NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE Department of Mechanics

REVIEWED

at the meeting of the Faculty of Design and Engineering

"<u>10</u>"<u>06</u>____2025

CURRICULUM OF ACADEMIC DISCIPLINE **0k 14 Mechanics of materials and constructions**

Area of knowledge	19 "Architecture and Construction"
Specialty	192 "Building and civil engineering"
Academic programme	Building and civil engineering
Faculty	Faculty of Design and Engineering
Developed by: Assoc.	Prof. of Department of Mechanics, Ph. D. of Physical and
Mathematical Sciences,	Assoc. Prof Anastasiia KUTSENKO

Description of the discipline _Mechanics of materials and constructions

(name
nume

Academic degree, specialty, a	cademic pr	ogramme	
Academic degree		Bac	chelor
Specialty	19 "A	Architecture	and construction"
Academic programme	192 " Bui	lding and er	ngineering of the city"
Character	istics of the	discipline	
Туре	compulsor	у	
Total number of hours		1	.80
Number of ECTS credits			6
Number of modules			5
Course project (work) (if any)			1
Form of assessment	credit /	exam	
Indicate for full-time and par	ors of the di t-time form Full-time	ns of univer	sity study Part-time
Year of study		2	2
Semester	3	4	
Lectures	30 hours.	<i>30</i> hours.	
Practical classes and seminars	<i>30</i> hours.	<i>30</i> hours.	
Laboratory classes		-	
Self-study	30 hours.	15 hours.	
Coursework	15 hours.		
Number of hours per week for full- time students	4 hours	4 hours	

1. Aim, objectives, competences and expected learning outcomes of the discipline

Aim is skills of solving problems of Mechanics of materials and structures and laying the basis for the study subjects: "Structural mechanics", "Concrete and masonry structures", "Metal and wooden structures".

Objectives are the study of the methods of calculation of structures for strength, rigidity and stability; the study of the stress-strain state of the beam at tension and compression, at direct shear, at torsion and at bend.

Acquisition of competences:

Integral competence (IC):

IC. It is the ability to solve complex specialized problems of construction and civil engineering in the learning process, which involves the application of a complex of theories and methods for determining the strength, stability, deformation, modeling, strengthening of building structures; further safe operation, reconstruction,

construction and installation of buildings and engineering structures; application of automated design systems in the branch of construction.

General competences (GC)::

GC1 – The ability to think abstractly, analyze and synthesize.

GC2 - The knowledge and understanding of the subject area and professional activity.

GC6 – The ability to search, to process and to analyze information from various sources.

GC7 – The interpersonal skills.

Special (professional) competences (SC):

SC1 – The ability to use conceptual scientific and practical knowledge in mathematics, chemistry and physics to solve complex practical problems in the branch of construction and civil engineering.

SC7 – The ability to take responsibility for making and making decisions in the branch of architecture and construction in unpredictable work conditions.

Expected Learning Outcomes (ELO):

ELO 2 – The participate in research and development in the branch of architecture and construction.

ELO 7 – The collect, the interpret and an apply data, including through the search, processing and analysis of information from various sources.

ELO 17 – The mastering of skills of effective independent work (course and thesis design) or in a group (laboratory work, including leadership skills in their implementation); efficiency of work in conditions of limited time with an emphasis on professional integrity and academic integrity.

2. The program and structure of discipline for

- full-time form of study;

	Hour numbers												
Title of thematic	Daily learning								Distance learning				
modules and Topics	weeks	total		inc	ludiı	ng		Total		Inc	ludin	ıg	
modules and ropies			1	р	lab	ind	s.st		1	р	la	in	s.st
											b	d	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
]	Module 1	: Tens	ion and	l Co	ompr	ession	1					
Topic 1. Purpose and		2	2										
objectives of the	1												
course. The basic													
hypotheses and the													
definitions of the													
mechanics of													
materials and													
constructions.													
Topic 2. The relation		6	2	2		2							
among internal forces	2												
and tensions in case													
of tension or													
compression of the													
bar.													

1	2	3	4	5	6	7	8	9	10	11	12	13	14
Topic 3. The method	3	8	2	4		2							
of calculating the bar													
on strength													
Topic 4. The method	4	6	2	2		2							
of calculating the bar		Ū	-			2							
on rigidity													
Topic 5. The first	5	8	2	2		4							
moment of area	5	0	2	2		-							
Total of module 1													
		30	10	10		10							
			Modu	le 2: T	orsio	n							
Topic 1. The	6	6	2	2		2							
geometric	0	0	-	-		2							
characterizations of													
the plane cross													
sections.													
Topic 2. The	7	4	2	2									
geometric	/	4	2										
characterizations of													
the plane cross sections.													
	8	6	2	2		2							
Topic 3. The direct	ð	0	2	2		2							
shear stresses.	0	6	-	2		2							
Topic 4. The	9	6	2	2		2							
definition of torsion.	10												
Topic 5. The method	10	8	2	2		4							
of calculating the bar													
on strength and													
rigidity by torsion													
Total of module 2		30	10	10		10							
				D	Ļ	1.							
Topic 1. The	11	M0 6	$\frac{\text{dule 3:}}{2}$	Bean	<u>1 bei</u> 2	1ding							
1	11	0			Ζ	2							
equation of Shearing force for the													
cantilever and simple													
beams	10	-	2		2	2							
Topic 2. The	12	6	2		2	2							
equation of Bending													
moment for the													
cantilever and simple													
beams.	10		-			-							
Topic 3. The	13	6	2		2	2							
calculation method													
cantilever beam on													
the strength by the													
normal stresses													

1	2	3	4	5	6	7	8	9	10	11	12	13	14
Topic 4. The	14	6	2		2	2							
calculation method													
simple beam on the													
strength by the													
normal stresses.													
Topic 5. The	15	6	2		2	2							
calculation method	10	Ŭ	-			-							
simple beam on the													
strength by the													
normal stresses.													
Total of module 3		30	10		10	10							
Total of module 5		30	10		10	10							
Total for Semester 3		90	30		30	30							
M	lodule 4.	Methods	of def	inind	ing o	f bea	m def	orma	tions				
Topic 1. Double –	1	6	2		2								
integration method.													
Topic 2.	2	6	2		2	2							
Verescagin's rule.	_	Ű	_			-							
Topic 3.	3	4	2		2	2							
Castigliano's			-		-	-							
theorem.													
Topic 4. The	4	4	2		2								
construction method	-		2		2								
of the diagram of													
shear-force and													
bending-moment for													
the cantilever frame													
Topic 5. The	5	4	2		2								
construction method	5	4	2		2								
of the diagram of shear-force and													
bending-moment for													
the simple frame.	6	6	2		2	2							
Topic 6. The	6	6	2		2	Z							
curveted beam.	7	A											
Topic 7. The	7	4	2		2								
definitions of the													
statically													
indeterminate													
constructions.			-									_	
Topic 8. The	8	4	2		2								
application of the													
Castigliano's													
theorem to the													
statically													
indeterminate													
constructions.													
Total of module 4		38	1		16	6							
			6										

1	2	3	4	5	6	7	8	9	10	11	12	13	14
	The the	matic mo	dule 5	: The	com	plex o	deform	natio	ns				
Topic 1. The three	9	4	2		2								
moment's theorem.													
Topic 2. The	10	5	2		2	1							
application of the													
Verescagin's rule to													
the statically													
indeterminate													
constructions.													
Topic 3. Analysis of	11	6	2		2	2							
Stress and Strain in													
the case of the action													
of compression and													
bending at one time													
Topic 4. Analysis of	12	6	2		2	2							
Stress and Strain in													
the case of the action													
of tension and bending													
at one time													
Topic 5. Analysis of	13	6	2		2	2							
Stress and Strain in													
the case of the action													
of two bending													
moments at one time,													
which acting in													
perpendicular planes													
Topic 6. The	14	6	2		2	2							
calculation method of													
column.													
Topic 7. Analysis of	15	6	2		2								
Stress and Strain in													
the case of the action													
of bending and													
torsion at one time.						-							
Total of module 5		37	14		14	9							
Total for Semester 4		75	30		30	15							
Total hours		165	60		60	45						+	
		100	00	1	00					1			

3. Topics of Lectures

Nº	Topic title	Hour numbers
	3 semester	
1	Purpose and objectives of the course. The basic hypotheses and the definitions of the mechanics of materials and constructions.	2
2	The relation among internal forces and tensions in case of tension or compression of the bar.	2

3	The method of calculating the bar on strength	2
4	The method of calculating the bar on rigidity	2
5	The first moment of area	2
6	The geometric characterizations of the plane cross sections.	2
7	The geometric characterizations of the plane cross sections.	2
8	The direct shear stresses.	2
9	The definition of torsion.	2
10	The method of calculating the bar on strength and rigidity by torsion	2
11	The equation of Shearing force for the cantilever and simple beams	2
12	The equation of Bending moment for the cantilever and simple beams.	2
13	The calculation method cantilever beam on the strength by the normal stresses	2
14	The calculation method simple beam on the strength by the normal stresses.	2
15	The calculation method simple beam on the strength by the normal stresses.	2
	4 semester	
16	Double – integration method.	2
17	Verescagin's rule.	2
18	Castigliano's theorem.	2
19	The construction method of the diagram of shear-force and bending-moment for	2
	the cantilever frame	
20	The construction method of the diagram of shear-force and bending-moment for	2
	the simple frame.	
21	The curveted beam.	2
22	The definitions of the statically indeterminate constructions.	2
23	The application of the Castigliano's theorem to the statically indeterminate	2
	constructions.	
24	The three moment's theorem.	2
25	The application of the Verescagin's rule to the statically indeterminate	2
	constructions.	
26	Analysis of Stress and Strain in the case of the action of compression and	2
	bending at one time	
27	Analysis of Stress and Strain in the case of the action of tension and bending at	2
	one time	
28	Analysis of Stress and Strain in the case of the action of two bending moments	2
	at one time, which acting in perpendicular planes	
29	The calculation method of column.	2
30	Analysis of Stress and Strain in the case of the action of bending and torsion at	2
	one time.	

4. Topics of Practical classes

N₂	Topic title	Hour
		numbers
	3 semester	
1	The calculation of the bar on strength.	2
2	The calculation of the bar on rigidity.	2
3	The geometric characterizations of the plane cross sections.	6
4	The direct shear stresses.	2
5		2
6	The method of calculating the bar on strength and rigidity by torsion.	2
7	The construction of diagram of Shearing force for the cantilever and simple	2
	beams.	
8	The construction of diagram of Bending moment for the cantilever and simple	2

	beams.	
9	The calculation of cantilever beam on the strength by the normal stresses.	4
10	The calculation of simple beam on the strength by the normal stresses.	4
	4 semester	
1	The calculation of beam strain by Verescagin's rule.	2
2	The calculation of beam strain by the method of initial parameters.	2
3	The calculation of beam strain by the Castigliano's theorem.	2
4	The construction of the diagrams of shear-force and bending-moment for the	2
	cantilever frame	
5	The construction of the diagrams of shear-force and bending-moment for the	2
	simple frame.	
6	The curveted beam.	2
7	The definitions of the statically indeterminate constructions.	2
8	The application of the Castigliano's theorem to the statically indeterminate	4
	constructions.	
9	The three moment's theorem.	2
10	The application of the Verescagin's rule to the statically indeterminate	4
	constructions.	
11	The calculation of column.	2
12	The calculation of beam in the case of at one time action of bending and torsion.	4

5. Topics for self-study

N⁰	Topic title	Hour numbers
	3 semester	
1	The calculation of the bar on strength and rigidity.	4
2	The geometric characterizations of the plane cross sections.	8
3	The direct shear stresses.	2
4	The method of calculating the bar on strength and rigidity by torsion.	6
5	The calculation of cantilever beam on the strength by the normal stresses.	5
6	The calculation of simple beam on the strength by the normal stresses.	5
	4 semester	•
1	The calculation of beam strain by Verescagin's rule.	2
2	The calculation of beam strain by the Castigliano's theorem.	2
3	The curveted beam.	2
4	The application of the Verescagin's rule to the statically indeterminate constructions.	1
5	Analysis of Stress and Strain in the case of the action of compression and bending at one time	2
6	Analysis of Stress and Strain in the case of the action of tension and bending at one time	2
7	Analysis of Stress and Strain in the case of the action of two bending moments at one time, which acting in perpendicular planes	2
8	The calculation method of column.	2

6. Tools for assessing expected learning outcomes:

- exam;
- credit;
- module tests;
- graphic design works; presentation of laboratory and practical works;
- other types.

7. Teaching methods:

- verbal method (lecture, discussion, interview, etc.);
- practical method (laboratory, practical classes);
- visual method (illustration, demonstration);
- video method (remote, multimedia, web-based, etc.);
- self-study (completing assignments);
- individual research work;

8. Results assessment.

Γ

The student's knowledge is assessed by means of a 100-point scale converted into the national grades according to the "Exam and Credit Regulations at NULES of Ukraine" in force

Educational activity	Results	Assessment	
3 semester			
Module 1. Tension and compression			
Practical work 1.	ELO 2, 7, 17.	8	
Practical work 2.	Student should be know: the	8	
Practical work 3.	basic hypotheses and the definitions	8	
Practical work 4.	of the mechanics of materials and constructions	8	
Practical work 5.	Student should be able to: built	8	
Module work 1.	the diagrams of internal forces and	20	
Module work 2.	tensions in case of tension or	30	
Testing Module 1	compression of the bar.	10	
Total for module 1		100	
Module 2. Torsion			
Practical work 6.	ELO 2, 7, 17.	5	
Practical work 7.	Student should be know: the	5	
Practical work 8.	main geometric characterizations of	5	
Practical work 9.	the plane cross sections; the relation among internal forces and tensions in	5	
Practical work 10.	cases of direct shear and torsion.	5	
Module work 3.	Student should be able to: built the	25	
Module work 4.	diagrams of internal forces and	30	
Testing Module 2	tensions in case of torsion of the bar.	20	
Total for module 2		100	

8.1. Distribution of points by types of educational activities

Modu	ale 3. Beam bending		
Practical work 11.	ELO 2, 7, 17.	10	
Practical work 12.	Student should be know: the	10	
Practical work 13.	equations of bending moment and	5	
Practical work 14.	shearing force for the cantilever and	10	
Practical work 15.	 simple beams. Student should be able to: built the 	10	
Module work 5.	diagrams of internal forces and	20	
Module work 6.	tensions in case of bending of the	25	
Testing Module 3	beam.	10	
Total for module 3		100	
Class work	(M1 + M2 + M3)		
Credit		30	
Total for 3 semester	(Class work + cr	$(Class work + credit) \le 100$	
Course project/work		100	
	4 semester		
Module 4. Methods o	f defininding of beam deformations		
Practical work 16.	ELO 2, 7, 17.	10	
Practical work 17.	Student should be know: the	10	
Practical work 18.	basis methods for definition the	10	
Practical work 19.	deformations of beam and frame. The definitions of the statically	10	
Practical work 20.	indeterminate constructions; the	12	
Practical work 21.	three moment's theorem.	12	
Practical work 22	Student should be able to: define	12	
Practical work 23.	the deformations of beam and frame	12	
Testing Module 4	by different methods.	12	
Total for module 4		100	
Module 5. T	The complex deformations		
Practical work 16.	ELO 2, 7, 17.	10	
Practical work 17.	Student should be know: Stress	10	
Practical work 18.	and Strain in the case of the action of	10	
Practical work 19.	complex deformations of construction.	10	
Practical work 20.		12	
Practical work 21.	Student should be able to: calculate	12	
Practical work 22	beam and frame by acting of	12	
Practical work 23.	complex Stress and Strain.	12	
Module work 7.		12	
Testing Module 5			
Total for module 5		100	
Class work	$(M1 + M2 + M3)/3*0,7 \le 70$		
Exam	30		
Total for 4 semester	(Class work + credit) ≤ 100		

Student's rating, points	National grading (exam/credits)
90-100	excellent
74-89	good
60-73	satisfactory
0-59	unsatisfactory

8.2. Scale for assessing student's knowledge

8.3. Assessment policy

Deadlines and	<i>EXAMPLE:</i> works that are submitted late without valid reasons will be
exam retaking	assessed with a lower grade. Module tests may be retaken with the
rules	permission of the lecturer if there are valid reasons (e.g. a sick leave).
Academic	EXAMPLE: cheating during tests and exams is prohibited (including
	using mobile devices). Term papers and essays must have correct
integrity rules	references to the literature used
	EXAMPLE: Attendance is compulsory. For good reasons (e.g. illness,
Attendance rules	international internship), training can take place individually (online
	by the faculty dean's consent)

9. Teaching and learning aids

1. e-learning course of the discipline

https://elearn.nubip.edu.ua/course/view.php?id=3933;

https://elearn.nubip.edu.ua/course/view.php?id=3934;

2. Mechanics of materials: Theory and Problems. Textbook / A. Kutsenko, M. Bondar, V. Pryshliak. 2d. Edition, - Kyiv, 2020. - 598 p.

10. Recommended sources of information

1. Beer F.P., Johnston E.R., et. al.: Mechanics of materials., 8th Edition, Graw – Hill.Inc., 2020. – 896 p.

2. John C.J., Ross C.T.F.: Strength of Materials and Structures. Arnold. – 719 p.

3. R. C. Hibbeler. Mechanics of Materials. The 7th Edition.pdf – 1724 p <u>https://drive.google.com/file/d/0Bx1MM7wb0GgSR2tjV1lrVHpDTEU/view?resour</u> <u>cekey=0-DD5wLrtza9lI5b-rwDPHqg</u>

4. Sharma S.C.: Strength_of_materials. Web Course. http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IITROORKEE/ strength%20of%20materials /homepage.htm

5. Educational videos of mechanics of materials <u>https://www.bing.com/videos/search?q=mechanics+of+material+PDF&qpvt=mechanics</u> +of+material+pdf&FORM=VDRE