NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of Analytical and Bioinorganic Chemistry and Water quality

APPROVED

Faculty of Veterinary medicine "9"June" 2025

CURRICULUM OF ACADEMIC DISCIPLINE INORGANIC CHEMISTRY

Area of knowledge H – <u>Agriculture, forestry, fisheries and veterinary medicine</u> Specialty H6 – <u>Veterinary medicine</u> Academic programme <u>Veterinary medicine</u> Faculty <u>Veterinary medicine</u> Developed by: <u>Assoc. prof, PhD associated professor of Department of Analytical and</u> <u>Bioinorganic Chemistry and Water Quality Olha Kravchenko</u>

Description of the discipline "INORGANIC CHEMISTRY"

Inorganic Chemistry is a fundamental discipline that studies the properties, structure, reactions and methods of obtaining inorganic substances. The course pays attention to the structure of the atom, the periodic law and the periodic system of chemical elements, chemical bonding and types of crystal lattices, acid-base properties of substances, redox processes and electrochemistry. Special emphasis is placed on the study of chemical elements that are important in veterinary medicine (calcium, phosphorus, sodium, potassium, chlorine, etc.), as well as toxic elements that can affect animal health.

The discipline develops in students the ability to understand chemical processes occurring in the animal body and the environment, and to assess the possible harmful effects of chemical compounds. Knowledge of inorganic chemistry is necessary for further study of biochemistry, toxicology, pharmacology and clinical disciplines of veterinary medicine. Studying the subject contributes to the development of analytical thinking and the ability to apply acquired knowledge in the professional activities of a veterinarian.

Area of knowledge, specia	lty, academic pr	ogramm	e, academic degree
Academic degree	master's		
Specialty	H6 – Veterinar	y medicin	е
Academic programme	Veterinary mea	licine	
Chara	<u>cteristics of the </u>	discipline	;
Туре		Cor	npulsory
Total number of hours			120
Number of ECTS credits			4
Number of modules			3
Course project (work) (if any)			
Form of assessment			exam
Indi	cators of the dis	cipline	
for full-time and	part-time forms	of unive	rsity study
		Unive	rsity study
	Full-time	e	Part-time
Year of study			
Term			
Lectures	15	hours	hours
Practical classes and seminars	45	hours	hours
Laboratory classes		hours	hours
Self-study	60	hours	hours
Number of hours per week for full-	4	hours	
time students			

1. Aim, competences and expected learning outcomes of the discipline

Aim is to provide students with basic knowledge of the basics of inorganic chemistry, necessary for understanding chemical processes in living organisms and the interaction of the animal body with the environment, as well as to form chemical literacy for further mastery of related disciplines (biochemistry, pharmacology, toxicology, physiology).

Competences acquired:

Integral competence (IC): <u>Ability to solve complex tasks and problems in the field of</u> <u>veterinary medicine, which involves conducting research and/or implementing innovations</u> and is characterized by uncertainty of conditions and requirements.

General competence (GC):

GC 1. Ability to think abstractly, analyze and synthesize.

GC 7. Ability to conduct research at the appropriate level.

GC 11. Ability to evaluate and ensure the quality of work performed.

Special (professional) competence (SC):

SC 7. Ability to organize and conduct laboratory and special diagnostic tests and analyze their results.

Expected learning outcomes (ELO):

ELO 1. Know and correctly use the terminology of veterinary medicine.

ELO 3. Determine the essence of physicochemical and biological processes that occur in the animal body in normal and pathological conditions.

2. Programme and structure of the discipline

Modules and topics		Number of hours					
		full-time					
		total	including				
	weeks		1	р	lab	ind.	s.st.
Module №1. Atomic-molecular theory and the b			ry. Th	e str	ucture of	f matter	and the
		Mendeleev.			T	n	
Topic #1. Chemistry in the system of natural	2	11	1		2		8
sciences. Basic laws of chemistry							
Topic #2. Classification and nomenclature of	2	11			7		4
inorganic compounds							
Topic #3. "Structure of the atom. Periodic law of	2	6	2				4
D.I. Mendeleev ".							
Topic #4. The nature of the chemical bond and	1	12	2		6		4
the structure of chemical compounds							
Total for module 1	40		5		15		20
Module №2. Solutions. Properties of	solution	s Equilibriu	m in el	ectro	olyte solu	itions	
Topic #5 "The theory of solutions. Ways of	1	8	2				6
expressing the composition of solutions.							
Colligative properties of solutions							
Topic #6. Theory of strong and weak electrolytes	2	15	1		7		7
Theories of acids and bases							
Topic #7. Protolytic processes (hydrolysis)	2	17	2		8		7
Total for module 2	40		5		15		20
Module №3. Redox reactions. Complex compounds.							
Topic #8. Electron transfer reactions	2	22	3		9		10
Topic #9. Reactions of complex formation	2	18	2		6		10
Total for module 3	40	-	5		15		20
Total hours	120		15		45		60

3. Topics of lectures

No.	Торіс	Hours		
Mod	Module №1. Atomic-molecular theory and the basic laws of chemistry. The structure of matter and			
	the periodic law of D.I. Mendeleev.			
1	Introduction to Inorganic chemistry : a modern view.	2		
2-3	Atomic structure and Chemical Bond	3		
	Module №2. Solutions. Properties of solutions Equilibrium in electrolyte solutions			
4	Theory of electrolytic dissociation	2		
5	Hydrolysis of salts	2		
6	Solutions. Concentration of solutions	2		
	Module №3. Redox reactions. Complex compounds.			
7	Oxidation-Reduction Reaction (RedOx)	2		
8	Complex (Coordination) compounds	2		
Total		15		

4. Topic of laboratory work

No.	Торіс	Hours	
Mod	Module №1. Atomic-molecular theory and the basic laws of chemistry. The structure of matter and		
	the periodic law of D.I. Mendeleev.		
1.1	The main classes of inorganic compounds	4	
1.2	Control work" Classes of inorganic compounds	2	
1.3	Seminar "Atomic structure and properties of compounds"	4	
1.4	Control work "Atomic structure"	2	
1.5	Control work "Chemical bond	2	
	Module No2. Solutions. Properties of solutions Equilibrium in electrolyte solutions		
2.1	Solutions. Reactions of solutions of electrolytes. The preparation of solutions of a given	2	
	concentration		
2.2	Control work "Solution. The chemical properties of electrolyte solutions.	2	
2.3	Theory of strong and weak electrolytes. Theories of acids and bases. Electrolytic	4	
	dissociation.		
2.4	Control work "Electrolytic dissociation"	2	
2.5	Hydrolysis of salt	4	
2.6	Control work "Hydrolysis of salt"	2	
	Module №3. Redox reactions. Complex compounds.		
3.1	Redox reactions. Experimental study of the influence of the environment on the course of	8	
	redox reactions.		
3.2	Control work "Redox reactions"	2	
3.3	Coordination compounds. Experimental study of methods of their preparation and study of	3	
	chemical properties.		
3.4	Control test "Coordination compounds"	2	
Total		45	

5. Topics of self-study

No.	Торіс	Hours	
Modul	Module №1. Atomic-molecular theory and the basic laws of chemistry. The structure of matter and the		
period	lic law of D.I. Mendeleev.		
1.1	The interconversion between different classes of inorganic compounds	20	
	Module №2. Theoretical and methodological principles of agroecological monitoring		
2.1	2.1 Chemical kinetics. Basic concepts of chemical thermodynamics. 20		
	Module №3. Redox reactions. Complex compounds		
3.1	3.1 Elements in Veterinary Medicine: Role, Sources, Deficiency and Excess Effects 20		
Total		60	

6. Methods of assessing expected learning outcomes:

- oral or written survey;
- interview;
- test;
- defending laboratory/practical, design/graphical works, projects;
- poster defending
- peer-to-peer assessment, self-assessment.

7. Teaching methods:

- problem-based method;
- practice oriented studying method;
- case method;
- project education method;
- flipped classroom, mixed education method;
- research based method;
- learning discussions and debates method;
- team work, brainstorm method
- gamification studying method.

8. Results assessment.

The student's knowledge is assessed by means of a 100-point scale converted into the national grades according to the "Exam and Credit Regulations at NULES of Ukraine" in force

Educational activity	Results	Assessment	
Module №1. Atomic-molecular theory and the basic laws of chemistry. The structure of matter and the periodic law of D.I. Mendeleev.			
Lab 1.1 The main classes of inorganic compounds	ELO 1. Know and correctly use the terminology of veterinary medicine, including the place of	10	
Self-Study 1.1 "The interconversion between different classes of inorganic compounds"	chemistry among the main natural sciences, the main classes of inorganic compounds and the relationship between them the importance of	15	
Lab 1.2 "Control work" Classes of inorganic compounds"	studying chemistry for veterinary medicine main types of inorganic compounds (oxides,	20	
Lab 1.3 "Seminar "Atomic structure and properties of compounds"	acids, bases, salts).the importance of such reactions in physiological and veterinary-	5	
Lab 1.4 "Control work "Atomic structure"	relevant environments, the main classes of the structure of the atom and how it influences	10	
Lab 1.5 "Control work "Chemical bond"	the chemical properties of substances.	20	
Module control test 1.	-	20	
Total for module 1		100	
Module №2. Theoretical and methodological principles of agroecological monitoring			
Self-Study 2.1"Chemical kinetics.	ELO 3. Determine the essence of	5	
Basic concepts of chemical	physicochemical and biological processes that		
thermodynamics"	occur in the animal body in normal and		
Lab 2.1 Solutions. Reactions of	pathological conditions, including preparation	10	
solutions of electrolytes. The	solutions of given concentration using		
preparation of solutions of a given	appropriate laboratory techniques, the chemical		

8.1. Distribution of points by types of educational activities

Lab 2.2 Control work "Solution. The solutions. relevance to animal physiology, the process of chemical properties of electrolytic dissociation and distinguish between strong and weak electrolytes. Theories of acids and bases. Electrolytic dissociation. 20 Lab 2.3 Theory of strong and weak electrolytes. Theories of acids and bases. Electrolytic dissociation. the theory of electrolytes to explain physiological processes of salt 5 Lab 2.4 Control work "Electrolytic dissociation. the theory of salt process of salt 5 Lab 2.4 Control work "Electrolytic dissociation. sources and animal site process of salt 15 Lab 2.4 Control work "Hydrolysis and predict the resulting solution pH, the impact of salt hydrolysis in natural water sources and animal digestive systems. 5 Salt" 20 20 Module control test 2. 20 Module Ne3. Redox reactions. ELO 1,3. Know and correctly use the terminology of veterinary medicine and biological processes that occur in the animal body in normal and pathological conditions including redox reactions, the influence of their preparation and study of environmental factors on redox processes in biological and agricultural systems, the structure and boid of coordination compounds. 5 Self-study 3.1 Elements in Veterinary ensential elements (e.g., Fe, Zn, Cu, 1, Se, Ca) signs and biochemical consequences of relement difficiencies or toxic excess in animals. 20 Self-study 3.1 Elements in Veterinary encineices or toxic excess in animals. 20 </th <th>concentration</th> <th>properties of electrolyte solutions and their</th> <th></th>	concentration	properties of electrolyte solutions and their		
chemical properties of electrolyte electrolytic dissociation and distinguish between strong and weak electrolytes. Lab 2.3 Theory of strong and weak electrolytes. the theory of electrolytes to explain physiological processes such as ion transport and physiological processes that occur in the animal such process of salt Module control test 2. 20 Total for module 2 100 Module N&3. Redox reactions. Complex compounds 5 Lab 3.1 Redox reactions. ELO 1,3. Know and correctly use the terminology of veterinary medicine and biological processes that occur in the animal biological processes in including redox reactions, the influence of environmental factors on redox processes in biological and agricultural systems, be structure and biological and agricultural systems, biologically processes in animals. 30 Lab 3.2 Control work "Redox eesential elements (e.g., Fe, Zn, Cu, I, Se, Ca) singms and biochenical consequences of element deficienci			20	
solutions. strong and weak electrolytes. Lab 2.3 Theory of strong and weak the theory of electrolytes to explain plysiological processes such as ion transport and pH balance in animals.the process of salt hydrolysis and predict the resulting solution pH, the impact of salt hydrolysis in natural water sources and animal digestive systems. 5 Lab 2.4 Control work "Electrolytic dissociation" sources and animal digestive systems. 20 Module control test 2. 20 20 Total for module 2 100 100 Module control test 2. 20 5 Lab 3.1 Redox reactions. ELO 1,3. Know and correctly use the termine the essence of physicochemical and biological processes that occur in the animal biological processes that occur in the animal biological processes in including redox reactions, the influence of their preparation and study of enhods of their preparation and study of enhores. 5 Self-study 3.1 Elements in Veterinary Medicine: Role, Sources, Deficiency and Europeutics. sestificate eners of animal and pathological processes in animals. elemental imbalances to metabolic disorders, applying redox and coordination compounds, their preparation and study of enhods of their preparation and study of enhores or processes in animals. elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consecutors of element deficiencices or toxic excess in animals. elemental imbalances			-	
electrolytes. Theories of acids and bases. Electrolytic dissociation. Lab 2.4 Control work "Electrolytic dissociation" Lab 2.5 Hydrolysis of salt Lab 2.6. Control work 'Hydrolysis salt" Module control test 2. Total for module 2 Lab 3.1 Redox reactions. Experimental study of the influence of the environment on the course of the acations" Lab 3.2 Control work "Redox reactions" Experimental study of methods of their preparation and sudy of chemical properties. Lab 3.4. Control test "Coordination experimental study of their preparation and study of their preparation and study of their preparation and study of chemical properties. Eleff-study 3.1 Elements in Veterinary Medicine: Role, Sources, Deficiency and Excess Effects Module control test 3 Total for module 3 Module control test 3 Coordination compounds. Experimental study of methods of their preparation and study of their preparation and study of chemical properties. Eleff-study 3.1 Elements in Veterinary Medicine: Role, Sources, Deficiency and Excess Effects Module control test 3 Coordination compounds Experimental study 3.1 Elements in Veterinary pharmaceuticals and diagnostics, biologically essential elements (c.g., F.e., Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles Module control test 3 Co Total for module 3 Co Total for module 3 Co Exam Compounds (MI + M2+M3)/3*0,7 ≤ 70 Exam		strong and weak electrolytes.		
electrolytes. Theories of acids and bases. Electrolytic dissociation. physiological processes such as ion transport and pH balance in animals.the process of salt Lab 2.4 Control work "Electrolytic dissociation" hydrolysis and predict the resulting solution pH, the impact of salt hydrolysis in natural water sources and animal digestive systems. 15 Lab 2.5. Hydrolysis of salt sources and animal digestive systems. 20 Total for module 2 20 Module control test 2. 20 Module control test 2. 20 Lab 3.1 Redox reactions. ELO 1,3. Know and correctly use the environment on the course of the environment on the course of including redox reactions, the influence of the environment on the course of reactions" 5 Lab 3.2 Control work "Redox environmental factors on redox processes in biological processes that occur in the animal body in normal and pathological conditions reactions micluding of coordination compounds, their preparation and study of methods of their preparation and snalyze their chemical properties. 5 Self-study 3.1 Elements in Veterinary essential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles 20 Module control test 3 20 Experimental study of methods of their preparation and analyze their chemical properties. 20 Self-stu	Lab 2.3 Theory of strong and weak	the theory of electrolytes to explain	5	
Lab 2.4 Control work "Electrolytic dissociation" hydrolysis and predict the resulting solution pH, the impact of salt hydrolysis in natural water sources and animal digestive systems. 15 Lab 2.4 Control work "Hydrolysis of salt sources and animal digestive systems. 5 Lab 2.6. Control work 'Hydrolysis salt" 20 Module control test 2. 20 Total for module 2 100 Module		physiological processes such as ion transport and		
dissociation" the impact of salt hydrolysis in natural water sources and animal digestive systems. 5 Lab 2.6. Control work 'Hydrolysis salt" 20 Module control test 2. 20 Total for module 2 100 Module control test 2. 20 Total for module 2 100 Module Ne3. Redox reactions. ELO 1,3. Know and correctly use the terminology of veterinary medicine and biological processes that occur in the animal biological processes that occur in the animal biological processes that occur in the animal biological and agricultural systems,the structure and biological and agricultural systems,the structure and bonding of coordination compounds. 30 Experimental study of methods of their preparation and study of compounds" properties, particularly in veterinary medicine: Role, Sources, Deficiency and Excess Effects 20 Module control test 3 20 20 Total for module 3 20 20 Lab 3.1 Control work "Redox escential factors on redox processes in biological properties, particularly in veterinary medicine: Role, Sources, Deficiency and Excess in animals. 20	bases. Electrolytic dissociation.	· ·		
Lab 2.5 Hydrolysis of salt sources and animal digestive systems. 5 Lab 2.6. Control work 'Hydrolysis salt'' 20 Module control test 2. 20 Total for module 2 100 Module Ne3. Redox reactions. Complex compounds 5 Lab 3.1 Redox reactions. ELO 1,3. Know and correctly use the terminology of veterinary medicine and Determine the essence of physicochemical and biological processes that occur in the animal body in normal and pathological conditions reactions." 30 Lab 3.3 Coordination compounds. environmental factors on redox processes in biological and agricultural systems, the structure and bonding of coordination compounds, their preparation and study of methods of their preparation and study of compounds" 5 Self-study 3.1 Elements in Veterinary Medicine: Role, Sources, Deficiency and Excess Effects signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles 20 Module control test 3 20 Total for module 3 20 Control for module 3 20	Lab 2.4 Control work "Electrolytic		15	
Lab 2.6. Control work 'Hydrolysis salt" 20 Module control test 2. 20 Total for module 2 100 Module Ne3. Redox reactions. Complex compounds 5 Lab 3.1 Redox reactions. ELO 1,3. Know and correctly use the terminology of veterinary medicine and Determine the essence of physicochemical and biological processes that occur in the animal body in normal and pathological conditions including redox reactions, the influence of Lab 3.2 Control work "Redox reactions" 30 Lab 3.4. Control work "Redox reactions" environmental factors on redox processes in biological and agricultural systems,the structure and bonding of coordination compounds, their preparation and study of environmental factors on and analyze their chemical properties, particularly in veterinary pharmaceuticals and diagnostics, biologically signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles 20 Module control test 3 20 Total for module 3 20 Module control test 3 20 Total for module 3 20 Total for module 3 20 Module control test 3 20 Total for module 3 100	dissociation"			
salt" 20 Total for module 2 20 Total for module 2 100 Module №3: Redox reactions. Complex compounds Lab 3.1 Redox reactions. ELO 1,3. Know and correctly use the terminology of veterinary medicine and Determine the essence of physicochemical and biological processes that occur in the animal biological processes that occur in the animal biological processes that occur in the animal biological processes in biological and gricultural systems, the structure and biological and agricultural systems, the structure and biological and analyze their chemical properties. 30 Lab 3.4. Control test "Coordination compounds. essential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles 20 Module control test 3 20 Total for module 3 20 Total for module 3 20	Lab 2.5 Hydrolysis of salt	sources and animal digestive systems.	5	
Module control test 2. 20 Total for module 2 100 Module №3. Redox reactions. Complex compounds 100 Lab 3.1 Redox reactions. ELO 1,3. Know and correctly use the terminology of veterinary medicine and biological processes that occur in the animal biological processes that occur in the animal biological processes that occur in the animal biological and agricultural systems, the influence of environmental study of methods of their preparation and study of corrections. 30 Lab 3.4. Control test "Coordination compounds." Self-study 3.1 Elements in Veterinary Medicine: Role, Sources, Deficiency and Excess Effects 20 Module control test 3 20 20 Module control test 3 20 Total for module 3 30 Module control test 3 20 Module control test 3 20 Total for module 3 30 Module control test 3 20 Total for module 3 20 Total for module 3 20 Total for module 3 20 Total for	Lab 2.6. Control work 'Hydrolysis		20	
Total for module 2 100 Module №3. Redox reactions. Complex compounds Lab 3.1 Redox reactions. ELO 1,3. Know and correctly use the terminology of veterinary medicine and Determine the essence of physicochemical and biological processes that occur in the animal body in normal and pathological conditions 5 Lab 3.2 Control work "Redox reactions." body in normal and pathological conditions including redox reactions, the influence of environmental factors on redox processes in biological and agricultural systems, the structure and bonding of coordination compounds, their preparation and study of growthes, particularly in veterinary pharmaceuticals and diagnostics, biologically essential elements (c.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles 20 Module control test 3 20 Total for module 3 20 Total for module 3 30				
Module №3. Redox reactions. Complex compounds Lab 3.1 Redox reactions. ELO 1,3. Know and correctly use the terminology of veterinary medicine and Determine the essence of physicochemical and biological processes that occur in the animal body in normal and pathological conditions including redox reactions, the influence of environmental factors on redox processes in biological and agricultural systems, the structure and bonding of coordination compounds, their preparation and study of enterninery pharmaceuticals and diagnostics, biologically sesential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles 20 Module control test 3 20 Module control test 3 20 Total for module 3 100 Class work (M1 + M2+M3)/3*0,7 ≤ 70	Module control test 2.		20	
Lab 3.1 Redox reactions. ELO 1,3. Know and correctly use the terminology of veterinary medicine and Determine the essence of physicochemical and biological processes that occur in the animal body in normal and pathological conditions including redox reactions, the influence of environmental factors on redox processes in biological and agricultural systems, the structure and bonding of coordination compounds, their preparation and study of chemical properties. 30 Lab 3.4. Control test "Coordination compounds" properties, particularly in veterinary pharmaceuticals and diagnostics, biologically essential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles 20 Module control test 3 20 Total for module 3 20 Class work (M1 + M2+M3)/3*0,7 ≤ 70	Total for module 2		100	
Experimental study of the influence of the environment on the course of redox reactions.terminology of veterinary medicine and Determine the essence of physicochemical and biological processes that occur in the animal body in normal and pathological conditions including redox reactions, the influence of environmental factors on redox processes in biological and agricultural systems, the structure and bonding of coordination compounds, their preparation and study of cehemical properties.30Lab 3.4. Control test "Coordination compounds"5Self-study 3.1 Elements in Veterinary Medicine: Role, Sources, Deficiency and Excess Effects9Module control test 320Module control test 330Module control test 330Module control test 330Module control test 330Module control test 330	Module №	3. Redox reactions. Complex compounds		
the environment on the course of redox reactions.Determine the essence of physicochemical and biological processes that occur in the animal body in normal and pathological conditions including redox reactions, the influence of environmental factors on redox processes in biological and agricultural systems, the structure and bonding of coordination compounds, their preparation and study of chemical properties. 30 Lab 3.4. Control test "Coordination compounds" 5 Self-study 3.1 Elements in Veterinary Medicine: Role, Sources, Deficiency and Excess Effects 20 Module control test 3 20 Module control test 3 20 Total for module 3 100 Class work $(M1 + M2+M3)/3*0,7 \le 70$ Exam 30	Lab 3.1 Redox reactions.	ELO 1,3. Know and correctly use the	5	
redox reactions.biological processes that occur in the animal body in normal and pathological conditions including redox reactions, the influence of environmental factors on redox processes in biological and agricultural systems, the structure and bonding of coordination compounds, their preparation and study of chemical properties. 30 Lab 3.4 Control test "Coordination compounds"properties, particularly in veterinary pharmaceuticals and diagnostics, biologically essential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles 20 Module control test 3 20 Total for module 3 100 Class work $(M1 + M2 + M3)/3*0,7 \le 70$ Exam 30	Experimental study of the influence of	terminology of veterinary medicine and		
Lab 3.2 Control work "Redox reactions"body in normal and pathological conditions including redox reactions, the influence of environmental factors on redox processes in biological and agricultural systems, the structure and bonding of coordination compounds, their preparation and study of chemical properties.30Lab 3.4. Control test "Coordination compounds"properties, particularly in veterinary pharmaceuticals and diagnostics, biologically signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles20Module control test 320Module control test 320Class work(M1 + M2+M3)/3*0,7 ≤ 70Exam30	the environment on the course of			
reactions"including redox reactions, the influence of environmental factors on redox processes in biological and agricultural systems, the structure and bonding of coordination compounds, their preparation and study of chemical properties.5Lab 3.4. Control test "Coordination compounds"properties, particularly in veterinary pharmaceuticals and diagnostics, biologically essential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles20Module control test 320Total for module 320Class work(M1 + M2+M3)/3*0,7 ≤ 70Exam30	redox reactions.			
Lab 3.3 Coordination compounds. Experimental study of methods of their preparation and study of chemical properties.environmental factors on redox processes in biological and agricultural systems, the structure and bonding of coordination compounds, their preparation and analyze their chemical properties, particularly in veterinary pharmaceuticals and diagnostics, biologically essential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles20Module control test 320Total for module 3100Class work(M1 + M2+M3)/3*0,7 ≤ 70Exam30			30	
Experimental study of methods of their preparation and study of chemical properties.biological and agricultural systems, the structure and bonding of coordination compounds, their preparation and analyze their chemical properties, particularly in veterinary pharmaceuticals and diagnostics, biologically essential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles20Module control test 320Total for module 3100Class work(M1 + M2+M3)/3*0,7 ≤ 70Exam30		-		
their preparation and study of chemical properties.and bonding of coordination compounds, their preparation and analyze their chemical properties, particularly in veterinary pharmaceuticals and diagnostics, biologically essential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles20Module control test 320Total for module 3100Class work(M1 + M2+M3)/3*0,7 ≤ 70Exam30		1	5	
chemical properties.preparation and analyze their chemical properties, particularly in veterinary pharmaceuticals and diagnostics, biologically essential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles20Module control test 320Module control test 320Class work100Class work30				
Lab 3.4. Control test "Coordination compounds"properties, properties, particularly pharmaceuticals and diagnostics, biologically essential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles20Module control test 320Module control test 320Total for module 3100Class work(M1 + M2+M3)/3*0,7 ≤ 70Exam30		e		
compounds"pharmaceuticals and diagnostics, biologically essential elements (e.g., Fe, Zn, Cu, I, Se, Ca)20Self-study 3.1 Elements in Veterinary Medicine: Role, Sources, Deficiency and Excess Effectssigns and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles20Module control test 320Total for module 3100Class work(M1 + M2+M3)/3*0,7 ≤ 70Exam30		1 1 2		
Self-study 3.1 Elements in Veterinary Medicine: Role, Sources, Deficiency and Excess Effectsessential elements (e.g., Fe, Zn, Cu, I, Se, Ca) signs and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles20Module control test 320Total for module 3100Class work(M1 + M2+M3)/3*0,7 ≤ 70Exam30			20	
Medicine: Role, Sources, Deficiency and Excess Effectssigns and biochemical consequences of element deficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principlesdeficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles20Module control test 320Total for module 3100Class work $(M1 + M2 + M3)/3 * 0,7 \le 70$ Exam30			• •	
Excess Effectsdeficiencies or toxic excess in animals. elemental imbalances to metabolic disorders, applying redox and coordination chemistry principles20Module control test 320Total for module 3100Class work $(M1 + M2 + M3)/3 * 0,7 \le 70$ Exam30			20	
Interfactor of control of c		6		
applying redox and coordination chemistry principles20Module control test 320Total for module 3100Class work $(M1 + M2 + M3)/3 * 0,7 \le 70$ Exam30	Excess Effects			
Introper Introper principles 20 Module control test 3 100 Total for module 3 100 Class work (M1 + M2+M3)/3*0,7 ≤ 70 Exam 30				
Module control test 3 20 Total for module 3 100 Class work $(M1 + M2 + M3)/3*0, 7 \le 70$ Exam 30		11 5 6		
Total for module 3 100 Class work $(M1 + M2 + M3)/3*0, 7 \le 70$ Exam 30	Module control test 3	principies	20	
Class work (M1 + M2+M3)/3*0,7 ≤ 70 Exam 30				
Exam 30		(M1 + M2-		

8.2. Scale for assessing student's knowledge

Student's rating, points	National grading (exam/credits)
90-100	excellent
74-89	good
60-73	satisfactory
0-59	unsatisfactory

8.3. Assessment policy

Deadlines and exam retaking rules	Works that are submitted late without valid reasons will be assessed with a lower grade. Module tests may be retaken with the permission of the lecturer if there are valid reasons (e.g. a sick leave).
Academic integrity rules	Cheating during tests and exams is prohibited (including using mobile devices). Plagiarism and unauthorized use of AI are strictly prohibited. All work must be completed independently. Violations may result in a failing grade or further disciplinary measures. Term papers and essays must have correct references to the literature used
Attendance rules	Attendance is compulsory. For good reasons (e.g. illness, international internship), training can take place individually (online by the faculty dean's consent)

9. Teaching and learning aids:

- e-learning course of the discipline (https://elearn.nubip.edu.ua/course/view.php?id=2610);

- abstracts of lectures and their presentations (in electronic form);
- textbooks, training aids, workshops;

- Inorganic Chemistry. Methodological guidelines for laboratory practice and independent workFor bachelor students Specialty 211 – "Veterinary medicine" Експодрук 2024 – Voitenko L.V., Kopilevich V.A., Prokopchuk N.M., Kravchenko O.O. Ushapivska T.I.

- Inorganic chemistry Part 2. Chemistry of the elements Methodological guidelines for laboratory practice and independent work Specialty 211 – "Veterinary medicine" Експодрук 10 д.a Ushchapivska T., Kravchenko O., Abarbarchuk L.

10. Recommended sources of information

- 1. Gliessman, S. R. (2021). Package price agroecology: The ecology of sustainable food systems. CRC press
- 2. Voitenko L. Chemistry with the foundations of biogeochemistry: manual. Kyiv: Naukova stolytsa, 2019. 400 p. (In Ukrainian).
- 3. Gliessman, S. R., Méndez, V. E., Izzo, V. M., & Engles, E. W. (2022). Agroecology: Leading the transformation to a just and sustainable food system. CRC Press.
- 4. Ecology of agrosphere (handbook): <u>https://www.agroeco.org.ua/wp-content/uploads/Publications/ecology_agrosphere.pdf</u>
- 5. SEGAE: a serious game to learn agroecology <u>https://www.segae.org/game/</u>
- Chobotar, V. V., Kopilevich, V. A., & Kravchenko, O. O. (2024). Analysis of Natural Water Quality in the Dniester River Basin for Economic Utilization. Journal of Water Chemistry and Technology, 46(6), 636-644. https://doi.org/10.3103/S1063455X24060031
- 7. Chobotar, V., Kravchenko, O., & Tkalenko, H. (2024). Effectiveness of nanoaquachelates of transition metals against industrial apple scab in plantations. *Quarantine* 29-35. and plant (4). protection. https://doi.org/10.36495/2312-0614.2024.4.29-35
- Hnatiuk, T., Kravchenko, O., Abarbarchuk, L., Churilov, A., & Chobotar, V. (2023). Influence of drugs produced by electropulse ablation methods on the development of soybean phytopathogenic bacteria. *Plant and Soil Science*, 14(3), 22-34. <u>https://doi.org/10.31548/plant3.2023.22</u>

- 9. Antraptseva, N. M., Kochkodan, O. D., Solod, N. V., & Kravchenko, O. O. (2023). The behavior of Co_{3-x}M¹_x(PO₄)₂-8H₂O (M¹¹ = Mg, Mn, Zn) solid solutions at elevated temperatures. *Functional materials*, 30(4), 519-525. https://doi.org/10.15407/fm30.04.519
- Antraptseva N., Solod N., Kochkodan O., Kravchenko O. (2022), Co-precipitation of cations of zinc and divalent metals from phosphoric acid solutions, Functional Materials, 29(4), pp. 597–604, <u>https://doi.org/110.15407/fm29.04.597</u>
- 11. Kravchenko, O. O., et al. "Sensitivity of phytopathogenic and nodule bacteria of soybeans to microelements preparations obtained by electropulse ablation." *Науковий* журнал «Біологічні системи: теорія та інновації» 12.1 (2021): 36-43. <u>http://dx.doi.org/10.31548/biologiya2021.01.004</u>
- Antraptseva, N., Solod, N., & Kravchenko, O. (2021). Features of the synthesis of solid solutions of divalent metal phosphates with a newberyite structure. *Functional Materials*, 28(3), 573-579. <u>https://doi.org/10.15407/fm28.03.573</u>
- Antraptseva, N., Solod, N., & Kravchenko, O. (2020). Influence of crystal hydrate water on the process and products of heat treatment of magnesium-manganese (II) of dihydrogen phosphates. *Functional Materials*, 27(4), 820-826. https://doi.org/10.15408/fm.27.04.820
- 14. Kravchenko, O et al. Порівняльна оцінка якості питної води окремих населених пунктів Могилів Подільського району Вінницької області. Науковий журнал «Біологічні системи: теорія та інновації», (2020): v. 11, n. 3, p. 63-73, <u>http://dx.doi.org/10.31548/biologiya2020.03.007</u>.