NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of Material Technology and Material Science (MTMS)

APPROVED

Faculty of Design and Engineering "__<u>10</u>_"__<u>06</u>___2025 p.

CURRICULUM OF ACADEMIC DISCIPLINE

Material Science

Field of knowledge 13 " Mechanical engineering " Speciality 133 "Sectoral mechanical engineering" Academic program Sectoral mechanical engineering Faculty of Design and Engineering

Author: professor department MTMS, d. t. s., professor Evgeny AFTANDILIANTS

Description of the academic discipline "Material Science"

"Materials science" is a comprehensive discipline that contains basic information about the methods of obtaining materials and methods of their physicochemical and mechanical processing in order to give them appropriate properties and shape.

Academic degree, specialty, academic programme					
Academic degree	Bachelor's				
Speciality	G13 "Sectoral mechanical engineering"				
Academic program	Sectoral mechanical engineering				
Characteristics of the discipline					
Туре	Oblig	gatory			
Total number of hours	180				
Number of credits ECTS	6				
Number of thematic modules	4				
Course project (work) (if any)	-				
Form of assessment	Exam Credit				
Indicators of the discipline for full-time and part-time forms of university study					
	Full-time	Part-time			
Year of study (course)	2	1			
Semester	3	2			
Lectures	45 hr.	<i>12</i> hr.			
Practical, seminar classes	_	-			
Laboratory classes	45 hr.	<i>12</i> hr.			
Self-study	<i>90</i> hr.	<i>90</i> hr.			
Individual assignments	-	_			

Number of hours per week for full-time6 hr.24 hr.students

Aim, objectives, competences and expected learning outcomes of the discipline

Aim of the discipline is skills of Materials Science and laying the basis for the study subjects: "Machine parts", "Hoisting machinery", "Tractors and cars", "Agricultural and meliorative machines", "The safety and repair of machines."

Objectives of studying the discipline is to study:

- the methods of obtaining metals and alloys;
- the structure, properties and destination of metals and alloys;

- the basic theory of heat treatment of carbon and alloy steels, their technology heat and chemicalheat treatment, as well as specific details and working of agricultural machines;

- the structure, properties and appointment of non-metallic construction materials.

Acquisition of competencies:

- Integral competence (IC):

The ability to solve complex specialized tasks and solve practical problems in the field of mechanical engineering using the theories and methods of modern science based on a systems approach and taking into account the complexity and uncertainty of the operating conditions of technological systems.

General competencies (GC):

GC2. Ability to apply knowledge in practical situations.

GC5. Ability to generate new ideas (creativity).

GC8. The ability to act socially responsibly and consciously.

GC13. The ability to preserve and multiply moral, cultural, scientific values and achievements of society based on understanding the history and patterns of development of the subject area, its place in the general system of knowledge about nature and society and in the development of society, technology and technologies, to use various types and forms of motor activity for active recreation and leading a healthy lifestyle.

Special (professional) competences of the specialty (SC):

SC6. The ability to evaluate the technical and economic efficiency of typical systems and their components based on the application of analytical methods, analysis of analogues and the use of available data.

SC9. The ability to carry out commercial and economic activities in the field of mechanical engineering.

Expected learning outcomes (ELO):

ELO04. Carry out engineering calculations to solve complex problems and practical problems in industrial mechanical engineering.

ELO06. Search for the necessary scientific and technical information in available sources, in particular, in a foreign language, analyze and evaluate it.

ELO09. Choose and apply the necessary equipment, tools and methods.

ELO12. Apply means of technical control to evaluate the parameters of objects and processes in industrial mechanical engineering.

2. The program and structure of the discipline for

- full-time (part-time) form of study;

- reduced full-time (part-time) form of study.

	Number of hours												
Modules	Full-time					Part-time							
and topics	Weeks	Total]	Includ	ling		Total	Including				
			1	р	lab	ind	s.st		1	р	lab	ind	s.st
1	2	3	4	5	6	7	8	9	10	11	12	13	14
		The 1	nodu	ile 1	. Met	al sci	ence						
Topic 1. The theory	1-2	23	6	-	6	-	11						
of alloys													
Topic 2. Carbon	3-4	22	6	-	6	-	12						
steels and cast irons													
Total for module 1	45		12	-	12	-	23						
Th	e module	2. Bases	of h	eat	treati	nent	of me	tals and	alloy	s			
Topic 1. The theory	5-6	23	6	-	6	-	11						
of heat treatment													
Topic 2. Technology	7-8	22	6	-	6	-	11						
of heat treatment													
Total for module 2	45		12	-	12	-	22						
	Т	he modul	e 3. 4	Allo	yed s	teels a	and al	lloys					
Topic 1. The alloying	9-10	22	6	-	6	-	11						
theory													
Topic 2.	11-12	23	6	-	6	-	12						
Classification of													
alloy steels, marking													
and their use in													
agriculture													
Total for module 3	45		12	-	12	-	23						
The module 4. Steels and alloys with special properties													

Topic 1. Corrosion	13-14	22	6	-	6	-	10			
and heat resistant										
steels and magnetic										
alloys.										
Topic 2. Copper,										
aluminum, titanium,										
magnesium and their										
alloys										
Topic 3. Powder	15-16	23	6	-	6	-	12			
materials technology										
and superhard alloys										
Topic 4. Polymers										
and plastics. Rubber.										
Adhesive materials.										
Inorganic glass.										
Total for module 4	45		8	-	12	-	22			
Total hours	180		45	-	45	-	90			

3. Lecture topics

N⁰	Topic title	Hours
1	Atomic-crystalline structure of metals. Theory of alloys	6
2	Carbon steels and cast irons	6
3	Theory of TO	6
4	Technology of heat treatment of steel	6
5	Theory of alloying	6
6	Classification of alloyed steels, marking and their use in	4
	mechanical engineering	
7	Copper, aluminum, titanium, magnesium and alloys based	2
	on them	
8	Corrosion-resistant, heat-resistant and magnetic steels and	2
	alloys.	
9	Technology of powder materials and superhard alloys	2
	Polymers and plastics. Rubber.	2
10	Adhesive materials. Inorganic glass.	

4. Topics of laboratory classes

N⁰	Topic title	Hours
1	Macrostructural analysis of metals and alloys	2
2	Microstructural analysis of metals and alloys	2
3	Thermal method of analysis of metals and alloys.	4
	Construction of phase diagram of tin-zinc alloys. Study of	
	phase diagrams of binary alloys	
4	Analysis of phase diagram of iron-carbon alloys	4
5	Study of microstructure of carbon steels in equilibrium	2
6	Study of microstructure of cast irons	2

7	Annealing and normalizing of carbon steels. Study of	4
	microstructure and changes in hardness	
8	Quenching of carbon steels and tempering of hardened	4
	steels. Determination of hardenability of steels	
9	Surface hardening of steels by high-frequency currents.	4
	Chemical-thermal treatment of steels	
10	Development of technological process of heat treatment of	6
	agricultural machinery parts	
11	Classification and marking of alloyed steels	2
12	Alloying systems and features of marking of foreign	2
	structural steels.	
13	Study of the microstructure of alloys based on copper and	2
	aluminum	
14	Chemical composition and labeling of superhard materials	2
15	Structure and properties of plastics and other non-metallic	2
	structural materials	

5. Topics for self-study

№	Tariatila	Number of
	Topic due	hours
1	Aggregate state of matter. Triple transformation point	6
2	Purpose of cast iron	4
3	Purpose of steel	4
4	Source materials for producing cast iron.	6
5	Methods for obtaining high-quality steel	4
6	Main processes for obtaining aluminum	6
7	Polymorphic transformation in iron.	4
8	Temperatures and transformations in pure iron?	4
9	Chemical composition and structure of hypoeutectoid and	4
	hypereutectoid steels?	
10	Foreign marking systems for alloyed steels	6
11	Main types of machine-building cast irons	4
12	Basic technology and operations of heat treatment of steel	6
13	Technology of high-frequency currents. Parameters that affect the	6
	depth of the hardened layer when using microwaves?	
14	Types of tempering used for heat treatment of tools	4
15	Industrial aluminum alloys and their classification	6
16	Industrial use of titanium alloys	6
17	Technological process for obtaining powder materials.	6
18	Properties and areas of use of non-metallic structural materials	4

5. Tools for assessing expected learning outcomes:

- exam;
- credit;
- module tests;
- presentation of laboratory works

6. Teaching methods.

- 1) Verbal:
 - -lectures;
 - 2) Visual:
 - -slides, video, visual material (perts, charts, stands).
 - 3) Practical:
 - laboratory work;
 - training and factory practices;
 - self-study.

7. Assessment methods

- exam;
- credit;
- module tests;
- control works;
- presentation of laboratory works.

8. Assessment of learning outcomes

The assessment of students' knowledge and skills is conducted by means of a 100-point scale and is converted into national grades according to Table 1 of the current *Exam and Credit Regulations at NULES of Ukraine*

Type of learning	Learning outcomes	Assessment				
activity						
	Module 1. Metal science					
Lecture 1	Know the types of crystal	-				
Laboratory work 1	lattices and the atomic-	20				
Laboratory work 2.	crystalline structure of					
Laboratory work 3.	metals; Know the iron-carbon					
Lecture 2	diagram and the main types	-				
Laboratory work 4.	of component compounds; 20					
Laboratory work 5.	Be able to analyze phase					
Laboratory work 6.	diagrams of alloys;					
Self study 1	Be able to decipher the	10				
	grades of cast iron and steel	-				
		20				
Modular test work 1.		30				
Total by module 1		100				
Module 2. Heat treatment of steel						
Lecture 3	Know the modes and	-				
Laboratory work 7.	technologies of heat	20				
Laboratory work 8.	treatment;					
Self study 2	Be able to choose a given	5				

8.1. Distribution of points by types of educational activities

Lecture 4	mode of heat treatment. Be	_
Laboratory work 9.	able to choose a given	20
Laboratory work 10.	material in accordance with	
Self study 3	the operating conditions of	_
Modular test work 2.	the parts.	20
		5
		30
Total by module 2		100
Ν	Module 3. Alloy steels and alloy	/S
Lecture 5	Know the marking system of	_
Laboratory work 11.	domestic and foreign grades	15
Self study 4	of alloyed steels;	5
Lecture 6	Know the purpose of alloying	_
Laboratory work 12.	elements in the alloying	20
Self study 3	system;	_
	Be able to choose a suitable	
	material that will satisfy	
Modular test work 3.	technological and operational	30
	properties;	
	Be able to decipher alloyed	
	grades of steels	
Total by module 3		100
Module 4. Non-f	errous metals and alloys and p	owder materials
Lecture 7	Know the principles and	-
Laboratory work 13.	systems of alloying non-	25
Lecture 8	ferrous metals and alloys,	-
Laboratory work 14.	Know the technological	25
Lecture 9	operations for obtaining	-
Laboratory work 15.	powder materials;	20
Lecture 10	Know the main non-metallic	-
Self study 4	structural materials and their	-
	Be able to decipher the	
	grades of non ferrous allows	
	based on copper aluminum	
	and titanium:	
	Be able to conduct a	
	technological assessment of	
	the use of non-metallic	
	materials in mechanical	
	engineering	
	0	
Modular test work 4.		30
Total by module 4		100
Academic work		70
Exam		30
Total for 3 semester		100

Student rating,	National grading of exams and credits					
points	exams	credits				
90-100	excellent					
74-89	good	pass				
60-73	satisfactory	_				
0-59	unsatisfactorily	fail				

8.2. Distribution points that receive by students.

8.3. EVALUATION POLICY

Deadline and	The student must submit the work within the deadlines set by the				
resubmission policy:	teacher. Works submitted after the deadlines without good reason ar				
	evaluated with a lower grade. Re-siting of modules is carried out				
	with the permission of the lecturer if there are good reasons (for				
	example, illness).				
Academic Integrity	Cheating during tests and exams is prohibited (including using				
Policy:	mobile devices). Coursework, essays must have correct text				
	references to the literature used				
Attendance Policy:	The student is obliged to attend all classes every day according to the				
	established schedule, not to be late, to have an appropriate				
	appearance. For objective reasons (for example, illness, international				
	internship) training can take place individually (in online form in				
	agreement with the dean of the faculty)				

9. Teaching and learning aids

- e-learning course of the discipline «Material Science» (https://nubip.edu.ua/sites/default/files/u374/2_z_eng_robocha_programa_materialoznavstvo_2 023_0.pdf)
- lectures and presentations (in electronic form);
- textbooks and manuals;
- guidelines for studying a discipline by full-time and part-time students;
- stands, posters;
- equipment and various device.

10. Recommended sources of information

- 1. Aftandiliants Y., Stepanechko O., Zazymko O. Material Science: Textbook. Київ, НУБІП України, 2022.- с. 528.
- 2. Афтанділянц Є.Г., Зазимко О.В., Лопатько К.Г. Матеріалознавство: Підручник (Гриф надано Міністерством освіти і науки, молоді та спорту України, лист №1/11-18055 від 20 листопада 2012 р.). Херсон, Видавець Грінь Д.С., 2013.- с 612.
- 3. Практикум з матеріалознавства. Навчальний посібник. (гриф МОН (лист № 1/11-4472 від 27.02.2013 р.))/ Котречко О. О. Зазимко, К.Г. Лопатько, Є.Г. Афтанділянц, Гнилоскуренко В. В.// Херсон: Олді Плюс, 2013.-с. 500.
- 4. Опальчук А.С., Афтанділянц Є.Г., Роговський Л.Л., Семеновський О.Є., Клендій М.Б., Біловод О.І., Дудніков І.А., Матеріалознавство і технологія конструкційних матеріалів:

підручник для вищих навчальних закладів III-IV ступенів акредитації; за ред. А.С. Опальчука і О.Є. Семеновського. – Ніжин: Видавець ПП. Лисенко М.М., 2013. – 752 с.

- 5. Попович В., Голубець В., Технологія конструкційних матеріалів і матеріалознавство: Навчальний посібник для вищих навчальних закладів: У 2-х кн. Книга II. Суми: ВТД «Університетська книга», 2002. 260 с.
- 6. Афтанділянц Є.Г., Зазимко О. В., Лопатько К.Г., Технологія конструкційних матеріалів і матеріалознавство. Курс лекцій. Частина 1. Металургія. Київ, НАУ, 2005.- с.115.
- 7. Хільчевський В.В. та ін., Матеріалознавство і технологія конструкційних матеріалів, К: Либідь, 2002, 326с.
- 8. Бялік О.М., Металознавство, К: Політехніка, 2002, 383с.
- 9. Матеріалознавствоітехнологіяметалів.http://univer.nuczu.edu.ua/tmp_metod/924/MZTM_KONSP_LEK.pdf
- 10. Особливості хіміко-термічної обробки металів і сплавів.https://fizmat.7mile.net/materialoznavstvo/3_4_2-himiko-termichna-obrobka.html
- 11. Класифікаціятаобладнаннянагрівальнихпечей.https://fizmat.7mile.net/materialoznavstvo/3_3_5-nagrivalni-pechi.html4. Термічнаобробкавиробів із сталі.https://www.youtube.com/watch?v=8UvkV92z2fl
- 12. Термічна обробка і структури. <u>https://www.youtube.com/watch?v=7mpAt7h317c</u>