologies for field crops under various forms of ownership and management; monitor crop conditions and manage crop yield formation processes; ensure high economic efficiency of implemented technologies; develop and implement measures to improve the quality and reduce losses of crop production.

Area of knowledge, specialty, academic programme, academic degree					
Academic degree	Bachelor's				
Specialty	201 "Agronomy"				
Academic programme	Agronomy				
Characteristics of the discipline					
Туре			Core		
Total number of hours			300		
Number of ECTS credits			10		
Number of modules			6		
Course project (work) (if any)			+		
Form of assessment			exam		
Ind	Indicators of the discipline				
for full-time and part-time forms of university study					
		Uni	versity study		
	Full-time		Part-time		
Year of study	2–3				
Term	4–6				
Lectures	90	hours	hours		
Practical classes and seminars	105	hours	hours		
Laboratory classes	-	hours	hours		
Self-study	105	hours	hours		
Number of hours per week for full-time	4-6-3	hours			
students					

1. Aim, competences and expected learning outcomes of the discipline

of the academic discipline "Plant Science" is to provide students with knowledge about field crops, their growth and development characteristics, requirements for external environmental factors, modern techniques and technologies of cultivation aimed at obtaining sustainable high-quality yields with minimal labor, resource, and financial inputs. "Plant Science" is a specialized discipline taught at agronomic faculties, which ensures the formation of students' knowledge and skills in conducting technological practices for maximizing the realization of the biological potential of crop yields. It is an essential sector of the Ukrainian economy.

Competences acquired:

Integral competence (IC):_ Ability to solve complex specialized tasks and practical problems in agronomy, which involve the application of theories and methods of the relevant science and are characterized by complexity and uncertainty of conditions.

General competence (GC):

GC 6. Knowledge and understanding of the subject area and professional activities.

GC 7. Ability to apply knowledge in practical situations.

Special (professional) competence (SC):

SC 1. Ability to apply fundamental knowledge of key areas of agricultural science, including crop production, farming systems, plant breeding and seed production, agrochemistry, fruit growing, vegetable production, soil science, forage production, mechanization in crop production, and plant protection.

SC 3. Knowledge and understanding of core biological and agrotechnological concepts, principles, and theories related to the cultivation of agricultural and other plant species.

SC 4. Ability to apply knowledge and understanding of physiological processes in agricultural crops to solve production-related technological problems.

SC 9. Ability to manage complex activities or projects, assuming responsibility for decisionmaking under specific production conditions.

Expected learning outcomes (ELO):

ELO 4. Compare and evaluate current scientific and technological achievements in the field of agronomy.

ELO 6. Demonstrate knowledge and understanding of fundamental disciplines to the extent necessary for acquiring practical skills in agronomy.

ELO 7. Demonstrate knowledge and understanding of the principles of plant physiological processes at a level sufficient for mastering fundamental and professional disciplines.

ELO 9. Possess operational-level skills in observation, description, identification, classification, as well as cultivation of biological objects and maintenance of agrocenosis stability while preserving natural biodiversity.

ELO 10. Analyze and integrate knowledge from general and specialized professional training to the extent necessary for specialized professional work in agronomy.

ELO 11. Initiate timely and appropriate solutions to production problems in accordance with local agroecological conditions.

ELO 13. Design and organize crop production measures to ensure high-quality agricultural products in compliance with current standards.

ELO 14. Integrate and improve production processes for crop cultivation in accordance with current regulations and best practices.

ELO 15. Plan economically efficient agricultural production.

ELO 16. Organize effective and safe working conditions.

Programme and structure of the discipline

	Number of hours												
	full-time					part-time							
Modules and topics			including						including				
	weeks	tota 1	1	р	1 a b	in	s.st.	total	1	р	lab	ind.	s.st.
Module 1. Fundamentals of Crop Production and Yield Programming													
Topic 1. Crop production as		4	2	2									
a branch of agricultural													
production.													
Topic 2. Ecological and		8	2	2			4						

biological foundations of											
crop production.											
Topic 3. Agrobiological		4	2	2							
foundations of intensive											
cultivation technologies for											
agricultural crops.											
Topic 4. Agrotechnological		8	2	2			4				
foundations of crop											
production.											
Topic 5. Fundamentals of		4	2	2							
crop yield programming.											
Topic 6. Fundamentals of		8	2	2			4				
seed science.											
Total for module 1	36)	12	12			12				
Mod	ule 2. G	Frain	Crops	s of the	Fir	st ai	nd Seco	ond Gro	oups		
Topic 7. Winter cereals		30	12	14			4				
Topic 8. Spring cereals		24	6	4			14				
Total for module 2	54	•	18	18			18				
	Module	e 3. M	linor (Cereals	an	d Gi	rain Le	gumes			
Topic 9. Flake crops		14	6	12			4				
Topic 10. Legumes		12	6	4			8				
Topic 11. Cultivation maps		14	8	4			8				
Total for module 3	60)	20	20			20				
Μ	odule 4.	Majo	or Leg	gumes, '	Tul	ber,	and Ro	oot Cro	ps		
Topic 13. Main grain		23	10	8			5				
legumes											
Topic 14. Minor legumes		14	2	6			6				
Topic 15. Tuber crops		19	6	5			8				
Topic 16 Root crops		19	7	6			6				
Total for module 4	75	5	25	25			25				
		Μ	[odule	5. Oils	eed	Cro	ops				
Topic 17. Oil crops			6	10			6				
Topic 18. Sugar crops			2	6			10				
Total for module 5	40)	8	16			16				
Module 6. Special-Use Crops											
Topic. 19. Essential oil		12	2	2			8				
crops											
Topic 20. Fiber crops		12	2	8			2				
Topic 21. Bioenergy crops		11	3	4			4				
Total for module 6			7	14			14				
Total hours	30	0	90	105			105				
Course project (work)											
(if											
included in the curriculum)		0	00	107			107				
Total hours	30	U	90	105			105				

2. Topics of lectures

No.	Topic	Hours			
	Module 1. Fundamentals of Crop Production and Yield Programming				
1	Introduction to plant science and crop production as a branch of agriculture	2			
2	Factors affecting crop yield: ecological, genetic, agrotechnical	2			
3	Photosynthesis and radiation use efficiency in crops	2			
4	Programming and forecasting crop yields	2			

5	Fortilizer use officiency and nutrient untake coefficients	2
5	Structure and content of the agronomic section of a technological man	2
0	Module 2 Grain Crops of the First and Second Groups	L
7	Cereal crops: classification systematics and grain anatomy	2
8	Morphological and biological features of cereals during organogenesis	2
9	Wheat: types morphological features and cultivation technology	2
10	Rye and triticale: biology economic importance and growing techniques	2
10	Barley: classification varieties and best practices in cultivation	2
12	Oats and millet: systematics and cultivation under various soil-climatic	2
	conditions	-
13	Maize: biological features, productivity assessment, and hybrid cultivation	2
14	Specifics of seed quality control in cereal crops	2
15	Key indicators for selecting cereal crop varieties for different agroecological	2
	zones	
	Module 3. Minor Cereals and Grain Legumes	
16	Sorghum and rice: morphology, varietal classification, and cultivation	4
	requirements	
17	Buckwheat: species characteristics, agroecological preferences, and	2
	technologies	
18	Grain legumes: general characteristics, identification, and role in sustainable	4
	systems	
19	Biological nitrogen fixation in legumes and its agronomic importance	2
20	Compilation of technological maps for selected cereal and grain legume crops	6
21	Crop rotation and compatibility of cereals and legumes in field systems	2
	Module 4. Major Legumes, Tuber, and Root Crops	
22	Peas, soybeans, beans: classification, varietal traits, and cultivation technologies	6
23	Lupins, chickpeas, lentils, cowpeas: biology and adaptation to marginal lands	4
24	Cultivation technologies for forage legumes in modern production systems	2
25	Potato: biological structure, technological aspects of cultivation, and quality	4
	evaluation	
26	Jerusalem artichoke: biological features and cultivation for food and energy	2
	use	
27	Root crops (fodder beet, carrot, turnip): classification, sowing density, and	2
	yield	
28	Sugar beet I: biological characteristics, root formation, and cultivation	3
	techniques	
29	Sugar beet II: bolting, second-year development, and sugar yield calculation	2
	Module 5. Oilseed Crops	
30	Oil crops: classification and diagnostic features	2
31	Sunflower: botanical features, seed quality indicators, and production technologies	2
32	Rapeseed, mustard, safflower: adaptation, oil content, and cultivation specifics	2
33	Flax, poppy, castor bean: multipurpose oil crops and their production	2
	Module 6. Special-Use Crops	
34	Essential oil crops: economic value and technological requirements	2
35	Bast fiber crops (flax, hemp, kenaf): morphology and harvesting technologies	2
36	Phytoenergy crops: characteristics, productivity, and use for biomass energy	3
	Total hours	90

3. Topic of laboratory (practical, seminars) classes

No.	Торіс	Hours
	Module 1.	
1	Forecasting crop yield. Calculation of assimilation coefficients of fertilizers by	2
	crops and potential yield based on solar radiation input.	
2	Calculation of phytometric indicators for targeted crop yield.	2
3	Compilation of the agronomic section of the technological map for	2
	programmed cultivation of field crops.	
4	Determination of seed quality characteristics. Sampling.	2
5	Determination of seed quality characteristics: purity and impurities,	2
	germination rate, viability, moisture content, 1000-seed weight, disease	
	infestation, pest infestation. Determination of seed authenticity (varietal	
	laboratory control).	
6	Determination of seed viability and preparation of seed quality documents.	2
	Module 2	
1	General characteristics of cereal crops. Morphological and biological	4
	differences in grains of the first and second groups. Genus differences in	
	grains of the first and second groups in terms of kernel anatomy. Genus	
	anterences in grains of the first and second groups in terms of sprouts, shoots,	
8	Wheat Systematics and morphological characteristics. Types of wheat	2
0	Determination of varieties of soft and hard wheat. Economic and biological	2
	characteristics of the most common and promising wheat varieties	
9	Rye Systematics and morphological characteristics of plants. Species and	2
	varieties. Economic and biological characteristics of the most common	2
	varieties.	
10	Triticale. Systematics and morphology of plants.	2
11	Barley. Systematics and morphological characteristics. Subspecies and groups.	2
	Determination of barley varieties. Economic and biological characteristics of	
	varieties.	
12	Oats. Systematics and morphology of plants. Species of oats. Determination of	2
	oat grain type, color, and huskiness. Varieties and their economic and	
	biological characteristics.	
13	Millet. Systematics and morphological characteristics. Species, subspecies,	2
	and varieties of millet. Economic and biological characteristics of common	
	millet varieties.	
14	Maize. Botanical characteristics. Systematics and morphological	2
	characteristics of plants. Features of ear and tassel structure. Determination of	
	productivity based on tassels. Determination of maize subspecies and	
	varieties. Economic and biological characteristics of maize hybrids and	
	Varieues.	
15	Sorghum Botanical characteristics Systematics and morphology Economic	1
15	and biological characteristics of groups varieties and hybrids	+
16	Rice Systematics and morphological characteristics Features of root system	4
10	structure. Subspecies, groups, varieties. Varieties.	,
17	Buckwheat, Systematics and morphology of plants. Determination of species	4
	and varieties. Economic and biological characteristics of varieties.	•
18	Development of agronomic sections of technological maps for the cultivation	4
	of grain crops: winter wheat, spring barley, maize, buckwheat, and others	
	using specific farms in Ukraine as examples.	
19	General characteristics of cereal legume crops. Morphological features.	4
	Identification of cereal legume crops based on seeds, seedlings, leaves, and	

	fruits.	
	Module 4	
20	Peas. Systematics and morphological characteristics. Identification of species	2
	and varieties. Economic and biological characteristics of cultivars.	
21	Soybeans. Systematics and plant morphology. Subspecies, varieties, and	2
	testing groups. Economic and biological characteristics of cultivars.	
22	Kidney beans. Systematics and morphological characteristics. Species and	2
	varieties. Economic and biological characteristics of cultivars.	
23	Lupin. Systematics and morphology. Species and varieties. Determination of	2
	seed alkaloid content. Cultivars and their economic and biological	
	characteristics.	
24	Forage legumes, lentils. Systematics and morphological characteristics.	2
	Species, subspecies, varieties, and their characteristics.	
25	Chickpeas, cowpeas. Systematics and morphological features. Species,	2
	subspecies, varieties, and their characteristics.	
26	Development of agrotechnical sections of cultivation technology cards for	2
	peas, soybeans using a specific farm as an example.	
27	Fodder beets, fodder carrots, rutabagas, turnips. Systematics and	3
	morphological characteristics. Anatomical structure of root crops.	
	Identification of root crops based on seedlings, fruits, and seeds.	
	Determination of stand density, biological yield, and its structure.	
28	Potato. Systematics and morphological characteristics of organs. Structure of	2
	tubers. Economic and biological characteristics of potato varieties.	
• •	Determination of dry matter and starch content in tubers.	-
29	Jerusalem artichoke. Morphological characteristics. Development of the	2
	agronomic section of the technological map for potato cultivation using a	
20	specific farm as an example.	2
30	General characteristics. Determination of pumpkins, watermelons, and melons	2
21	Canaral abarratariation of root arous. Sugar boots. Marrhalagiaal and	2
51	anotomical features of first year sugar best plants	2
	anatomical reatures of first-year sugar beet plants. Modulo 5	
32	Sugar beets Morphological and anatomical features of second-year sugar beet	2
52	plants	2
33	Sugar beets Technological man for growing sugar beets Biological yield and	4
55	its structure determination of plant density sowing rate seeding unit juice	·
	purity, and sugar vield.	
34	General characteristics of oil crops. Determination of oil crops based on fruits,	2
	seeds, sprouts, stems, leaves.	
35	Botanical-morphological characteristics of sunflower. Features of sunflower	2
	plant structure, determination of sunflower groups, seed hulling and shelling.	
	Technological map for sunflower cultivation.	
36	Botanical-morphological characteristics of mustard, rapeseed, and safflower.	2
37	Botanical-morphological characteristics of poppy, castor oil plant, and flax.	2
38	Botanical-morphological characteristics of sesame, peanuts, pearl millet, and	2
	quinoa.	
	Module 6	
39	Botanical-morphological characteristics of essential oil crops.	2
40	Bast fiber crops. Botanical-morphological characteristics of flax.	2
41	Botanical-morphological characteristics of hemp, cotton, and kenaf.	2
42	Botanical-morphological characteristics of tobacco, snuff, and hops.	2
43	Botanical-morphological characteristics of medicinal crops.	2
44	Botanical-morphological characteristics of phytoenergy crops.	4

	Total hours	105
--	-------------	-----

4. Topics of self-study

No.	Торіс	Hours		
	Module 1.			
1	Ecological and biological foundations of crop production.	2		
2	Agrobiological foundations of intensive cultivation technologies for	2		
	agricultural crops.			
3	Agrotechnological foundations of crop production.	2		
4	Basics of yield programming for agricultural crops.	2		
5	Fundamentals of seed science.	2		
	Module 2.			
6	Winter cereals. General characteristics.	8		
Module 3				
7	Spring cereals and cereal crops.	8		
Module 4				
8	Grain legume crops.	8		
Module 5				
9	Tuber crops.	4		
10	Root crops.	3		
11	Vegetable crops.	2		
12	Sugar crops.	2		
13	Sugar beets.	6		
14	Oil crops.	8		
Module 6.				
15	Essential oil crops.	8		
16	Fiber crops. Cotoon cultivation	2		
17	Aromatic crops and Medicinal plants.	2		
18	Phytoenergy crops. Poplar, willow and miscanthus	2		
	Total hours	105		

5. Methods of assessing expected learning outcomes:

- oral or written survey;
- test;
- defending laboratory/practical, design/graphical works, projects;
- peer-to-peer assessment, self-assessment.

6. Teaching methods (select necessary or add):

- problem-based method;
- practice oriented studying method;
- case method;
- research based method;
- learning discussions and debates method;

7. Results assessment.

The student's knowledge is assessed by means of a 100-point scale converted into the national grades according to the "Exam and Credit Regulations at NULES of Ukraine" in force

Educational activity	Results	Assessment
Module 1. Fundamen	utals of Crop Production and Yield Programming	
Practical work 1.	ELO 6, 7, 10, 13	5
Practical work 2.	Students will understand the fundamental	5
Practical work 3.	principles of crop physiology and agronomy,	10
Practical work 4.	analyze crop productivity factors, and develop	10
Practical work 5.	components of technological maps. They will	10
Practical work 6.	apply theoretical knowledge to model yield	10
Self-study 1.	potential and nutrient assimilation efficiency,	10
Self-study 2.	cron systems	10
Module control work 1.	crop systems.	30
Total for module 1		100
Module 2. Gra	ain Crops of the First and Second Groups	
Practical work 7.	ELO 4, 6, 9, 11, 13	10
Practical work 8.	Students will master identification and	5
Practical work 9.	classification of major cereal crops, evaluate	5
Practical work 10.	varietal traits and morphology, and analyze their	5
Practical work 11.	suitability for specific agroecological zones.	5
Practical work 12.	They will also learn how to apply modern	5
Practical work 13.	agronomic technologies for wheat, barley, and	10
Practical work 14.	maize production under real-world conditions.	10
Self-study 3.		5
Self-study 4.		10
Module control work 2.		30
Total for module 2		100
Class work	$(M1 + M2)/2*0,7 \le 70$	
Credit	3	0
Total for semester	(Class work + credit) ≤ 100	
Module	3. Minor Cereals and Grain Legumes	
Practical work 15.	ELO 6, 9, 10, 11, 14	10
Practical work 16.	Students will gain skills in morphological	10
Practical work 17.	identification and classification of non-	10
Practical work 18.	able to develop adapted cultivation strategies for	10
Practical work 19.	these crops optimize their use in crop rotations	10
Self-study 5.	and assess their ecological and economic roles in	10
Self-study 6.	sustainable systems.	10
Module control work 3.		30
Total for module 3		100
Module 4. A	Major Legumes, Tuber, and Root Crops	
Practical work 20.	ELO 6, 9, 13, 14, 15	5
Practical work 21.	Students will learn the cultivation technologies	5
Practical work 22.	of legumes, potatoes, and root crops, including	5
Practical work 23.	selection of suitable varieties and economic	5
Practical work 24.	assessment. They will integrate biological	5
Practical work 25.	knowledge with technological practices to	5

8.1. Distribution of points by types of educational activities

Practical work 26.	develop cost-effective production systems that	5
Practical work 27.	meet quality and yield standards.	5
Practical work 28.		5
Practical work 29.		5
Practical work 30.		5
Practical work 31.		5
Self-study 7.		10
Self-study 8.		10
Module control work 4.		30
Total for module 4		100
Class work	$(M3+M4)/2*0,7 \le 70$	
Credit	3	0
Total for semester	(Class work + credit) ≤ 100	
	Module 5. Oilseed Crops	
Practical work 32.	ELO 4, 9, 13, 14, 15	5
Practical work 33.	Students will be able to identify and classify	10
Practical work 34.	 oilseed crops, analyze varietal traits, and design appropriate cultivation schemes. They will also evaluate the technological and economic aspects of oil crop production and apply best practices to improve productivity and profitability. 	10
Practical work 35.		10
Practical work 36.		5
Practical work 37.		10
Practical work 38.		10
Self-study 9.		10
Module control work 5.		30
Total for module 5		100
Module	6. Industrial, and Special-Use Crops	
Practical work 39.	ELO 4, 10, 14, 15, 16	10
Practical work 40.	Students will explore the technologies for	10
Practical work 41.	cultivating technical, medicinal, and energy	10
Practical work 42.	crops. They will develop strategies for safe and	10
Practical work 43.	effective production management, evaluate	10
Practical work 44.	innovation to expand the use of underutilized	10
Self-study 10.	crops in diverse agro-industrial sectors	10
Module control work 6.	erops in arverse agro industrial sectors.	30
Total for module 6		100
Class work	(M5-	$+M6)/2*0,7 \le 70$
Exam	3	80
Total for semester	(Class wor	$k + exam) \le 100$

8.2. Scale for assessing student's knowledge

Student's rating, points	National grading (exam/credits)
90-100	excellent
74-89	good
60-73	satisfactory
0-59	unsatisfactory

8.3. Assessment policy

Deadlines and exam retaking rules	 Tasks must be submitted on time, according to the delivery schedule. Penalty for delay: 10% - less 1 month 20% - more 1 month Re-assessment will be allowed if you pass all tasks in module
Academic integrity rules	Plagiarism and re-delivery tasks don't allow
Attendance rules	Attendance is mandatory. For objective reasons (for example, illness, international internship) training can take place individually (in online form in consultation with the deap of the faculty)

8. Teaching and learning aids:

- e-learning course of the discipline (*https://elearn.nubip.edu.ua*) MANDATORY – <u>https://elearn.nubip.edu.ua/course/view.php?id=24</u>

- CROP PRODUCTION GUIDE AGRICULTURE. Tamil Nadu Agricultural University. Link: https://www.freebookcentre.net/biology-booksdownload/gotoweb.php?id=13855

Petrichenko V.F., Lykhochvor V.V. Roslynnytstvo. Novi tekhnolohii vyrashchuvannia polevykh kultur: pidruchnyk. - 5-te vid., vyrav., dopov. Lviv: NVF "Ukrainski tekhnolohii", 2020. 806 p. (Title: Crop Production. New Technologies for Field Crop Cultivation: Textbook)

9. Recommended sources of information

- 1. Graham Thiele, Michael Friedmann, Hugo Campos, Vivian Polar, Jeffery W. Bentle. Root, Tuber and Banana Food System Innovations. Springer, 2022. DOI: https://doi.org/10.1007/978-3-030-92022-7
- 2. Kalenska S., Dmytrishak M., Antal T., Mazurenko B., Crop production with basis of fodder production, Kyiv, 2021. [In Ukrainian]
- 3. Crop production manual. FAO. 2020. Available at: https://www.fao.org/3/ca7556en/CA7556EN.pdf
- 4. Statistics in Agriculture. Available at: <u>https://fao.org/faostat</u>
- 5. Ministry of Agriculture Politics http://www.minagro.kiev.ua/
- 6. Technology of cultivation (field crops) http://agro-business.com.ua/
- 7. Technology of cultivation (field crops) <u>https://www.agronom.com.ua/</u>