General information

For ED	Bachelor			
Knowledge area	19 "Architecture and construction"			
Speciality	192 " Building and engineering of the city"			
Specialization	-			
Characteristics of the discipline				
Type	Obligatory			
language of teaching	English			
Total number of hours	150			
Number of credits ECTS	5			
Number of thematic	4			
modules				
Form of control	Credit /examination			
Indicators of the discipline for daily learning				
Year of study (course)	2			
Semester	4	5		
Lectures	30 hours.	30 hours.		
Practical, seminar classes	30 hours.	30 hours.		
Independent study	15 hours.	15 hours.		

Teacher

Kutsenko Anastasiia Hrygorivna

Ph. D. of Physical and Mathematical Sciences, Associated Prof.

Department of Mechanics

Educational building 11, office 226.

e-mail: kutsenko@nubip.edu.ua

DESCRIPTION OF COURSE

The educational discipline "Structural Mechanics" is aimed at students' study of the issues of calculation of complex structures for strength, stiffness and stability, without a deep understanding of which it is impossible to fully prepare bachelors for the design of modern rural structures. The course deals with the calculation of composite structures for moving loads.

The purpose of the discipline is the general technical training of a specialist in the branch of construction, as well as the acquisition of skills in Theoretical and Structural Mechanics and the establishment of a base for studying the disciplines: "Metal structures", "Reinforced concrete structures", "Dynamics of bases and foundations".

Prerequisites for studying the course. Studying of the discipline assumes that you have knowledge of mathematics, physics, theoretical mechanics and mechanics of materials and constructions.

Competencies of the educational programme:

Integral competence (IC): IC The ability to solve complex specialized construction and civil engineering tasks in the learning process, which involves the application of a complex of theories and methods for determining the strength, stability, deformability, modeling, strengthening of building structures; further safe operation, reconstruction, construction and installation of buildings and engineering structures; application of automated design systems in the field of construction.

General competencies (GC): GC 01. Ability to learn and master modern knowledge.

Gc 02. Knowledge and understanding of the subject area, professional understanding activities of the construction industry.

Gc 6. Ability to apply knowledge in practical situations.

Gc 7. Ability to evaluate and ensure the quality of work performed.

Professional (special) competencies (PC):

Discipline provides a number of competencies

PC1. Ability to use conceptual scientific and practical knowledge in mathematics, chemistry and physics to solve complex practical problems in the field of construction and civil engineering.

- **PC4.** Ability to choose and use appropriate equipment, materials, tools and methods for designing and implementing technological processes of construction production.
- **SC7.** Ability to take responsibility for making and making decisions in the field of architecture and construction in unpredictable work contexts

Program learning outcomes (PLO) of the educational programme:

Expected Learning Outcomes (ELO):

- **PLO1**. Apply basic theories, methods and principles of mathematical, natural, social, humanitarian and economic sciences, modern models, methods and decision support software to solve complex construction and civil engineering problems.
- **PLO2.** Participate in research and development in the field of architecture and construction.
- **PLO3.** Design and implement technological processes of construction production, using appropriate equipment, materials, tools and methods.
- **PLO7.** Collect, interpret and apply data, including through the search, processing and analysis of information from various sources.

THE STRUCTURE OF DISCIPLINE

THE STRUCTURE OF DISCIPLINE				
Topic	Hours (lectures/laboratory, practical, seminars)	Learning outcomes	Tasks	Estimation, units
		4 semester		
Me	odule 1. The calcula	tion of complex be	am	40
Theme 1. The quantitative stage of kinematic analysis of flat systems	2/2	Student should be know the basic of calculation of		5
Theme structural of complex structures	2/2/2	complex beams Student should be able to build the		5
Theme 3. Calculation of simple beam	2/2/	diagrams of internal forces and for complex		5
Theme 4. The kinetic analysis of complex beam	2/2/2	beams. To analyze the diagrams of	Submitting a workshop. Completing tests.	5
Theme 5. Static calculation of composite beams	2/2/4	internal forces and for complex beams.	Writing independent works. Self-study (Performing practice	5
Theme 6. The construction of lines of influence of support reactions for statically indeterminate beams	2/2/	To understand the diagrams of internal forces and for complex beams. To distinguish between types of	and independent work in "Elearn"). Problem solving, of structural mechanics theory.	5
Theme 7. The construction of the influence line of the bending moment for a simple supported beam	2/2/	of the diagrams of internal forces and for complex beams. To apply different types of		5
Theme 8. The construction of the influence line of the	2/2/	the diagrams of internal forces and for complex		5

shearing force for a		beams in		
simple supported		buildings.		
beam				
	Module 2. The ca	alculation of trusses		30
Theme 1. The				
construction of the		Student		
influence line of	2/2/	should be know		4
internal efforts for	_, _,	the basic of		
the cantilever beam		calculation of		
Theme 2. The		trusses		
construction of		Student		
influence lines of		should be able to		
internal efforts for	2/2/	determinate the		4
			Cylenitting	
complex by general		internal efforts of	Submitting a	
method		truss by different	workshop.	
Theme 3. The		methods.	Completing tests.	
construction of		To analyze the	Writing independent	
influence lines of	2 /2 /	result of	works. Self-study	
internal efforts for	2/2/	calculation of	(Performing practice	4
complex beams by		trusses.	and independent	
the kinematic		To understand	work in "Elearn").	
method.		the basis of truss	Problem solving, of	
Theme 4. The	2/2/2	calculation.	structural mechanics	5
method of joints.	21212	To distinguish	theory.	
Theme 5. The	2/2/2	between types of		5
method of sections	21 21 2	truss loads.		<u></u>
Theme 6. The		To apply		
method of	2/2/1	different method		4
compatible sections		of truss		
Theme 7. The		calculation in		
calculation of flat	2/2/2	buildings.		4
trusses under snow	21 21 2			4
load				
Total for 4	20/20/15			70
semester	30/30/15	-	-	70
	C	redit		30
	Total for	4 semester		100
	5 se	mester		
		calculation of arch		40
Theme 1. The		Student		-
definition of		should be know		_
support reaction of	2/2/2	the basic of		5
simple arch.		calculation of	Submitting a	
Theme 2. The		calculation of complex archs.	workshop.	
construction of		Student	Completing tests	
diagram of normal	2/2/2	should be able to	Self-study	5
_	<i>ΔΙ ΔΙ Δ</i>	build the	(Performing practice	3
1			and in "Elearn").	
arch.		diagrams of	Problem solving, of	
Theme 3. The		internal forces	structural mechanics	
construction of	2/2/2	and for complex	theory.	-
diagram of shear	2/2/2	archs.		5
force for simple		To analyze the		
arch.		diagrams of		

Theme 4. The construction of		internal forces and for complex		
diagram of bend	2/2/1	archs.		5
_	2/2/1			5
moment for simple		To understand		
arch.		the diagrams of		
Theme 5. The		internal forces		
definition of		and for complex		
support reactions	2/2/1	archs.		5
for a three-hinge	_, _, _	To distinguish		
arch under vertical		between types of		
loads.		of the diagrams		
Theme 6. The		of internal forces		
definition of		and for complex		
support reactions		archs.		
for a three-hinge		To apply		
arch under random	2/2/1	different types of		=
loads.	2/2/1	the diagrams of		5
		internal forces		
		and for complex		
		archs in		
		buildings		
Theme 7. The				
construction of				
diagrams of normal	2/2/1			5
and shear force for a				_
three-hinge arch				
Theme 8. The		-		
construction of				
diagram of bend	2/2/1			5
moment for a three-	2/2/1			Č
hinge arch.				
	ule 4. The calculation	n of the complex f	rames	30
Theme 1. The		Student		
calculation of three-		should be know		
hinge arch under	2/2/1	the basic of		4
moving loads.		calculation of		
Theme 2. The		complex frames.		
calculation of	2/2/1	Student		4
simple frame.	∠/ ∠/ 1	should be able to		7
Theme 3. The		build the	Submitting a	
calculation of e	2/2/1	diagrams of	workshop.	4
complex frame.	∠/ ∠/ 1	internal forces	Completing tests	7
Theme 4. The		and for complex	Self-study	
calculation of		frames.	(Performing practice	
statically		To analyze the	and in "Elearn").	
indeterminate	2/2/1	diagrams of	Problem solving, of	5
		internal forces	structural mechanics	
systems by force			theory.	
method Thoma 5 The		and for complex frames.		
Theme 5. The				
Calculation of		To understand		
statically	2/2/1	the diagrams of		5
indeterminate		internal forces		-
	İ	Land for compley	i	
systems by method of deflections		and for complex frames.		

		buildings.	
		frames in	
deflections.	2/2/1	internal forces and for complex	4
Method of		the diagrams of	
of buildings.		different types of	
Theme 7. Stability		To apply	
states		frames.	
method of limit		and for complex	
of structures by the	2/2/1	of internal forces	4
of buildings. The basis of calculation		between types of of the diagrams	
Theme 6. Stability		To distinguish	

EVALUATION POLICY

Policy regarding deadlines and resits:	Assignments submitted after the deadline without valid reasons will be graded lower. Resitting of modules will be allowed with the permission from the lecturer and in the presence of valid reasons (e.g. medical reasons).
Academic	Cheating during tests and exams is strictly prohibited (including the use of
honesty policy:	mobile devices). Coursework and research papers must contain correct citations
	for all sources used.
Attendance	Class attendance is mandatory. In case of objective reasons (such as illness or
policy:	international internships), individual learning may be allowed (in online format
	by the approval of the dean of the faculty).

SCALE OF ASSESSMENT OF STUDENT KNOWLEDGE

Student rating,	National grade based on exam results		
points	exams	credits	
90-100	excellent	passed	
74-89	good		
60-73	satisfactory		
0-59	unsatisfactory	not passed	

RECOMMENDED SOURCES OF INFORMATION

- 1. A. Kutsenko. Structural Mechanics: Part I. Manual. Kyiv. 2022 184 p.
- 2. A. Kutsenko. Structural Mechanics: the calculations of complex arches and frames. Part II. Manual. Kyiv. 2023-250~p.
- 3. Alberto Carpinteri Structural Mechanics: a unified approach. Taylor & Francis Ltd | CRC Press, 2019. 780 p.
- 4. M.M. Bakhoum Structural Mechanics. Structural Engineering Dept., Faculty of Engineering, Cairo University, 2nd Print, 2010. 1438 p.
- 5. Sachin M. Pore, Uttam R. Awari, Jyoti P. Bhusari Structural Mechanics II. Nirali Prakashan, 2020. 201 p.
- 6. Video materials for lectures https://www.youtube.com/