NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of Analytical and Bioinorganic chemistry and water quality

" REVIEWED AND APPROVED " at the meeting of the department of

Analytical and Bioinorganic chemistry and Water quality Protocol №8 from "24" April 2023 p. Head of the Department (prof. Kopilevich V.A.)

"REVIEWED" Guarantor of educational program "Agronomy" (prof. Tonkha O. L.)

WORKING PROGRAM OF ACADEMIC DISCIPLINE «INORGANIC AND ANALYTICAL CHEMISTRY»

Specialty <u>201 – «Agronomy»</u> Educational program<u>«Agronomy»</u> Faculty<u>Agrobiological</u> Compiled by: <u>Assoc. prof, PhD Prokopchuk N.M., Assoc. prof, PhD Kravchenko O.O</u>

Kyiv - 2023

1. Academic discipline description

«Inorganic and Analytical Chemistry»

Field of knowledge, specialty, education program, qualification level							
Educational and Qualification level	Bachelor						
Specialty	201 "Agronomy"						
Educational program	Agronomy						
Characteri	stics of training prog	gram					
Туре		Obli	gatory				
The total number of academic hours		1	80				
Number of ECTS credits			6				
Number of modules	4						
Course project (work) (if available)	-						
Forms of control	Exam						
Indicators of academic discipline for full-time and part-time forms of training course							
	Full-time		Part-time				
Year (course)	1						
Semester	1						
Number of lectures	30	hours					
Number of seminars, practical classes	-	hours					
Laboratory sessions (activities)	75	hours					
Independent study	75	hours					
Individual lessons	-	hours					
Number of weekly in-class academic hours for full-time forms of training	7	hours					

2. Goal, Learning objectives and competencies of the educational discipline

Goal is to build a good foundation in chemical knowledge that allows to make qualitative and quantitative inquiries into topics in natural science.

Learning objectives are:

- apply stoichiometry in determining quantity relationships for compounds and chemical reactions;
- demonstrate an understanding of chemical equilibrium;
- understand the structure of matter on atomic and molecular levels and its correlation to chemical and physical properties;
- describe the concentration of a solution in the way that is most appropriate for a particular problem or application;
- use laboratory equipment and make observations to identify chemical and physical changes.

Learning outcomes :

Upon completion of this course, students should:

know the basic principles and topics of Inorganic and Analytical Chemistry and their application to real world problems.

be able to

- Compose a proper formula for a compound;
- Describe and name inorganic compounds;
- Write and balance chemical equations;
- Determine the composition of any atom or ion;
- Explain periodicity;
- Distinguish ionic, polar and nonpolar covalent bond;
- Describe characteristics of solutions;
- Balance oxidation-reduction reactions using the electron balance method;
- Analyze the characteristic properties of non-metals and metals;
- Use standard laboratory equipment for qualitative and quantitative analysis.

Competences provided by the discipline

Integral competence (IC): The ability to solve complex specialized problems and practical problems in agronomy, which involves application of theories and methods of inorganic and analytical chemistry

General competences (CG): Efforts to preserve the environment (CG 11).

Professional (special) competences (SC):

Knowledge and understanding of basic biological and agrotechnological concepts, rules and theories related to the cultivation of agricultural and other plants (SC 3).

The ability to use fertilizers and plant protection products on a scientific basis, taking into account their chemical and physical properties and impact on the environment (SC 7).

Program learning outcomes (PLO):

- Compare and evaluate modern scientific and technical achievements in the field of agronomy (PLO 4).
- Demonstrate knowledge and understanding of fundamental disciplines to the extent necessary to possess relevant skills in the field of agronomy (PLO 6).
- Initiate prompt and expedient solutions to production problems in accordance with zonal conditions (PLO 11).
- To organize effective and safe working conditions (PLO 16).

3. The structure of the curriculum of academic discipline for full-time form of training.

	Hours												
The names of the content	Full time					Part time form							
modules and topics	Weeks	Total			inclu	Iding		Total	tal i		inclu	ding	
_			1	р	lab	ind	indep		1	р	lab	ind	indep
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Module №1. Theoretic	al found	ations o	of inc	orga	anic c	hemi	stry. Tł	ne Mair	n Lav	ws of	chen	nical	
		tr	ansf	orn	natio	ns							
Topic #1. Introduction.	1	12	2	-	6	-	4						
General notions,													
stoichiometrical laws and													
types of chemical reactions													
Topic #2. Atomic structure of	1	12	2	-	4	-	6						
chemical													
elements. Electronic formulas													
Topic #3. The Periodic Law	1	6	2	-	-	-	4						
and Periodic Table of													
chemical elements													
Topic #4. Chemical bonding	1	12	2	-	4	-	6						
and structure of molecule.													
Chemical kinetics and													
equilibrium													
Total hours (module 1)	42 hours	S	8	-	14	-	20						
Module №2. Chemical trans	formatio	ns with	cha	nge	of ox	xidati	on num	ber of o	elem	ents	or th	eir va	lence
Topic #5. Solutions, their	1	12	2	-	6	-	4						
nature and properties.													
Hydrolysis of salts													
Topic #6. Red-Ox reactions	1	16	2	-	8	-	6						
Topic #7. General properties	1	8	2	-	2	-	4						
of non-metals													
Topic #8. General properties	1	8	2	-	2	-	4						
of metals													
Topic #9. Coordination	1	10	2	-	6	-	2						
compounds													
Total hours (module 2)	54 hours	S	10	-	24	-	20						
Module №3. Princi	ples and	method	ls of	Qu	alitat	ive A	nalysis	of Cati	ons a	and A	Anior	IS	
Topic #10. Introduction to	1	28	2	-	15	-	11						
Analytical chemistry													
Topic #11-12. Qualitative	2	20	4	-	8	-	8						
analysis. The main principle													
of qualitative analysis of													
unknown substances													
Total hours (module 3)	48 hour	`S	6	-	23	-	19						
Module №4. Theoretical and	experim	ental fo	ound	atio	ons of	f Qua	ntitativ	e chem	ical a	analy	vsis. (Gravi	metry
and neutraliz	ation me	ethod. F	Red (Dx i	neth	ods a	nd com	plexing	met	hods	•	r	[
Topic #13. Theoretical and	1	12	2	-	6	-	4						
experimental foundanion of													

Quntitative analysis										
Topic #14. Titrimetry	1	12	2	-	4	-	6			
(volumetry, volumetric										
analysis). Neutralization										
method										
Topic #15. Oxidation-	1	12	2		4		6			
reduction (Redox) Titration										
(Redoxmetry).										
Complexometric Titration										
Total hours (module 4)	36 h o	ours	6	-	14	-	16			
Total hours	18	0	30	-	75	-	75			

4. Themes of seminars

N⁰	Themes	Numbers of hours
1	-	

5. Themes of practical activities

N⁰	Themes	Numbers of hours
1	-	

6. Themes of laboratory activities

No						
	Themes	of hours				
	Inorganic chemistry					
Modu	le №1. Theoretical foundations of inorganic chemistry. The Main Laws of	f chemical				
	transformations					
1.1	The main classes of inorganic substances	4				
1.2	Control Test "Classification of Inorganic Substances"	2				
1.3	Atomic structure. Chemical bonding	2				
1.4	Control Test "Atomic Structure. Electron configurations of atoms.	2				
	Chemical bonding"					
1.5 Theory of electrolytic dissociation						
1.6 Control Test "Theory of electrolytic dissociation"						
Mod	ule No2. Chemical transformations with change of oxidation number of ele	ements or				
	their valence					
2.1 Ionic product of water. Hydrolysis of salts						
2.2	Control Test "Hydrolysis of Salts"	2				
2.3	Oxidation-reduction reactions	8				
2.4	Control Test "RedOx reactions with products"	2				
2.5 Control Test "RedOx reactions without products"						
2.6 Complex (coordination) compounds						
2.7 Control test "Complex (coordination) compounds"						
	Total hours from the section "Inorganic chemistry": 38 hours.					

	Analytical chemistry					
M	Module №3. Principles and methods of Qualitative Analysis of Cations and Anions					
3.1.	The first group of Cations	2				
3.2	The second group of Cations	5				
3.3	The third group of Cations	4				
3.4	The fourth group of Cations	2				
3.5	The first group of Anions	2				
3.6	The second group of anions	2				
3.7	The third group of Anions.	2				
3.8	Control Test "Analysis of Unknown substance"	4				
Modu	Module No4. Theoretical and experimental foundations of Quantitative chemical analysis.					
Gravimetry and neutralization method. Red Ox methods and complexing methods						
4.1	Preparation of solution	4				
4.2	Control test "Concentration of Solutions"	2				
4.3	Determination of alkali solution normality	4				
4.4	Determination of Water Hardness	4				
	Total hours from the section "Analytical chemistry": 37 hours.					
	Total lab hours:	75 hours.				

7. Themes of independent works

N⁰	Нарва теми	Кількість
	Пазва Ісми	годин
1	Basic concepts of chemistry. Classification of inorganic substances	20
2	Chemical transformations metals and non-metals	20
3	Analysis of unknown substances	19
4	Solutions. Methods of expressing the concentration of solutions	16

8. Samples of control questions, tests to determine the level of knowledge acquisition by students.

NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE							
Educational and Qualification level Bachelor	Department of Analytical and Bioinorganic	Exan fre "I	n variant № <u>1</u> om discipline norganic and	Head of the Department			
Specialty	chemistry	analy	tical chemistry"	(sign)			
201-Agronomy	and Water quality	unury	tion chomistry	prof. Kopilevich V.A.			
<u>20111gronomy</u>	und (fatter quanty			pron inopine (an			
	Theoret	tical qu	estions				
1. Units of concentrations: Percent by mass (Mass percent); Molarity; Normality;Titre. Formulas for its calculations. Calculate, how many grams of CuSO4 are required to prepare 400 ml of 0.1 N solution? T-?							
2. Propose and write	out the procedure of a	lualitat	tive analysis of Cu	Cl ₂ . Write it in a step by			
step manner so that	at someone else perfe	orming	the experiment	could follow it. Write			
balanced molecular equations for the formation of any precipitates and positive visual							
effects that appeared.							
		Tests					
1. How many ions wi	ll form after dissociati	on of C	Chromium(III) Sul	phate molecular?			
Α.	2	D.		5			
В.	3	E.		6			
C.	C. 4						
2. Point the correspo	ndence between cation	and co	orrespondent reag	ent:			
A.	Na ⁺	1.	1 0	NaBiO ₃			
B.	Zn^{2+}	2.	K	[Sb(OH)6]			
C.	Mn ²⁺	3.	K	$_{3}[Fe(CN)_{6}]$			
D.	NH4 ⁺	4.		NaOH			
3. Calculate equivale	nt of H ₃ PO ₄ (Mr = 98)						
A 98		С	24.5				
R /9		D.	32.7				
4 How many neutro	ns include nucleus of S	e atom	<u> </u>				
\wedge 21	is include indiceds of 5		 15				
R. 21 P 24		D.	4 5 70				
D. 34 5 What aguagus sale	tion of colt will have a	D.	/9 modium?				
				VI			
A.		D.					
D. Deint the com		D.	tomoog and thain a				
o. Point the corr	unio		Desis and their c	nemical nature:			
A.	HNO ₂	1.	Basic oxide				
B.	$\frac{S1O_2}{C}$	2.	Acidic oxide				
U.		3.	Amphoteric oxide	2			
D.	Sr(OH) ₂	4.	Base				
<u>E.</u>	SnO	5.	Acide				
7. If chlorine water	is added to NaI solu	ition w	vith benzene, wha	t observation would be			
made? (to write equat	tion in justification form	!)					
A. Rer	nains brown	C.	Changes from	m colorless to purple			
B. Changes fro	om colorless to black	D.	Changes from	n colorless to brick red			

8. Calculate a sum of coefficients in REDOX reaction $Ca + HNO_3(conc.) \rightarrow$ (*To write number in answer sheet, to write equation in justification form*):

9. Ho	9. How many salts are obtained during interaction of NaOH and H ₃ PO ₄ (taking into						
accou	int the possibility of neutral, acidic a	and b	asic salts forming) (to write equations in				
justifi	cation form):						
Α	2	С	4				
В	3	D	5				
10. T	he product of complexation reaction: KI	F + All	$F_3 \rightarrow$ (to write formula in answer sheet, to				
write	equation in justification form):						
11. W	hich elements changed their oxidation	degre	es in the Redox reaction:				
	$\mathbf{NaNO3} + \mathbf{KI} + \mathbf{H}_2\mathbf{SO4} = (to$	write e	equation in justification form):				
A	Na	C	N				
B	S	D	Ι				
12. W	hich of the metals does not react with	hydroo	chloric acid under normal conditions?				
А	copper;	С	gold;				
В	silver;	D	lead;				
13	For preparation 600 ml 0,25M solution	on, it is	necessary to take CaCl ₂				
	(M=111,08 g/mol) in amount: (to write	e equai	tion in justification form):				
14	The solubility of the phosphate pr	ecipita	te (formed by the action of the group				
	reagent) in CH ₃ COOH indicates the j	presen	ce of cations:				
А	Ca^{2+}, Mn^{2+}	C	Ba^{2+}, Fe^{2+}				
В	Ba^{2+}, Fe^{3+}	D	Al^{3+}, Fe^{3+}				
15. W	What gas is released during the interac	ction o	f copper with dilute nitric acid: (to write				
only t	he formula, to write equation in justificat	ion for	m)				
16. Sp	pecify the accuracy of weighing on tech	noche	mical scales:				
А	\pm 0,01 g;	С	\pm 0,0001 g;				
В	\pm 0,1 g;	D	\pm 0,001 g;				
17. Fi	ind the correspondence between the typ	be of c	hemical reaction and its example:				
А	RedOx;	1	$ZnO + SO_3 = ZnSO_4;$				
В	Single replacement (substitution);	2	$2NaOH + H_2SO_4 = Na_2SO_4 + 2H_2O;$				
С	Decomposition;	3	$Fe(OH)_2$ ^t = $FeO + H_2O$;				
D	Composition	4	$Zn + H_2SO_{4 \text{ pos6.}} = ZnSO_4 + H_2\uparrow.$				
18. In	dicate the empirical formula of Iron (I	I) hyd	rogendiphosphate: (in the answer sheet				
give t	he formula of the compound)	-					
19. T	he products of hydrolysis of Na ₂ CO ₃	salt (in	n the first degree) are: (in the justification				
form g	give the equation of hydrolysis of salt)						
А	NaOH	С	H ₂ CO ₃				
В	NaHCO ₃	D	CO_2				
20. Point the correspondence between formula of compound and type of a chemical bond							
А	A metallic bond	1	NH ₃				
В	An ionic bond	2	KC1				
С	A non-polar covalent bond	3	Cl ₂				
D	A polar covalent bond	4	Cu				
E	A hydrogen bond	5	$2 H_2 S$				

Assoc. Prof._____

_(O.O. Kravchenko)

9. Teaching methods.

A **teaching method** comprises the principles and methods used for teaching. Commonly used teaching methods for studying subject Water Resources Management include class participation, demonstration, recitation, memorization, or combinations of these. The choice of teaching method or methods to be used depends largely on the information or skill that is being taught, and it may also be influenced by the aptitude and enthusiasm of the students.

Explaining, or lecturing, is the process of teaching by giving spoken explanations of the subject that is to be learned. Lecturing is often accompanied by visual aids to help students visualize an object or problem.

Demonstrating is the process of teaching through examples or experiments. For example, a science teacher may teach an idea by performing an experiment for students. A demonstration may be used to prove a fact through a combination of visual evidence and associated reasoning.

Demonstrations are similar to written storytelling and examples in that they allow students to personally relate to the presented information. Memorization of a list of facts is a detached and impersonal experience, whereas the same information, conveyed through demonstration, becomes personally relatable. Demonstrations help to raise student interest and reinforce memory retention because they provide connections between facts and real-world applications of those facts. Lectures, on the other hand, are often geared more towards factual presentation than connective learning.

Collaboration allows students to actively participate in the learning process by talking with each other and listening to other points of view. Collaboration establishes a personal connection between students and the topic of study and it helps students think in a less personally biased way. Group projects and discussions are examples of this teaching method. Teachers may employ collaboration to assess student's abilities to work as a team, leadership skills, or presentation abilities.

Collaborative discussions can take a variety of forms, such as fishbowl discussions. After some preparation and with clearly defined roles, a discussion may constitute most of a lesson, with the teacher only giving short feedback at the end or in the following lesson.

Learning by teaching is the method, when students assume the role of teacher and teach their peers. Students who teach others as a group or as individuals must study and understand a topic well enough to teach it to their peers. By having students participate in the teaching process, they gain self-confidence and strengthen their speaking and communication skills.

10. Forms of control.

The main forms of knowledge control are control at the lectures at seminars and workshops, outside the classroom, at the consultations, tests and exams. I. Control of the lectures can be conducted as a selective oral questioning of students or tests using the previously laid material, particularly in sections of the course that are necessary for the understanding of the lecture topics, read, or to establish a degree of mastery of the material lectures (held by the manner of the late first or early second hour lectures).

Testing during lectures designed to teach students to systematic elaboration covered material and prepare for the upcoming lectures, establish the degree of assimilation theory to identify the most difficult students to read chapters from the following explanation of them. Control of the lectures has subtract to time. By spending time to control oral examination yields control, programmable for cards. II. Current control on practical, seminar and laboratory studies conducted to elucidate ready students for employment in the following forms:

1. Writing (45 min.) Control work.

2. Colloquium on separate sections of theoretical courses (modules or themes). III. Credits. Some subjects (theoretical courses, practical training) is applied differential test of performance appraisal on a five point scale. In a lecture course or its individual parts, which are not accompanied by laboratory or practical classes, the teacher may conduct interviews or colloquium, offer oral or written (with tickets) questions. TeacherUseful browse the students' notes. Often, students are subject to crediting as minor, insignificant and do not give enough time to prepare for it. Of the major courses before credit of Colloquium useful.

Term papers are the product of many days of work. They include elements of scientific research. Protecting course work - a special form of offset in the commission of two or three teachers. Best of coursework submitted for scientific student conference. IV. Examinations. Exam is the final step in the study of the whole or part of the discipline and are designed to test students' knowledge on the theory and identify the skills apply the acquired knowledge in solving practical problems, as well as independent work skills with educational and scientific literature.

Student's rating of knowledge of an academic discipline consists of training work rating -70 points and attestation rating -30 points. Thus, rating of content modules, that are constituents of an academic discipline, makes 70 points. Rating of content modules as well as attestation rating are also measured by 100-point-scale.

Student rating,	National Assessment for the results of the assembly					
points	Exam	Credit				
90-100	Excellent					
74-89	Good	Passed				
60-73	Задовільно					
0-59	Satisfactory	Not-passed				

11. Distribution of points received by students.

Assessment of student knowledge is on a 100-point scale and is translated into national assessments according to table. 1 "Regulations on examinations and tests in NUBiP of Ukraine" (order of entry into force of 03.03.2021 № 7)

To determine the rating of the student (listener) for mastering the discipline \mathbf{R}_{dis} (up to 100 points), the received rating from the attestation (up to 30 points) is added to

the rating of the student (listener) from educational work Rew (up to 70 points): Rdis= Rew + Rat

11. Educational and methodological support

- Methodological guidelines "Inorganic and analytical chemistry for bachelor students specialty 201 – "Agronomy". Voitenko L.V., Kopilevich V.A., Prokopchuk N.M. Savchenko D.A., Kravchenko O.O. – Куіv: Експо-Друк., 2022. - 219 p.
- 2. Laboratory manual on Inorganic and Analytical Chemistry. Savchenko D.A., Voytenko L.V., Prokopchuk N.M.- Куіv: Експо-Друк., 2017. 216 р.

12. Recommended sources of information

Required literature

- General and Inorganic Chemistry : textbook / V.O. Kalibabchuk, V.V. Ohurtsov, V.I. Halynska et al. ; edited by V.O. Kalibabchuk. — Kyiv : AUS Medicine Publishing, 2019. — 456 p.
- 2. Introduction in General, Organic and <u>Biochemistry</u>, 7th Edition, by Morris Hein, Leo R. Best, Scott Pattison and Susan Arena, Brooks/Cole Publishing Co., 2021, 872 pp.
- 3. Inorganic Chemistry, second edition, D. F. Shriver, P. W. Atkins, and C.H. Langford; W. H. Freeman and Co., New York, 2004, 913 pp.

Supplemental

- 1. Concepts and Models of Inorganic Chemistry, third edition, B. E. Douglas, D. H. McDaniel and J. J. Alexander; John Wiley & Sons, Inc., New York, 2014. 993 p.
- 2. In<u>organic Chemistry</u>, A Modern Introduction, T. Moeller; John Wiley & Sons, New York, 2008. 846 p.
- 3. Chemistry of the Elements, N. N. Greenwoo and A. Earnshaw; Pergamon Press, New York, 2004. 1542 pp.

IT resources

- 1.Introduction to inorganic chemistry: <u>https://bit.ly/3IAEddt</u>;
- 2.Khan Academy about Chemical Reactions: <u>https://bit.ly/3IDtn6u;</u>
- 3. Analytical chemistry. Laboratory Manual: https://bit.ly/3KHh63A
- 4. Virtual lab for Chemistry https://chemcollective.org/vlabs;
- 5.Periodic Videos by Tedex platform https://ed.ted.com/periodic-videos;
- 6.Modern dynamic Periodic Table of Elements <u>http://bit.ly/3Z56Bf5;</u>
- 7.Global Fertilizer impact monitor <u>http://bit.ly/3Z50lDS</u>.