NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of Mechanics

REVIEWED

at the meeting of the Faculty of Design and Engineering

"<u>10</u>" <u>06</u> <u>2025</u>

CURRICULUM OF ACADEMIC DISCIPLINE

0k 15 Mechanics of materials and constructions

Area of knowledge 13 "Mechanical Engineering"

Specialty 133 "Sectoral mechanical engineering"

Academic programme Building and civil engineering Sectoral mechanical engineering

Developed by: Assoc. Prof. of Department of Mechanics, Ph. D. of Physical and

Mathematical Sciences, Assoc. Prof. ______ Anastasiia KUTSENKO

Description of the discipline _Mechanics of materials and constructions

(name)

A 1 1 1	T							
Academic degree	Bachelor							
Specialty	1	al engineering"						
Academic programme		nanical engineering"						
	ristics of the discipline compulsory							
Type								
Total number of hours	2	210						
Number of ECTS credits		7						
Number of modules		5						
Course project (work) (if any)	-							
Form of assessment	credit /	exam						
Indicat	ors of the discipline							
for full-time and par	rt-time forms of univer	sity study						
	Full-time	Part-time						
Year of study	2	2						
Semester	3	4						
Lectures	45hours.	<i>30</i> hours.						
Practical classes and seminars	15 hours.	15 hours.						
Laboratory classes	15 hours.	<i>30</i> hours -						
Self-study	<i>30</i> hours.	<i>30</i> hours.						
Number of hours per week for full- time students	5 hours	5 hours						

1. Aim, objectives, competences and expected learning outcomes of the discipline

Aim is skills of solving problems of Mechanics of materials and structures and laying the basis for the study subjects: "Load-lifting machines", "Building machinery", "Machine elements".

Objectives are the study of the methods of calculation of structures for strength, rigidity and stability; the study of the stress-strain state of the beam at tension and compression, at direct shear, at torsion and at bend.

Acquisition of competences:

Integral competence (IC):

A person's skils to solve complex specialized problems and practical problems in a certain professional field activity or in the learning process that involves application of certain theories and methods of relevant sciences in uncertainty and complex conditions.

General competences (GC):

- GC2 The ability to apply knowledge in the practical situations.
- GC5 The skills of generation of new ideas (creativity).
- GC8 The ability to act socially responsibly and consciously.
 - GC13 The ability to reserve and multiply moral, cultural, scientific values and achievements of society on based on the understanding of history and patterns of development subject area, its place in the general system of knowledge about nature and society and in the development of society, techniques and technologies, use different types and forms of motor activity for active recreation and leading a healthy lifestyle.

Special (professional) competences (SC):

- SC1 The ability to use conceptual scientific and practical knowledge in mathematics, chemistry and physics to solve complex practical problems in the branch of construction and civil engineering.
- SC7 The ability to take responsibility for making and making decisions in the branch of architecture and construction in unpredictable work conditions.

Expected Learning Outcomes (ELO):

- ELO 2 The participate in research and development in the branch of architecture and construction.
- ELO 7 The collect, the interpret and an apply data, including through the search, processing and analysis of information from various sources.
- ELO 11 The avaluation of compliance of projects with design principles urban areas and infrastructure facilities and urban economy.

2. The program and structure of discipline for

- full term daily/distance learning first year students in 3 and 4 semesters 2024/2025 academic year

					Но	ur nu	mbers						
		Dai	ly lea	rning				I	Distan	ce le	arning	3	
Title of thematic	Weeks	Total		Inc	ludi	ng		Total	Including			g	
modules and Topics			1	p	lab	ind	i.s.		1	p	lab	ind	i
modules and Topies												İ	
												İ	S
												<u> </u>	
1	2	3	4	5	6	7	8	9	10	11	12	13	1
												<u> </u>	4
				emeste									
]	Module 1.	Tensio	on and	l Co	mpre	ession						
Topic 1. Purpose and		6	2		2	2						i	
objectives of the	1											i	
course. The basic													
hypotheses and the													
definitions of the													
mechanics of													
materials and													
constructions.													

1	2	3	4	5	6	7	8	9	10	11	1	13	14
											2		
Topic 2. The relation			2										
among internal forces													
and tensions in case													
of tension or													
compression of the													
bar.													
Topic 3. The method	2	6	2	2		2							
of calculating the bar													
on strength													
Topic 4. The method		10	2		2	2							
of calculating the bar	3												
on rigidity													
Topic 5. The			2										
calculation of bar on													
strength with in terms													
of weight and													
temperature.													
Topic 6. The	4	6	2	2		2							
calculation of		O		_		_							
statically													
indeterminate bars.													
Total of module 1													
Total of module 1		28	12	4	4	8							
		N	/odul	e 2. T o	orsio	n	l	<u>I</u>				<u>I</u>	l
Topic 1. The	5	8	4		2	2							
geometric													
characterizations of													
the plane cross													
sections.													
Topic 2. The	6	6	2	2		2							
geometric													
characterizations of													
the plane cross													
sections.													
Topic 3. Analysis of	7	8	4		2	2							
Stress and Strain	-					_							
Topic 4. The direct	8	6	2	2		2							
shear stresses.	-		_	_									
Topic 5. The	9	8	2		2	2							
definition of torsion.			_		~	_							
Topic 6. The method			2										
of calculating the bar			_										
on strength and													
rigidity by torsion													
Total of module 2		36	16	4	6	10							
Total of illoudic 2		30	10	' '	0	10							
					1	<u> </u>	<u> </u>	l					

1	2	3	4	5	6	7	8	9	10	11	1 2	13	14
		Modu	ıle 3. I	Beam	ben	ding		1		I			
Topic 1. The equation of Shearing force for the cantilever and simple beams	10	6	2	2		2							
Topic 2. The equation of Bending moment for the cantilever and simple beams.	11	8	2		2	2							
Topic 3. The calculation method cantilever beam on the strength by the normal stresses			2										
Topic 4. The calculation method simple beam on the strength by the normal stresses.	12	6	2	2		2							
Topic 5. The definition of supports reaction of curveted beam	13	9	2		2	2							
Topic 6. The building of diagrams of internal efforts for a curveted beam			3										
Topic 7. Double – integration method	14	6	2	2		2							
Topic 8. Verescagin's rule.	15	6	2	1	1	2							
Total of module 3		41	17	7	5	12							
Total hour of Semester 3		105	45	15	15	30							
Made	ulo / Mos	thods of de		mest		11 CVC	toma	dofor	moti	ons			
Topic 1. Castigliano's theorem.	1	8	2)II UI	2	2	icilis (ucivi	mati	10115			
Topic 2. The More's integral.	2	4	2	2	2	2							

1	2	3	4	5	6	7	8	9	10	1 1	12	13	1 4
Topic 3. The construction method of the diagram of shear-force and bending-moment for the cantilever frame	3	8	2		2	2				4			
Topic 4. The construction method of the diagram of shear-force and bending-moment for the simple frame.	4	6	2	2	2	2							
Topic 5. The definitions of the statically indeterminate constructions.	5	8	2		2	2							
Topic 6. The application of the Castigliano's theorem to the statically indeterminate constructions.	6	6	2	2	2	2							
Topic 7. The three moment's theorem.	7	6	2		2	2							
Topic 8. The application of the Verescagin's rule to the statically indeterminate constructions.	8	6	2	2	2	2							
Total of module 4		52	16	8	16	16							
		Module	e 5. C	omp	lex s	tresse	S	I.				ı	
Topic 1. Analysis of Stress and Strain in the case of combined bending and tension or compression	9	8	2		2	2							
Topic 2. Analysis of Stress and Strain in the case of a complex bending	10	6	2	2	2	2							

1	2	3	4	5	6	7	8	9	10	1 1	12	13	1 4
Topic 3. Analysis of Stress and Strain in the case of the off- centre acting of force of tension or compression	11	8	2		2	2							
Topic 4. Analysis of Stress and Strain in the case of combined bending and torsion at once	12	7	2	2	2	2							
Topic 5. The calculation method of column.	13	8	2		2	2							
Topic 6. Analysis of Stress and Strain in the cases of acting difference types of dynamic loads	15	8	2	2	2	2							
Topic 7. Analysis of Stress and Strain in the cases of acting difference types of dynamic loads	15	8	2	1	2	2							
Total of module 5		53	14	7	14	14							
Total hour for Semester 4		105	30	15	30	30							
Total hours		210	75	30	45	60							

3. Topics of Lectures

№	Topic title	Hour
		numbers
	3 semester	
1	Purpose and objectives of the course. The basic hypotheses and the definitions of	2
	the mechanics of materials and constructions.	
2	The relation among internal forces and tensions in case of tension or compression	2
	of the bar.	
3	The method of calculating the bar on strength	2
4	The method of calculating the bar on rigidity	2
5	The calculation of bar on strength with in terms of weight and temperature.	2
6	The calculation of statically indeterminate bars.	2
7	The geometric characterizations of the plane cross sections.	6
8	Analysis of Stress and Strain	4
9	The direct shear stresses.	2
10	The definition of torsion.	2
11	The method of calculating the bar on strength and rigidity by torsion	2
12	The equation of Shearing force for the cantilever and simple beams	2

13	The equation of Bending moment for the cantilever and simple beams.	2
14	The calculation method cantilever beam on the strength by the normal stresses	2
15	The calculation method simple beam on the strength by the normal stresses.	2
16	The definition of supports reaction of curveted beam	2
17	The building of diagrams of internal efforts for a curveted beam	3
18	Double – integration method	2
19	Verescagin's rule.	2
	4 semester	
1	The Castilian's theorem.	2
2	The More's integral.	2
3	The construction method of the diagram of shear-force and bending-moment for the cantilever frame	2
4	The construction method of the diagram of shear-force and bending-moment for the simple frame.	2
5	The definitions of the statically indeterminate constructions.	2
6	The application of the Castigliano's theorem to the statically indeterminate	2
	constructions.	
7	The three moment's theorem.	2
8	The application of the Verescagin's rule to the statically indeterminate	2
	constructions.	
9	Analysis of Stress and Strain in the case of combined bending and tension or	2
	compression	
10	Analysis of Stress and Strain in the case of a complex bending	2
11	Analysis of Stress and Strain in the case of the off-centre acting of force of tension	2
	or compression	
12	Analysis of Stress and Strain in the case of combined bending and torsion at once	2
13	The calculation method of column.	2
14	Analysis of Stress and Strain in the cases of acting difference types of dynamic loads	2
15	Analysis of Stress and Strain in the cases of acting difference types of dynamic loads	2

4.1 Topics of Practical classes

No॒	Topic title	Hour
		numbers
	3 semester	
1	The construction of diagrams of normal force and normal stress for the bar	2
2	The calculation of the bar on strength and rigidity.	2
3	The geometric characterizations of the plane cross sections.	3
4	The method of calculating the bar on strength and rigidity by torsion.	2
5	The construction of diagram of Shearing force for the cantilever and simple beams.	2
6	The construction of diagram of Bending moment for the cantilever and simple	2
	beams.	
7	The calculation of beams on the strength by the normal stresses.	2
	4 semester	
1	The calculation of beam strain by Verescagin's rule and by the Castigliano's	4
	theorem.	
2	The construction of the diagrams of shear-force and bending-moment for the	2
	difference types of frame	
3	The curveted beam.	2
4	The calculation of the statically indeterminate constructions by difference	2

	methods.	
5	The calculation of beam in the case of at one time action of bending and torsion.	3
6	The calculation of column.	2

4.2Topics of laboratory classes

No	Topic title	Hour
		numbers
	3 semester	
1	The determination of mechanical characteristics of "soft" steel in tension	4
2	The experimental calculation of the modulus of elasticity for steel	4
3	The experimental study of wood by compression	4
4	The investigation of the stress state by strain gauge	3
	4 semester	
1	The experimental study of steel by compression	4
2	The determination of the modulus of elasticity for plastics	4
3	The experimental determination of Poisson's ratio for steel.	4
4	The study of the resistance of various structural materials on shear.	4
5	The study of the conceptions of building of diagrams of internal forces for beams	4
	by the mathematical modeling method	
6	The calculation statically indeterminate beams by the mathematical modeling	4
	method	
7.	The study of the stress state of the frame by the mathematical modeling method.	4
8.	The investigation of steel on impact strength test	2

5 Topics for self-study

$\mathcal{N}_{\underline{\circ}}$	Topic title	Hour numbers
	3 semester	
1	The calculation of the bar on strength and rigidity.	4
2	The geometric characterizations of the plane cross sections.	8
3	The direct shear stresses.	2
4	The method of calculating the bar on strength and rigidity by torsion.	6
5	The calculation of cantilever beam on the strength by the normal stresses.	5
6	The calculation of simple beam on the strength by the normal stresses.	5
	4 semester	
1	The calculation of beam strain by Verescagin's rule.	2
2	The calculation of beam strain by the Castigliano's theorem.	2
3	The curveted beam.	2
4	The application of the Verescagin's rule to the statically indeterminate constructions.	1
5	Analysis of Stress and Strain in the case of the action of compression and bending at one time	2
6	Analysis of Stress and Strain in the case of the action of tension and bending at one time	2
7	Analysis of Stress and Strain in the case of the action of two bending moments at one time, which acting in perpendicular planes	2
8	The calculation method of column.	2

6. Tools for assessing expected learning outcomes:

- exam;
- credit;
- module tests;
- graphic design works; presentation of laboratory and practical works;
- other types.

7. Teaching methods:

- verbal method (lecture, discussion, interview, etc.);
- practical method (laboratory, practical classes);
- visual method (illustration, demonstration);
- video method (remote, multimedia, web-based, etc.);
- self-study (completing assignments);
- individual research work;

8. Results assessment.

The student's knowledge is assessed by means of a 100-point scale converted into the national grades according to the "Exam and Credit Regulations at NULES of Ukraine" in force

8.1. Distribution of points by types of educational activities

Educational activity	Results	Assessment
3 semester		
Module 1. Tension and compression		
Practical work 1.	ELO 2, 7, 17.	8
Practical work 2.	Student should be know: the	8
Practical work 3.	basic hypotheses and the definitions	8
Laboratory work 1.	of the mechanics of materials and constructions	8
Laboratory work 2.	Student should be able to: built	8
Module work 1.	the diagrams of internal forces and	20
Module work 2.	tensions in case of tension or compression of the bar.	30
Testing Module 1		10
Total for module 1		100
Module 2. Torsion		
Practical work 4.	ELO 2, 7, 17.	5
Practical work 5.	Student should be know: the	5
Laboratory work 3.	main geometric characterizations of	5
Module work 3.	the plane cross sections; the relation among internal forces and tensions in	40
Module work 4.	cases of direct shear and torsion.	30
Testing Module 2	Student should be able to: built the	15
	diagrams of internal forces and	
Total for module 2	tensions in case of torsion of the bar.	100

Module 3. Beam bending		
Practical work 6.	ELO 2, 7, 17.	10
Practical work 7.	Student should be know: the	10
Laboratory work 4.	equations of bending moment and	15
Module work 5.	shearing force for the cantilever and	20
Module work 6.	simple beams. Student should be able to: built the	30
Testing Module 3	diagrams of internal forces and	15
	tensions in case of bending of the	
	beam.	
Total for module 3		100
Class work	$(M1 + M2 + M3)/3*0,7 \le 70$	
Credit	30	
Total for 3 semester	(Class work + c	$credit$) ≤ 100
Course project/work		100
4 semester		
	lefininding of beam deformations	
Practical work 8.	ELO 2, 7, 17.	10
Practical work 9.	Student should be know: the	10
Practical work 10.	basis methods for definition the deformations of beam and frame.	10
Laboratory work 5.	The definitions of the statically	15
Laboratory work 6.	indeterminate constructions; the	15
Laboratory work 7.	three moment's theorem.	15
Laboratory work 8	Student should be able to: define	15
Testing Module 4	the deformations of beam and frame by different methods.	10
Total for module 4		100
Module 5. Th	e complex deformations	
Practical work 11.	ELO 2, 7, 17.	10
Practical work 12.	Student should be know: Stress	10
Practical work 13.	and Strain in the case of the action of complex deformations of	10
Laboratory work 9.	complex deformations of construction.	10
Laboratory work 10.		10
Laboratory work 11.	Student should be able to: calculate	10
Laboratory work 12	beam and frame by acting of	10
Module work 7.	complex Stress and Strain.	20
Testing Module 5		10
Total for module 5		100
Class work $(M1 + M2)/2*0,7 \le 70$		
Exam 30		30
Total for 4 semester (Class work + credit) ≤ 100		100

8.2. Scale for assessing student's knowledge

Student's rating, points	National grading (exam/credits)
90-100	excellent
74-89	good
60-73	satisfactory
0-59	unsatisfactory

8.3. Assessment policy

Deadlines and	EXAMPLE: works that are submitted late without valid reasons will be	
exam retaking	assessed with a lower grade. Module tests may be retaken with the	
rules	permission of the lecturer if there are valid reasons (e.g. a sick leave).	
A a m d'ami a	EXAMPLE: cheating during tests and exams is prohibited (including	
Academic integrity rules	using mobile devices). Term papers and essays must have correct	
	references to the literature used	
	EXAMPLE: Attendance is compulsory. For good reasons (e.g. illness,	
Attendance rules	international internship), training can take place individually (online	
	by the faculty dean's consent)	

9. Teaching and learning aids

- 1. e-learning course of the discipline
- https://elearn.nubip.edu.ua/course/view.php?id=3933;
 - https://elearn.nubip.edu.ua/course/view.php?id=3934;
- 2. Mechanics of materials: Theory and Problems. Textbook / A. Kutsenko, M. Bondar, V. Pryshliak. 2d. Edition, Kyiv, 2020. 598 p.

10. Recommended sources of information

- 1. Beer F.P., Johnston E.R., et. al.: Mechanics of materials., 8th Edition, Graw Hill.Inc., 2020. 896 p.
- 3. John C.J., Ross C.T.F.: Strength of Materials and Structures. Arnold. $-719\ p.$
- 4. R. C. Hibbeler. Mechanics of Materials. The 7th Edition.pdf 1724 p https://drive.google.com/file/d/0Bx1MM7wb0GgSR2tjV1lrVHpDTEU/view?resourcekey=0-DD5wLrtza9lI5b-rwDPHqg
- 4. Sharma S.C.: Strength_of_materials. Web Course. http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IITROORKEE/strength%20of%20materials/homepage.htm
- 5. Educational videos of mechanics of materials https://www.bing.com/videos/search?q=mechanics+of+material+PDF&qpvt=mechanics+of+material+pdf&FORM=VDRE