NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of Material Technology and Material Science (MTMS)

"APPROVED"

Dean of the Faculty Design and Engineering

> Zinoviy RUZHYLO 2024

"APPROVED" at a meeting of the department MTMS

Minutes № 15 of "14"05 2024 Head of Department

Kostiantyn LOPATKO

"REVIEWED"

Guarantor of the "Construction and civil engineering"

Yevhen DMYTRENKO

УНИАЕИД

CURRICULUM OF ACADEMIC DISCIPLINE

" Building material science and welding in construction "

Field of knowledge 19 "Architecture and construction" Specialty 192 «Construction and civil engineering» Academic program «Construction and civil engineering» Faculty of Design and Engineering

Author: professor, d. t. s., professor - Yevheniy AFTANDILIANTS

Kyiv - 2024

Description of the discipline "Building material science and welding in construction"

The course "Building material science and welding in construction " is a complex discipline that contains basic information about the methods of obtaining construction materials and methods of their physical, chemical and mechanical processing in order to give them the appropriate properties and formation necessary in construction.

The purpose of the discipline is the general technological training of a specialist in the field of construction, as well as the acquisition of skills in construction material science and the establishment of a base for studying the disciplines: "Reinforced concrete and stone structures", "Reliability of construction equipment", "Technology of construction production", "Wood structures and plastics", "Inspection and testing of buildings and structures".

Academic degree, sp	pecialty, academic prograr	nme					
Academic degree	Bachelor's						
Specialty	192 «Construction and civil engineering»						
Academic programme	Construction and civil engineering						
Character	istics of the discipline						
Type	opt	ional					
Total number of hours	1	.20					
Number of ECTS credits		4					
Number of modules		7					
Course project (work) (if any)	-						
Form of assessment	Exam	Credit					
Indicators of the discipline for full	-time and part-time forms	of university study					
	Full-time	Part-time					
Year of study	1,2	1,2					
Semester	2/3	2/3					
Lectures	30/15 hr.	6/3 hr.					
Practical classes and seminars	- <i>hr</i> .	<i>- hr</i> .					
Laboratory classes	30/15 hr.	6/3 hr.					
Self-study	15/15 hr.	48/54 hr.					
Individual assignments	- hr.	- hr.					
Number of hours per week for full-time students	4/2 hr.	-					

1. 1. Aim, objectives, competences and expected learning outcomes of the discipline

Aim of the discipline is the general technological training of the future specialist in the field of construction, as well as the acquisition of skills in construction material science and the establishment of a base for studying the disciplines: "Reinforced concrete and stone structures", "Reliability of construction equipment", "Technology of construction production", "Constructions with wood and plastics", "Inspection and testing of buildings and structures".

Objectives of studying the discipline is to study:

- methods of obtaining building materials;
- structure, properties and purpose of building materials;
- basics of construction materials processing;
- structure, properties and purpose of metal materials for construction

Acquisition of competencies:

Integral competence (IC):

IC. The ability to solve complex specialized construction and civil engineering tasks in the learning process, which involves the application of a complex of theories and methods for determining the strength, stability, deformability, modeling, strengthening of building structures; further safe operation, reconstruction, construction and installation of buildings and engineering structures; application of automated design systems in the field of construction.

General competencies (GC):

- GC2 Knowledge and understanding of the subject area and professional activity.
- GC6 Ability to search, process and analyze information from various sources.
- GC7 Interpersonal skills.

Special (professional) competencies (SC):

- SC1 Ability to use conceptual scientific and practical knowledge in mathematics, chemistry and physics to solve complex practical problems in the field of construction and civil engineering.
- SC4 Ability to choose and use appropriate equipment, materials, tools and methods for designing and implementing technological processes of construction production.
- SC7 Ability to take responsibility for making and making decisions in the field of architecture and construction in unpredictable work contexts.
- SC10 Ability to ensure the organization and technology of construction production of agro-industrial, industrial, transport and civil facilities using modern energy-efficient technologies and construction materials.

Expected learning outcomes (ELO):

- ELO01 Apply basic theories, methods and principles of mathematical, natural, social, humanitarian and economic sciences, modern models, methods and decision support software to solve complex construction and civil engineering problems.
- ELO 02 Participate in research and development in the field of architecture and construction.
- ELO04 Design and implement technological processes of construction production, using appropriate equipment, materials, tools and methods.
- ELO07 Collect, interpret and apply data, including through the search, processing and analysis of information from various sources.
- ELO 08 Rationally use modern building materials, products and structures based on knowledge of their technical characteristics and manufacturing technology.

2. The program and structure of the discipline for:

- full-time (part-time) form of study;
- reduced full-time (part-time) form of study.

	Number of hours												
Modules	Full-time			Part-time									
and topics	Weeks	Total	Including			In	Including						
			1	p	lab	ind	s.st	total	1	p	lab	ind	s.st
1	2	3	4	5	6	7	8	9	10	11	12	13	14
		Mo	dule	1.]	Metal	scier	ıce						
Topic 1.	1-2	16	4	-	10	-	2	9	1	-	-	-	8
Classification,													
structure and													

	1	T			1	ı		1					1
composition of													
building materials	2.4	1.0											0
Topic 2. Carbon	3-4	10	4	-	4	-	2	11	1	-	2	-	8
steels and cast irons	_									_		_	
Total for module 1	26		8	-	14	-	4	-	20	2	-	2	-
		le 2. Hea	t trea	atm	ent o	f buil	ding 1	materials	S				
Topic 3. The theory	5-6	4	1	-	2	-	1	10	1	-	1	-	8
of heat treatment													
Topic 4. Technology	7-8	5	1	-	2	-	-2	10	1	-	1	-	8
of heat treatment													
Total for module 2	9		2	-	4	-	-3	-	20	2	-	2	-
Module 3. Alloy and	non-fer	rous alloy	s, in	org	anic a	and o	rgani	c binders	s, aggi	regat	tes, co	ncre	tes,
		cerami							, 00	Ü			
Topic 5. The alloying	9-12	12	4	-	6	_	2	7	1	-	1	-	5
theory													
Topic 6. Non-ferrous	13	6	2	_	2	_	2	6	_	_	1	_	5
metals and alloys	10				_		_						
Topic 7. Inorganic	14-15	22	14		4	_	4	7	1		_	_	6
and organic binders,	11.15		1.		•			,	1				
aggregates,													
concretes, ceramic													
and polymeric													
materials													
Total for module 3	40		20	_	12	_	8	_	20	2	_	2	
	75		30	-	30	_	15	_	60	6		6	-
Total hours		-1- 4 XX 7-		- 4 -						O	-	O	-
T 10 T 1		ule 4. We		gte		ogy 1				l		l	1 4
Topic 8. Formation	1-2	5	2	-	2	-	1	7	2	-	1	-	4
of welded joints and													
weldability of metal.													
Classification of													
welding methods in													
construction													
Topic 9. Arc	3-4	6	2	-	2	-	2	6	-	-	2	-	4
welding: manual arc													
welding with a													
fusible electrode,													
automatic arc													
welding with a													
fusible electrode, arc													
welding in shielding													
gases, arc welding													
with a non-fusible													
electrode, special													
types of arc welding.													
Topic 10. Plasma	5-6	6	2	-	2	-	2	8	-	-	-	-	8
welding. Electroslag													
welding. Gas													
welding.													
Topic 11. Hot	7-8	6	2	_	2	_	2	8	_	_	_	_	8
welding tools. Cold			-		_		-						
welding tools. Cold welding tools.													
Radiation welding.													
Inspection of welded													
inspection of weided							l	j	<u> </u>		<u> </u>		

joints													
Total for module 4	23		8	-	8	-	7	-	29	2	-	3	-
	Module 5. Welding in construction												
Topic 12.	9-10	6	2	-	2	-	2	7	1	-	-	-	6
Classification of													
welded structures.													
Features of welding													
of different types of													
metals. Basic types													
of welded joints.													
Operation of welded													
joints under different													
load conditions.													
Topic 13.	11-12	6	2	-	2	-	2	8	-	-	-	-	8
Construction welded													
metal structures:													
frames of industrial													
buildings, welded													
beams, trusses and													
columns, sheet solid													
building structures		_											-
Topic 14. Machine-	13-14	6	2	-	2	-	2	8	-	-	-	-	8
building welded													
structures and													
pipelines	1.5	4	4		4			0					0
Topic 15.	15	4	1	-	1	-	2	8	-	-	-	-	8
New technologies in													
construction.					7				21	1			
Total for module 5	22		7	-	7	-	8	-	31	1	-	-	1
Total hours		15	15	-	15	-	15	-	60	3	-	3	-
General hours	1	20	45	-	45	-	30	-	120	9	-	9	-

3. Topics of laboratory (practical, seminar) classes

No	Topic title	Hours
1	Macrostructural analysis of metals and alloys	2
2	Microstructural analysis of metals and alloys.	2
3	The study diagrams of binary alloys	2
4	The thermal method of analysis of metals and alloys.	2
	Construction of diagrams of tin-zinc alloys.	
5	The analysis of state diagram of iron-carbon alloys	2
6	Study of the microstructure of carbon steels at equilibrium	2
	state	
7	Study of microstructure of cast irons	2
8	Structural changes in the carbon steel at heating.	2
9	Annealing and normalization of carbon steels. Study of	2
	microstructure and hardness changes	
10	Quenching of carbon steels	2
11	Tempering of quenching steels	2

12	Determination of critical temperatures of steels by method	2
	of test quenchings	
13	Determination of carbon steel microstructure in a	2
	nonequilibrium state	
14	Surface hardening steels by high frequency currents	2
15	Chemical heat treatment of steels	2
16	Definition hardenability steels	2
17	Study of microstructure of alloy steels	2
18	Development of technological process of the heat treatment	2
	of parts of agricultural machines	
19	Study of the microstructure of copper alloys	2
20	Study of the microstructure of aluminum alloys	2
21	Study of microstructure babbits	2
22	Composite and bimetallic materials	2
23	Materials with shape memory	1
Total		45

4. Topics for self-study

No	Topic title	Hours
1	Technological properties of materials	3
2	Deformed aluminum alloys strengthened by heat treatment	4
3	Construction mortars and dry mixes	4
4	Asbestos, silicate, gypsum and bituminous products	4
5	Special welding methods	5
6	Features of welding of nickel, titanium, lead, zirconium, tantalum, niobium and molybdenum and trusses of welded structures	5
7	Methods of reducing deformations and the magnetic method of quality control of welds	5
Total		30

5. Tools for assessing expected learning outcomes:

- exam;
- credit;
- module tests;
- - presentation of laboratory works

6. Teaching methods.

- 1) Verbal:
 - -Lectures;
 - 2) Visual:
 - -Slides, video, visual material (perts, charts, stands).
 - 3) Practical:
 - Laboratory work;
 - Training and factory practices;
 - Independent work.

7. Assessment methods

- exam;
- credit:
- module tests;
- control works;
- presentation of laboratory works;

8. Distribution of points received by students.

The assessment of students' knowledge and skills is conducted by means of a 100-point scale and is converted into national grades according to Table 1 of the current *Exam and Credit Regulations at NULES of Ukraine*.

Student rating,	National grading of exams and credits					
points	exams	credits				
90-100	excellent					
74-89	good	pass				
60-73	satisfactory					
0-59	unsatisfactorily	fail				

To determine a student's rating in the discipline \mathbf{R}_{DIS} (up to 100 points), the received assessment rating \mathbf{R}_{A} (up to 30 points) is added to the academic performance raiting \mathbf{R}_{AP} (up to 70 points): $\mathbf{R}_{DIS} = \mathbf{R}_{AP} + \mathbf{R}_{A}$.

9. Teaching and learning aids

- e-learning course of the discipline «Building material science and welding in construction» (*Part 1. http://elearn.nubip.edu.ua/course/view.php?id=1168. Part 2. http://elearn.nubip.edu.ua/course/view.php?id=2257*)
 - lectures and presentations (in electronic form);
 - textbooks and manuals;
 - guidelines for studying a discipline by full-time and part-time students;
 - stands, posters;
 - equipment and various device.

10. Recommended sources of information

- 1. Aftandiliants Y., Stepanechko O., Zazymko O. Material Science: Textbook. Київ, НУБІП України, 2022.- с. 528.
- 2. Construction materials engineering. Tutorial/Y. Aftandilyants, O. Zazymko, O. Ivanova, K. Lopat'ko //Kyiv: NULES of Ukraine, 2017.-p. 523
- 3. Афтанділянц Є.Г., Зазимко О.В., Лопатько К.Г. Будівельне матеріалознавство та зварювання в будівництві. Навчальний посібник. К.: НУБіП України, 2018.- с. 523.
- 4. Новомлинець, О. О. Будівельне матеріалознавство : навч. посіб. для здобувачів вищої освіти спец. 192 Будівництво та цивільна інженерія / О. О. Новомлинець, М. М. Корзаченко, А. І. Сергеєв. Чернігів : НУ «Чернігівська політехніка», 2021. 420 с.
- 5. Будівельне матеріалознавство. Лабораторний практикум для студентів спеціальності «Будівництво та цивільна інженерія» / С.М. Скребнєва, В.В. Грабовчак, А.І. Глушаниця/ К.: НАУ, 2019. 88 с.
- 6. Афтанділянц Є.Г., Зазимко О. В., Лопатько К.Г. Технологія конструкційних матеріалів і матеріалознавство. Навчальний посібникІ. Металознавство. Київ, НУБіП України. 2020- с.334.
- 7. Афтанділянц Є.Г., Зазимко О. В., Лопатько К.Г. Технологія конструкційних матеріалів і матеріалознавство. Курс лекцій. Частина ІІ. Металознавство. Київ, НУБіП України. 2020- с.356.
- 8. Опальчук А.С., Афтанділянц Є.Г., Роговський Л.Л., Семеновський О.Є., Клендій М.Б., Біловод О.І., Дудніков І.А., Матеріалознавство і технологія конструкційних матеріалів: підручник для вищих навчальних закладів ІІІ-ІV ступенів акредитації; за ред. А.С. Опальчука і О.Є. Семеновського. Ніжин: Видавець ПП. Лисенко М.М., 2013. 752 с.
- 9. Спеціальні види бетонів: характеристика основних складів https://probud.in.ua/spetsialni-vidi-betoniv-harakteristika-osnovnih-skladiv.html
- 10.Марки сталей і сплавів: властивості та характеристики https://metinvestholding.com/ua/products/steel-grades
- 11.Що таке чавун? Характеристики металу, особливості виробництва і застосування https://metinvest-smc.com/ua/articles/chto-takoe-chugun-kharakteristiki-metalla-osobennosti-proizvodstva-i-primeneniya/
- 12.Сплави кольорових металів https://uk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%BB%D0%B0%D0%B2%D0%B8_%D0%BA%D0%BE%D0%BB%D1%8C%D0%BE%D1%80%D0%BE%D0%B2%D0%B2%D0%B8%D1%85_%D0%BC%D0%B5%D1%82%D0%B0%D0%BB%D1%96%D0%B2
- 13. Керамічні матеріали https://www.pharmencyclopedia.com.ua/article/3477/keramichni-materiali
- 14. Композиційні матеріали https://mozok.click/1786-kompozicyn-materali.html
- 15.Теплоізоляційні матеріали https://euroterm.com/brand-thermaflex/?gclid=EAIaIQobChMI15zGpYzl8QIVHQCiAx0gKg9iEAAYASAA EgJj1vD_BwE
- 16.Світлопрозорі конструкції. https://stroyrec.com.ua/sv%D1%96tloprozor%D1%96-

konstrykc%D1%96%D1%97-ogliad-pol%D1%96mernih-sv%D1%96tloprozorih-mater%D1%96al%D1%96v/