	Syllabus « Geoinformation systems and databases »Educational-qualification level - Bachelor Specialty 193. Geodesy and Land Management Educational program «Geodesy and Land management» Year of study 3, semester 5 Mode of study: full ECTS hours – 4,0 Language: English
Instructor	Antonina Moskalenko, PhD, Associate Professor
Contacts	Department Geoinformatics and Aerospace Research of the Earth
	Build#6, room.129
(e-mail)	moskalenko_a@nubip.edu.ua
eLearn webpage	https://elearn.nubip.edu.ua/course/view.php?id=158

Course Overview:

The course "Geoinformation systems and databases" consists of topics related to fundamentals of GIS technologies and concepts of database theory; their architecture and stages of construction. The features of the hierarchical, network, relational and object-oriented database models are considered. The design of relational databases, relational algebra, functional dependencies and normalization, the basic elements of SQL and the use of ER-diagrams and UML for building database structures are studied.

Students get practical experience in designing conceptual, logical and physical data models, attribute input into database, constructing spatial components of the vector-based topological model and queries application to the spatial components.

Aim of the discipline: The course "GIS and Database" provides the opportunity to use in program Purpose of the discipline: The discipline "GIS and databases" forms in students the ability to use in production software and technical complexes for automated accounting, storage, display, analysis, modeling of spatially coordinated information and the creation of databases in the field of land management, cadaster, geodesy and cartography.

Objectives of course the task of studying the discipline is the formation of a specialist's theoretical knowledge and practical skills in working with databases, the ability to organize the collection and selection of necessary data, the use of GIS for managing land resources when solving the tasks of land management, cadaster, geodesy and cartography.

Acquisition of competencies:

Integrated competency (IC)

IC. The ability to solve complex specialized problems of geodesy and land management *- general competencies:*

GK 01. Ability to learn and master modern knowledge.

GK 02. Ability to apply knowledge in practical situations.

GK 05. Ability to communicate in a foreign language.

GK 06. Ability to use information and communication technologies.

GK 07. Ability to work autonomously.

GK 08. Ability to work in a team.

GK 13. Ability to preserve, multiply moral, cultural, scientific values and achievements of society based on understanding of history, patterns of development of the subject area, its place in the general system of knowledge about nature and society, as well as in the development of society, technology and technology. activities for recreation and healthy living

- professional (special) competencies (PC):

SC 01. Ability to apply fundamental knowledge to analyze phenomena of natural and manmade origin in the performance of professional tasks in the field of geodesy and land management.

SC 03. Ability to apply regulations, regulatory and technical documents, reference materials in professional activities.

SC 04. Ability to choose and use effective methods, technologies and equipment for professional activities in the field of geodesy and land management.

SC 05. Ability to use modern information, technical and technological support to address complex issues of geodesy and land management.

SC 06. Ability to perform remote, ground, field and in-house research, engineering calculations for processing research results, prepare research results, prepare reports in solving problems of geodesy and land management.

SC 07. Ability to collect, update, process, critically evaluate, interpret, store, publish and use geospatial data and metadata on objects of natural and man-made origin.

SC 08. Ability to carry out professional activities in the field of geodesy and land management, taking into account the requirements of professional and civil safety, labor protection, social, environmental, ethical, economic aspects.

SC 09. Ability to use tools, instruments, equipment, facilities in the performance of geodetic and land management tasks.

SC 10. Ability to monitor and evaluate land.

Program learning outcomes (PLO)

LR 1. Fluent in oral and written forms in state and foreign languages on professional matters.

LR 2. Organize and manage the professional development of individuals and groups.

LR 3. Communicate information, ideas, problems, solutions, personal experience and arguments to specialists and non-specialists.

LR 4. To know and apply in professional activity normative-legal acts, normative-technical documents, reference materials in the field of geodesy and land management and related branches.

LR 9. Collect, evaluate, interpret and use geospatial data, metadata on objects of natural and man-made origin, apply statistical methods of their analysis to solve specialized problems in the field of geodesy and land management.

LR 10. Choose and apply tools hardware, hardware and software supplies needed for remote, ground, field and in-house research in in the field of geodesy and land management.

LR 11. Organize and execute remote, ground, field and camera works in the field of geodesy and land management, draw up the results of work, prepare relevant reports.

LR 13. Plan and execute geodetic, topographic and cadastral surveys, process the results in geographic information systems.

LR 14. Plan a complex professional activity, develop and implement projects in the field of geodesy and land management under conditions resource and other constraints.

LR 15. Develop and adopt effective decisions on professional activities in the field geodesy and land management, including under conditions uncertainty.

Торіс	Hrs (lectures /laboratory/ individual)	Education result Tasks	Grade
SEMANT	IC MODU	LE I. INTRODUCTION AND CONCEPTUAL MODELIN	G
Theme 1.	2/4/4	Know basics of the Submitting in eLearn	5
Introduction to		geoinformation systems Laboratory work #1:	
Geoinformation		Understand the Determination of the design	
science		possibilities of boundary of the geospatial data	
		organization of base	

The course Program and Structure

		Information in a GIS	Submitting in eLearn	10
		Recognize differences	Laboratory work #2: Forming	
		between types of	a technical task for designing a	
		Information in a GIS	geospatial database	
			Submitting in eLearn	5
			Analysis of publications on the	
			basics of geoinformation	
			systems and technologies	
Theme 2.	2/4/4	Know the objects used in	Submitting in eLearn	10
Model of		digital plans and maps	Laboratory work #3: Create	
spatial data:		Be able to ArcGIS-	and convert geospatial data	
vector and		ArcMap tools for creating	layers	
object data		vector topological model	Submitting in eLearn	10
models			Laboratory work #4:	
			Vectorization. Part 1	
			Submitting in eLearn	
			Submitting in eLearn	5
			Individual work #1.2:	
			Creating geospatial data layers	
			in QGIS	
Theme 3.	2/4/4	Know data formats and	Submitting in eLearn	10
Model of		be able to use them	Laboratory work #5:	
spatial data.		correctly	Vectorization. Part 2	
Mosaic models		Apply ArcGIS-ArcMap	Submitting in eLearn	10
		tools for editing vector	Laboratory work #6:	
		topological model	Vectorization. Part 3.	
			Submitting in eLearn	5
			Individual work #1.3: Raster	
			base vectorization in QGIS	
Module control	1		Test	30
Total module 1	6/12/12			100
SEMA	NTIC MO	DULE II. MODERN TEC	HNOLOGY OF DATABASES	
Theme 4. Basic	2/2/4	Know basic concepts and	Submitting in eLearn	5
concepts and		determination of database	Laboratory work #7: Editing	
determination		theory	vector layers. Part 1	
of database		Analyze possibilities and	Submitting in eLearn	5
theory		application of	Individual work #2.1:	
		geodatabase in land	Overview of database design	
		management	software	
Theme 5.	2/2/12	Know basic stages of	Submitting in eLearn	7
Stages of		database design	Laboratory work #8:	
database design		Be able to model basic	Editing vector layers. Part 2	
		stages of planning,	Submitting in eLearn	5
		conceptual design, logical	Individual work #2.2:	
		planning and physical	Installation of software for	

		Analyze sources of	Submitting in eLearn	5
		information and their	Individual work #2.3:	-
		quality to create database	Setting up software for working	
		1 2	with databases.	
Thoma 6	2/4/0	Know database system	Submitting in el earn	10
Database	2/4/0	Concepts and	I aboratory work #0. Entering	10
system concepts		Architecture	attribute data Part 1	
and architecture		Be able to explain	Submitting in el earn	Q
		Extended model	Laboratory work #10.	0
		Highlight to	Entering attribute data Part 2	
		classification of database	Entering attribute data. 1 art 2	
		management systems		
	• /• /0			
Theme 7. Data	2/2/0	Know basic stages of data	Submitting on eLearn	5
modeling using		modeling using the entity-	Laboratory work #11:	
the entity-		relationship model	Creation of a conceptual model	
relationship		Be able to creating	of the database	
model		conceptual data models		
		Use ER-diagrams for		
		creating conceptual data		
Thoma 8	2/4/10	Models	Submitting on all corn	5
Pelational	3/4/10	database design	Laboratory work #12:	5
database design		Be able to creating	Creating a logical database	
uatabase design		logical data models	model Part 1	
		Use Domains	Submitting in el earn	5
		relationships corteges	Laboratory work #13.	5
		attributes for database	Creating a logical database	
		design	model. Part 2	
			Submitting in eLearn	5
			Individual work #2.4: NoSQL	
			database technologies	
Theme 9.	2/2/0	Know functional	Submitting on eLearn	5
Normalization		Dependencies and	Laboratory work #14:	
as way to		Normalization for	Normalization. Part 1	
control of		Relational Databases.		
database		Be able to fill the		
structure.		normalization		
Normal forms		Use Functional		
1-3		dependencies in		
Thoma 10	2/4/0	Know basic stages of	Submitting on all com	5
Normalization	<i>4</i> /4/V	normalization	Laboratory work #15.	3
The heist		Be able to fill the	Normalization Part 2	
normal forms		Normalization (next	Submitting in el earn	10
		steps)	Laboratory work #16.	10
		Poy	Normalization. Part 3	
Module control	1	<u> </u>	Test	20
Total module 2	14/20/26			100
	SEMAN	TIC MODULE III. OPERA	ATION WITH DATA	-
Theme 11.	2/4/0	Know basic stages of	Submitting on eLearn	10
Modern		infological design	Laboratory work #17:	

database methodology infological design		Highlight infological design for land management	Creating a physical database model	
Theme 12. Relational algebra	2/4/0	Know relational Algebra and Relational Calculus Be able to realizing	Submitting on eLearn Laboratory work #18:	10
uigeoru		physical data model for land management Use MS Access to development of forms and queries	Submitting on eLearn Laboratory work #19: SQL query language. Part 2	10
Theme 13. Operation and query languages	6/5/7	KnowSQL-SchemaDefinition,Constraints,and QueriesBe able to use GIS anddatabases queries for landmanagement	Submitting on eLearn Laboratory work #20: Calculation of secondary attributes of subject area objects. Creation of new object classes	15
		Use ArcGIS-ArcMap to combining database and vector topological model	Submitting on eLearn Laboratory work #21: Client-server architecture in the formation of requests to the database	15
			Submitting on eLearn Individual work #3.1: Procedural programming languages when working with SQL.	5
			Submitting on eLearn Individual work #3.2: Functions used in SQL databases	5
Module control		1	Test	30
Total module 3	10/13/7			100
Total 5 semester		Γ	1	70
Final test			Final exam	30
Total course				100

THE COURSE POLICY

Deadline and	Deadlines are defined in e-learn course. Works being submitted after	
rearrangement policy:	deadlines without a reason are evaluated at a lower grade.	
	Rearrangement of module tests takes place with the permission of the	
	lecturer in case of a specific reasons (for example, illness).	
Policy of Academic	Copying other materials during individual works, tests and final test	
Plagiarism:	(including the use of mobile devices) are forbidden. Abstracts must	
	have correct text references to the literature used.	
Policy of Attendance:	Attendance of lessons is mandatory. According to objective reasons	
	(for instance, illness, international internship) training can take place	
	individually (in distance form (on-line) by agreement with the dean of	
	the faculty)	

Student rating, points	National grade based on exam results
90-100	Excellent
74-89	Good
60-73	Satisfactory
0-59	Unsatisfactory

RECOMMENDED SOURCES OF INFORMATION

Basic:

1. Основи створення інтероперабельних геопросторових даних. / Ю. О. Карпінський та ін. – Київ: КНУБА, 2023. – 302 с.

2. Основи геоінформаційних систем і бази даних: підручник /О.Є. Поморцева; Харків. нац.ун-т міськ.гос-ва ім. О. М. Бекетова. – Харків, 2022 – 346с.

3. Allen Taylor. SQL For Dummies, 9th edition. 2020 – 544p.

4. Database Systems: A Practical Approach to Design, Implementation, and Management Third Edition / Thomas Connolly, Carolyn Begg. 2014 – 1440 p.

5. Ekmasri, R. and Navatane, S.B. Fundamentals of Database Systems, 7th ed., Addison-Wesly, Reading, Boston, MA, 2017

6. Геоінформаційні системи і бази даних: монографія / В. І. Зацерковний, В. Г. Бурачек, О. О. Железняк, А. О. Терещенко. – Ніжин: НДУ ім. М. Гоголя, 2014. – 492 с.

Additional:

7. A Moskalenko (2021) GIS support of forming spatial decisions on land use. Mechanization in agriculture & Conserving of the resources 67 (3), 79-81.

8. What is GIS? - <u>https://www.esri.com/en-us/what-is-gis/overview</u>

9. Стандарти та специфікації відкритого геопросторового консорціуму OGC, <u>http://www.opengeospatial.org/standards</u>

10. Географічна інформація. Еталонна модель: ДСТУ ISO 19101:2009. – [Чинний від 2011-07-01] – К.: Держспоживстандарт України, 2011. – 44 с.

11. Географічна інформація. Сервіси: ДСТУ ISO 19119:2017 (ISO:19119:2016, IDT). – [Чинний від 2017-10-01] – К: ДП «УкрНДНЦ».

12. Географічна інформація. Метадані – ХМL-схема реалізації: ДСТУ ISO/TS 19139:2017(ISO/TS 19139:2007, IDT). – [Чинний від 2017-10-01] – К: ДП «УкрНДНЦ».

13. Географічна інформація. Мова концептуальних схем: ДСТУ ISO 19103:2017 (ISO 19103:2015, IDT). – [Чинний від 2017-10-01] – К: ДП «УкрНДНЦ».

14. Географічна інформація. Просторова схема: ДСТУ ISO 19107:2017 (ISO 19107:2003, IDT). – [Чинний від 2017-10-01] – К: ДП «УкрНДНЦ».

15. Географічна інформація. Правила для прикладної схеми: ДСТУ ISO 19109:2017 (ISO 19109:2015, IDT). – [Чинний від 2017-10-01] – К: ДП «УкрНДНЦ».

16. Географічна інформація. Просторова прив`язка за географічними ідентифікаторами: ДСТУ ISO 19112:2017 (ISO 19112:2003, IDT) – [Чинний від 2017-10-01]. – Київ: Держспоживстандарт України, 2017.

17. Географічна інформація. Схема для геометрії і функцій покриття: ДСТУ ISO 19123:2017 (ISO 19123:2005, IDT). – [Чинний від 2017-10-01] – К: ДП «УкрНДНЦ».

18. Географічна інформація. Правила моделювання геопросторових даних ДСТУ 8774:2018 – [Чинний від 2019-07-01] – К: ДП «УкрНДНЦ».

19. СОУ 742-33739540 0010:2010 КС БТД Загальні вимоги – Київ: Мінприроди України, 2010.

20. СОУ 742-33739540 0014:2010 КС БТД Вимоги до якості топографічних даних – Київ: Мінприроди України, 2010.

21. ISO 19115-1:2014 Geographic information – Metadata – Part 1: Fundamentals.

22. ISO 19157:2013 Geographic information — Data quality.

23. ISO/IEC 13249-3:2016 Information technology – Database languages – SQL multimedia and application packages – Part 3: Spatial.

- 24. ISO/IEC 2382:2015 Information technology Vocabulary.
- 25. OGC SFA Simple feature access Part 1: Common architecture. 2010.
- 26. OGC SFA-S Simple feature access Part 2: SQL option, 2010.
- 27. Dia [Електронний ресурс]. Режим доступу: <u>http://dia-installer.de/</u>