

СИЛАБУС ДИСЦИПЛІНИ «INORGANIC AND ANALYTICAL CHEMISTRY»

Лектор курсу Контактна інформація лектора (e-mail) Сторінка курсу в eLearn

ОПИС ДИСЦИПЛІНИ

(до 1000 друкованих знаків)

Inorganic and Analytical Chemistry is a fundamental discipline, obligatory for teaching students received the specialties in the field of Agronomy of Higher Educational Agrarian Universities of III-IV accreditation levels. This program was developed on the base of Educational Program of Subject "Inorganic and Analytical Chemistry" for "Agronomy" specialty (field "Agronomy").

In modern society Inorganic and Analytical Chemistry is powerful source of productive powers. In particular, intensification of scientific and technological progress in agricultural and food production requires a rational use of chemical science achievement, intensification of ecological monitoring of economic activity.

So, the main goal of presented discipline is the study of properties, preparation methods and use of chemical elements and their compounds, acquiring the skills for execution. The main objectives of Inorganic chemistry are:

- Study the bases for subjects as the part of fundamental training for specialties in the field of Agronomy;
- Creation of a scientific basis for study of professional-oriented and special subjects (Organic Chemistry, Biochemistry, Phytopathology, etc.);
- Assimilation of general ideas of chemical experiments using semi-micromethod.

In the result of study the student should:

To know: the classification of inorganic substances and ideas about genetic relationships between them; modern ideas on atomic structure and molecules; nature and characteristics of chemical bonds; general laws of chemical kinetics and chemical equilibrium; nature of solution formation and processes in solutions (electrolytic dissociation, hydrolysis); basic ideas of RedOx processes; nature, structure, chemical properties of coordination (complex) compounds: structure of electronic shells, chemical properties, methods of isolation, biogeochemical functions, using in human life and, in particular, in agricultural production, macro-, micronutrients, and toxic chemical elements and their compounds; chemical models of biological processes; to receive the knowledge about classical and modern methods of chemical analyses, formation of skills of chemical analysis using the modeling objects, which will be increased on the real objects of Agronomy fields (plants, fertilizers, water, pesticides, foods etc.):

СТРУКТУРА КУРСУ

Тема	Години (лекції/лабораторні, практичні, семінарські)	Результати навчання	Завдання	Оцінювання
		1 семестр		
		Модуль 1		
Theme 1. Introduction. General laws of stoichiometry and types of chemical reactions.	2/4	Define that one mole of a substance contains the same number of particles (N_A) as the atoms in 12 grams of carbon-12. Explain the conversion between number of particles to number of moles. Calculate Molar Mass using atomic mass. Use the formula: $m = n \cdot M$ or mass $(g) = n$ umber of moles \cdot molar mass $(g \text{ mol}^{-1})$. Explain that one mole of gas has always the same volume at temperature and pressure given Use the formula: $V = n \cdot V_m$	the independent study and wider reading for developing knowledge (including	
Theme 2. Atomic structure of chemical elements.	2/4	Understand the historic development of atomic models, from Democritus to Bohr. Construct and use graphic descriptions of an atom consisting of protons, electrons and neutrons. Recognize that the number of protons defines the elements. Write the notations for the atomic (or charge) number (Z) and mass number (A).	labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (including elearn).	

		Ampley that we test		aammatana -
		Apply the notation		competence
		of an element: AZX		need open
		Recognize that		questions or
		isotopes of the		other ways of
		same element have		assessing.
		different masses.		
		Explain that the		
		relative atomic		
		mass of an element		
		1		
		relative abundance		
		of its isotopes.	5 2 1 1	
Theme 3.	2/6	Arrange elements	Perform in-class	Assessing
The Periodic		according to their	labs and provide	content
Law and		atomic number.	data to complete	knowledge can
Periodic Table		Understand that	lab reports.	be done by
of chemical		electron	Tests of	written
elements.		arrangement in an	practical and	questions where
		atom is related to its	theoretical	the student has
		position in the	skills.	to respond on.
		periodic table and	Complete	Partly that can
		that number of	-	be done by
				_
		electron shells is	the independent	multiple choice
		determined by	study and wider	but
		period number or	reading for	competencies as
		name of shells: K,	developing	constructing
		L,M,N Draw	knowledge	explanations
		Lewis	(including	and engaging in
		representation of	elearn).	argument as
		atoms. Explain	Solving	well as key
		reactivity of	exercises.	competencies as
		elements as a		communication
		consequence of the		and chemical
		electron		competence
				-
		arrangement in the		-
		outer shell; Recall		questions or
		the name and		other ways of
		location of the		assessing.
		following groups in		
		the periodic table:		
		alkali metals,		
		alkaline-earth		
		metals, halogens		
		and noble gases		
		Group elements		
		according to		
		physical and		
		chemical		
		properties;		
		Connect properties		
		of elements to their		
		position in the		
		periodic table.		
Theme 4.	2/4	Use the octet rule to	Perform in-class	Assessing
Chemical		explain the	labs and provide	content
	I	<u>r</u>	F10,130	-

bonding an	nd	formation of ions	data to complete	knowledge can
_	of	and covalent bond	lab reports.	be done by
molecules.		formation.	Tests of	written
		Understand that	practical and	questions where
		ionic bond is the	theoretical	the student has
		electrostatic	skills.	to respond on.
		attraction between	Complete	Partly that can
		ions of opposite	learning through	be done by
		charge; Ability to	the independent	multiple choice
		describe and	study and wider	but
		illustrate ionic	reading for	competencies as
		lattice using for	developing	constructing
		instance NaCl as a	knowledge	explanations
			•	-
		model; Being able	(including	and engaging in
		to explain that ionic	elearn).	argument as
		compound formula	Solving	well as key
		shows the ratio of	exercises.	competencies as
		positive and		communication
		negative ions;		and chemical
		Describe the		competence
		properties of		need open
		compounds formed		questions or
		by ionic bonds: e.g.		other ways of
		melting point,		assessing.
		solubility, and		
		conductivity of		
		electricity. Being		
		able to draw a		
		schematic		
		representation of a		
		covalent bond,		
		showing one or		
		more pairs of		
		electrons between		
		the atoms. Give		
		examples of		
		molecules formed		
		through covalent		
		bond(s);		
Theme 5.	2/0	Describe a chemical	Tests of	Assessing
Chemical		reaction in terms of	practical and	content
	nd	energy and mass	theoretical	knowledge can
equilibrium.		conservation;	skills.	be done by
		Discuss and explain	Complete	written
		activation energy as	learning through	questions where
		the process of	the independent	the student has
		breaking and	study and wider	to respond on.
		forming bonds;	reading for	Partly that can
		Explain the	developing	be done by
		difference between	knowledge	multiple choice
		an exothermic and	(including	but
		an endothermic	elearn).	competencies as
		reaction.	Solving	constructing
		Discuss and being	exercises.	explanations
1		able to predict how	1	and engaging in

Theme 6. Solutions, their nature and properties.	2/4	the factors (concentration, temperature and active surface) affect the rate of reaction. Explain that a catalyst lowers the activation energy of a reaction. Define what a solution is. Illustrate the different properties (conductivity) between molecular and ionic solutions. Define concentration (mass/volume).	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (including elearn). Solving exercises.	argument as well as key competencies as communication and chemical competence need open questions or other ways of assessing. Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as communication and chemical competence need open questions or other ways of
Theme 7. Electrolytes and reactions in their solutions.	2/4	Define acids, and bases and salts in terms of Electrolytic dissociation. Describe the meaning of weak and strong electrolytes. Write the dissociation reactions in molecular, ionic and net-ionic form.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (including elearn). Solving exercises.	Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as

Theme 8. Hydrolysis of salts.	2/6	Explain the pH-scale as a measure of the concentration of H ⁺ ions in aqueous solutions. Link pH with the acidic, neutral or basic properties of aqueous solutions. Use acid/base indicators, universal indicator (liquid or paper) and pH meter to determine the pH of aqueous solutions. Explain the impact of dilution on the pH-values. Write the hydrolysis reactions in molecular, ionic and net-ionic form.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (including elearn). Solving exercises.	communication and chemical competence need open questions or other ways of assessing. Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as communication and chemical competence need open questions or other ways of
Theme 9. Coordination compounds.	2/4	Identify properties and characteristics of coordination compounds such as oxidation number, coordination number, and so on. Give proper naming and chemical formula of coordination compounds. Identify the structure of coordination compounds based on their coordination numbers. Determine isomers (both optical and structural) of	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (including elearn). Solving exercises.	assessing. Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as communication and chemical competence

		coordination		need open
		compounds.		questions or
		compounds.		other ways of
				assessing.
Theme 10.	3/4	Define redox	Perform in-class	Assessing
Redox reactions.		reactions as the loss	labs and provide	content
		and gain of	data to complete	knowledge can
		electrons. Illustrate	lab reports.	be done by
		the redox reaction	Tests of	written
		as the exchange of		questions where
		electrons at atomic	theoretical	the student has
		level. Define	skills.	to respond on.
		oxidation as a loss	Complete	Partly that can
		of electrons and	learning through	be done by
		reduction as a gain	the independent	multiple choice
		of electrons.	study and wider	but
		Understand that	reading for	competencies as
		reduction and	developing	constructing
		oxidation occur	knowledge	explanations
		simultaneously.	(including	and engaging in
		Assign oxidation	elearn).	argument as
		numbers. Identify	Solving	well as key
		the oxidizing agent	exercises.	competencies as
		and the reducing		communication
		agent. Write half-		and chemical
		equations and balance the		competence
				need open
		complete reaction using half-		questions or other ways of
		equations. Compare		assessing.
		the reactivity of		assessing.
		common metals		
		(activity series)		
		Predict the reaction		
		products using the		
		activity series.		
Theme 11.	1/5	Describe the	Perform in-class	Assessing
Elements of		halogens properties,	labs and provide	content
VII-A sub-		chlorine, bromine	data to complete	knowledge can
group.		and iodine in Group	lab reports.	be done by
		VII-A, as a	Tests of	written
		collection of	practical and	questions where
		diatomic non-	theoretical	the student has
		metals showing a	skills.	to respond on.
		trend in color and	Complete	Partly that can
		density and state	learning through	be done by
		their reaction with	the independent	multiple choice
		other halide ions.	study and wider	but
		Identify trends in	reading for	competencies as
		Groups, given	developing	constructing
		information about	knowledge	explanations
		the elements	(including	and engaging in
		concerned.	elearn).	argument as well as key
			Solving exercises.	J
			CACICISES.	competencies as

Theme 12. Elements of VI-A sub-group.	1/2	Describe the chalcogens properties, oxigen, sulfur and selenium in Group VI-A. Predict the properties of the elements in Group VI-A, given data where appropriate. Identify trends in Groups, given information about the elements concerned.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (including elearn). Solving exercises.	communication and chemical competence need open questions or other ways of assessing. Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as communication and chemical competence need open questions or
Theme 13. Elements of V-A sub-group.	1/4	Describe the pnictogens properties, nitrogen, phosphorus, and arsenic in Group V-A. Predict the properties of the elements in Group V-A, given data where appropriate. Identify trends in Groups, given information about the elements concerned.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (including elearn). Solving exercises.	other ways of assessing. Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as communication and chemical competence

				need open
				questions or
				other ways of
				assessing.
Theme 14.	1/6	Describe the	Perform in-class	Assessing
General		general chemical	labs and provide	content
properties of		properties of	data to complete	knowledge can
metals.		metals. Write	lab reports.	be done by
		reactions with	Tests of	written
		dilute and	practical and	questions where
		concentrate	theoretical	the student has
		hydrochloric,	skills.	to respond on.
		sulfuric and nitric	Complete	Partly that can
		acids.	learning through	be done by
			the independent	multiple choice
			study and wider	but
			reading for	competencies as
			developing	constructing
			knowledge	explanations
			(including	and engaging in
			elearn).	argument as
			Solving exercises.	well as key competencies as
			exercises.	competencies as
				and chemical
				competence
				need open
				questions or
				other ways of
				assessing.
Theme 15.	1/2	To know and use	Perform in-class	Assessing
Analytical		safety rules in	labs and provide	content
chemistry as a		executing chemical	<u> </u>	knowledge can
science		experiments.	lab reports.	be done by
		Understand what	Tests of	written
		glassware,	practical and	questions where
		apparatus and	theoretical	the student has
		reagents use for	skills.	to respond on.
		each analytical	Complete	Partly that can
		experiment.	learning through the independent	be done by multiple choice
			study and wider	but
			reading for	competencies as
			developing	constructing
			knowledge	explanations
			(including	and engaging in
			elearn).	argument as
			Solving	well as key
			exercises.	competencies as
				communication
				and chemical
				competence
				need open
				questions or
				other ways of

				assessing.
Theme 16. Qualitative analysis	2/6	Predict why cations of the I st and anions of the 3 ^d analytical groups have no group reagent. Perform characteristic reactions of cations and anions. Determin of elements or ions, which are part of investigated substance.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (including elearn). Solving exercises.	Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as communication and chemical competence need open questions or other ways of
Theme 17. Quantitative analysis	2/10	Determine of the amount or percentage of one or more compounds of a sample. Know and use variety methods for quantitative analyses.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (including elearn). Solving exercises.	the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as communication and chemical competence need open questions or other ways of assessing.
Всього за 1 семес	стр	T	Γ	70
Екзамен				30

Всього за курс	100
----------------	-----

ПОЛІТИКА ОЦІНЮВАННЯ

Політика щодо	Роботи, які здаються із порушенням термінів без поважних
дедлайнів та	причин, оцінюються на нижчу оцінку. Перескладання модулів
перескладання:	відбувається із дозволу лектора за наявності поважних причин
	(наприклад, лікарняний).
Політика щодо	Списування під час контрольних робіт та екзаменів заборонені
академічної	(в т.ч. із використанням мобільних девайсів). Курсові роботи,
доброчесності:	реферати повинні мати коректні текстові посилання на
	використану літературу
Політика щодо	Відвідування занять є обов'язковим. За об'єктивних причин
відвідування:	(наприклад, хвороба, міжнародне стажування) навчання може
	відбуватись індивідуально (в он-лайн формі за погодженням із
	деканом факультету)

ШКАЛА ОЦІНЮВАННЯ СТУДЕНТІВ

Рейтинг здобувача	Оцінка національна за результати складання екзаменів заліків		
вищої освіти, бали	екзаменів	заліків	
90-100	відмінно	зараховано	
74-89	добре		
60-73	задовільно		
0-59	незадовільно	не зараховано	