NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of Analytical and Bioinorganic Chemistry And Water Quality

APPROVED

by the Dean of the Faculty of Plant Protection, Biotechnology and Ecology Yuliia KOLOMIIETS "19" 06 2025

CURRICULUM OF ACADEMIC DISCIPLINE CHEMISTRY WITH THE FOUNDATIONS OF BIOGEOCHEMISTRY

Area of knowledge 10 Natural Sciences
Specialty 101 Ecology

Academic programme 101 Ecology and Environmental Protection

Faculty of Plant Protection, Biotechnology and Ecology

Developed by: <u>Docent, Candidate of Chemical Sciences Larysa VOITENKO</u> (position, academic degree, academic rank)

Description of the discipline Chemistry with the foundations of biogeochemistry

Discipline studies chemical, physical, geological and biological processes that are regulating the composition of the environment, biogeochemical cycles in their interaction with living matter through the biological systems of the Earth in time and space. The course includes the laws of the chemical composition formation of the ecosphere; principles of biogeochemical zoning, biogeochemical provinces and endemic diseases in them; theories of the origin of life, ways and types of biogenic and anthropogenic migration of chemical elements; methods for predicting chemical transformations of pollutants; mechanisms of isotope fractionation with living matter; the role of living matter in the geochemical processes of hypergenesis and crust weathering; biogeochemical patterns based on methods of chemical indication of the environmental state; transformation of xenobiotic.

Area of knowledge, speci	alty, academic progra	amme	, academic degree		
Academic degree	Bachelor's				
Specialty	101 Ecology				
Academic programme	101 Ecology and En	vironn	nental Protection		
Char	acteristics of the disci	ipline			
Type			Elective		
Total number of hours			120		
Number of ECTS credits			4		
Number of modules			2		
Form of assessment	Form of assessment exam				
Indicators of the discipline					
for full-time and	d part-time forms of t	univer	sity study		
		Uni	versity study		
	Full-time		Part-time		
Year of study	4th				
Term	7th				
Lectures	15	hours	hours		
Practical classes and seminars	j	hours	hours		
Laboratory classes	30	hours	hours		
Self-study	75	hours	hours		
Number of hours per week for full-time	3 1	hours			
students					

1. Aim, competences and expected learning outcomes of the discipline

Aim - to acquire basic concepts, principles, and techniques of modern biogeochemistry as a top level of chemistry understanding and special application for the specialists in the field of ecology, environmental protection, and sustainable development. The discipline that involves the study of the chemical, physical, and biological processes and reactions that govern the composition of the natural environment (including the biosphere, the cryosphere, the pedosphere, the atmosphere, and the lithosphere): chemical aspects of life origin. In particular, it is to study of cycles of chemical elements, such as carbon and nitrogen, and their interaction with and incorporation into living things transported through earth scale biological systems in space through time.

Competences acquired:

Integral competence (IC): The ability to solve complex specialized tasks and solve practical problems in the field of ecology, environmental protection and sustainable use of nature, or in studies that involve the application of basic theories and methods of environmental sciences and are characterized by the complexity and uncertainty of conditions.

General competence (GC):

GC08. Ability to conduct research at an appropriate level.

GC11. Ability to evaluate and ensure the quality of work performed.

Special (professional) competence (SC):

SC16. Ability to critically reflect on the basic theories, methods and principles of the natural sciences.

Expected learning outcomes (ELO):

ELO03. Understand the basic concepts, theoretical and practical problems in the field of natural sciences, which are necessary for analysis and decision-making in the field of ecology, environmental protection and optimal nature use.

ELO21. Be able to choose the optimal methods and tools for conducting research, collecting and processing data.

2. Programme and structure of the discipline

2. Programme and		uic Oi	the un	cihii												
	Number of hours															
Modules and topics	full-time				part-time											
	weeks total		including			total		including								
			lec	lab	ind.	s.st.		l	p	lab	ind.	s.st.				
Module 1.	Biogeoch	nemical	characte	ristics	of the	ecosphe	re com	pos	ition							
Topic 1. Introduction. The object of research and the goal																
of the discipline. Life origin on	1-3	8	2	6												
	1-3	0	2													
experimental.	Earth: hypotheses and															
Topic 2. The ecosphere																
chemical composition, the		_		_												
chemical elements and	3-5	8	2	6		35										
biogeochemical laws.						33										
Topic 3. Biogeochemical	6	2	2													
zoning	0	2	2													
Topic 4. Endemic diseases as																
result of abnormal distribution	7-8	6	6	6	6	6	6	2	4							
of chemical elements in								U	U	U	0	O	2			
biosphere																
Total for module 1		59	8	16		35										
Module 2.	Biogeoch	emical c	ycles of t	he mai	n bioa	ctive ch	emical	ele	ment	'S						
Topic 1. General concepts																
about BGC cycles. Features of																
biogeochemical cycles of	9-12	16	4	12												
sedimentary and gaseous						40										
types.						40										
Topic 2. Chemistry of																
preservatives and psychoactive	13-15 5	3	3	2												
compounds																
Total for module 2		61	7	14		40										
Total hours		120	15	30		75										

3. Topics of lectures

No.	Topic			
1	The object of research and tasks of the discipline. Applied aspects of biogeochemistry.			
	Modern directions of biogeochemistry. The environmental protection as a social factor			
	Theories of Life Origin			
2	Vernadsky' Biosphere study. Notion of life matter, its composition. Types of bio-			
	spherical matter of the earth. The mail biochemical components of biosphere.			
	Conditions of the biosphere existing. Energy and matter fluxes in biosphere. Vernadsky			
	biogeochemical principles (laws). Different types of bioelements classification.			

	Bioactive elements distribution in biosphere. Examples of geochemical role of life matter (calcium, iodine functions, atmospheric oxygen, formation of manganese-nickel concretions etc.).	
3	Biogeochemical zoning as an unity of geochemical environment and functioning of life matter (according to V.V. Kowalsky). Biogeochemical chains. Biogeochemical provinces and zones (taiga-forest non-chornozemic; forest-steppe and steppe chornozemic; dry-steppe; semiarid and desert; mountain)	2
4	Endemic diseases as a consequence of abnormal distribution of chemical elements in biogeochemical environment. History of endemic diseases studying. Endemic goiter, correlation of human iodine status and IQ level. Methods of iodine deficit prevention – pro and contra. Fluorosis as a consequence of increaser content of fluorine in drinking water. Adding of fluoride compounds in toothpastes and fluoridation of drinking water. Endemic podagra, Kashin-Bek disease (Urov), Keshan disease. Endemic diseases of farm animals.	2
5	The basic notions of biogeochemical cycles. Processes of cycling migration of chemical elements in environment. Fluxes and reservoirs of biogeochemical cycles. Thermodynamics laws and biogeochemical cycles. Experimental evidences of cycling (Witherspoon radioisotope experiment; Habbard-Brook experimental forest study). Exogenic and endogenic cycles. Types of ogranogenic elements cycles. Hydrological cycle. Hydrogen degasation. V. Larin theory. Global model of carbon cycle according to V. Kovda. Global carbon cycle according to R. Radkliffs as the ratio of chemical state of carbon compounds (oxiding-reducting). Detrite as biogeochemical reservoir of carbon. Fossilises. Isotope distribution of carbon. Radiocarbon analysis.	2
6	Nitrogen biogeochemical cycle. Biogenic and abiogenic nitrogen fixation. Phosphorus biogeochemical cycle. Ephtrofication: mechanism and prevention. Classification of biogeochemical barriers: physical, mechanical, biogenical, techogenical. Practical using of biogeochemical barrier study for the analysis and prognosis of chemical substance transformation in polluted soils.	2
7	General classification of psychoactive substances and food additives. Chemical structure, properties, health risks. Chemophobia. Zohnerism.	3
	Total	15

4. Topic of laboratory classes

No.	Topic	Hours
1	Introduction. Safe rules in chemical laboratory. Qualitative methods of environmental chemical analysis. Probe sampling, conservation and storage of samples for analysis. Principles of statistic treatment of qualitative analytical results of environmental objects.	4
2	Express measuring of active residue chlorine (free, total) in chlorinated drinking water by photometric method using C-401 colorimeter.	4
3	Determination of nitrate content in natural fresh waters and drinking water by photometrical method according to DSTU 4078-2001 Water quality; determination of nitrate; part 3: spectrometric method using sulfosalicylic acid (ISO 7890 3:1998, MOD). Statistical treatment of analysis data.	4
4	Determination of ammonia content in natural fresh waters and drinking water by photometrical method according to DSTU ISO 7150-1-2003 Water quality - Determination of ammonium - Part 1: Manual spectrometric method. Statistical treatment of analysis data.	4
5	Determination of total iron content in tap water, buvette water and surface waters according to DSTU ISO 6332:2003Water quality - Determination of iron - Spectrometric method using 1,10-phenanthroline. Statistical treatment of analysis data.	4
6	Determination of fluoride content in drinking water and a few sorts of leaf and packed according to DSTU ISO 10359-1:2017 Water quality - Determination of fluoride - Part 1:	2

	Electrochemical probe method for potable and lightly polluted water. Statistical treatment	
	of analysis data.	
7	General chemical properties of alkaloids. Sublimation method for the caffeine dry	2
	extraction from tea leaves. Qualitative test of caffeine.	2
8	Determination of SO ₂ sulfur dioxide content (preservative E 220) in foodstuffs according	
	to ISO 5521:1981 Fruits, vegetables and derived products - Qualitative method for the	6
	detection of sulphur dioxide	
	Total	30

5. Topics of self-study

No.	Topic	Hours
1	The concept of the noosphere. The noosphere as a natural step in the development of the Earth. Characteristic features of the noosphere: a) emergence of new landscapes (cultural, man-made, agricultural landscapes); b) man as the main active force of the noosphere, man-made migration of chemical substances; c) significant increase in volumes of information, new types of information; d) use of biosphere energy. Conditions (according to V.I. Vernadsky) for the complete transformation of the biosphere into the noosphere.	15
2	Landscape-geochemical zoning of Ukraine. Zonal and intrazonal provinces in Ukraine, endemic diseases in Ukraine. Influence of the geochemical environment on the evolution of plants. Adaptogenic plants: indifferent to changes in the concentration of chemical elements, common and unusual concentrators, endemic plants.	10
3	Biogeochemistry of the Earth's gas mantle. Value of atmospheric mass transfer of water-soluble forms of chemical elements. Vegetation as an absorber of gaseous pollutants.	5
4	Biogeochemistry of the lithosphere and pedosphere. Chemical composition of soils and bottom sediments. Types of migration of chemical elements in the pedosphere and lithosphere (hypogenic, supergenic and anthropogenic migration). Organic matter of the pedosphere.	5
5	Biogeochemistry of the hydrosphere. Classification of natural waters according to the level of mineralization, type of mineral matrix. Water requirements for different types of water use (drinking, irrigation, watering animals and poultry, fish farming, recreational purposes, etc.).	10
6	Biochemical cycles of substances and energy in the biosphere. Cycle of elements that entered the biosphere as a result of mantle degassing (hydrogen, carbon, oxygen, nitrogen). Cycles of elements that entered the biosphere as a result of mobilization from the earth's crust (calcium, potassium, silicon, phosphorus).	10
7	Interaction between living and non-living nature is the basis of biogenic migration of substances. The concept of a small biological cycle of chemical elements. The energy of living matter is the driving force of the geochemical and biogeochemical circulation of substances.	10
8	Hydrogen (water) cycle. Chemical characteristics of hydrogen, its content in the lithosphere, atmosphere, living organisms, humus, plants. Water as a source of Hydrogen for the formation of organic substances. Water as a living environment. Total water content in the biosphere. Biogeochemical cycle of water, its duration. Provision of drinking water and the degree of its use in different countries.	10
	Total	75

6. Methods of assessing expected learning outcomes:

- Oral or written survey;
- Interview;
- Test;

- Defending laboratory works;
- Peer-to-peer assessment.

7. Teaching methods:

- Problem-based method;
- Practice oriented studying method;
- Case method;
- Research based method;
- Learning discussions and debates method.

8. Results assessment

The student's knowledge is assessed by means of a 100-point scale converted into the national grades according to the "Exam and Credit Regulations at NULES of Ukraine" in force

8.1. Distribution of points by types of educational activities

o.i. Distribution of points by types of educational activities				
Educational activity	Results	Assessment		
Module 1. Biogeochemical character	ristics of the ecosphere composition			
Lab work 1. Introduction. Safe rules in chemical laboratory. Qualitative methods of environmental chemical analysis. Probe sampling, conservation and storage of samples for analysis. Principles of statistic treatment of qualitative analytical results of environmental objects.	ELO 02, 03 For understanding of the basic concepts, theoretical and practical problems in the field of natural sciences: to know and understand the subject area and professional activity: to be able to work and analyze scientific and educational literature on the	5		
Lab work 2. Express measuring of active residue chlorine (free, total) in chlorinated drinking water by photometric method using C-401 colorimeter.	Biogeochemistry; Gain practical skills and be able monitor and evaluate current condition of environment based on chemical concepts; to have skills for the	10		
On-line testing	field testing for analysis and decision-	10		
Lab work 3. Determination of nitrate content in natural fresh waters and drinking water by photometrical method according to DSTU 4078-2001 Water quality; determination of nitrate; part 3: spectrometric method using sulfosalicylic acid (ISO 7890 3:1998, MOD). Statistical treatment of analysis data. Lab Report Lab work 4. Determination of ammonia content in	making in the field of ecology, environmental protection and balanced nature management	5		
natural fresh waters and drinking water by photometrical method according to DSTU ISO 7150-1-2003 Water quality - Determination of ammonium - Part 1: Manual spectrometric method. Statistical treatment of analysis data. Lab Report				
On-line testing		10		
Module 1 control work		50		
Self-study 2 Testing via Elern		5		
Total for module 1	ho main hio active sheeriselel	100		
Module 2. Biogeochemical cycles of the Lab work 5. Determination of total iron content in tap water, buvette water and surface waters according to DSTU ISO 6332:2003Water quality - Determination of iron - Spectrometric method using 1,10-phenanthroline. Statistical treatment of analysis	ELO 03, ELO 21: For understanding of the basic concepts and principles for the analysis and decision-making in the field of ecology, environmental protection and balanced nature management; for analyzing the natural chemical	s5		

data. Lab Report	composition of unpolluted and polluted	
Lab work 6. Determination of fluoride content in	environment; the methods of different	5
drinking water and a few sorts of leaf and packed	laboratory and field environmental analytic techniques; to understand of the	
according to DSTU ISO 10359-1:2017 Water quality	psychoactive substances and their	
- Determination of fluoride - Part 1: Electrochemical	environmental distribution; the chemical	
probe method for potable and lightly polluted water.	foundations of the food additives	
Statistical treatment of analysis data. Lab Report	application and their safety.	
Lab work 7. General chemical properties of		5
alkaloids. Sublimation method for the caffeine dry		
extraction from tea leaves. Qualitative test of		
caffeine. Lab work Report.		
Lab work 8. Determination SO ₂ sulfur dioxide		5
content (preservative E 220) in foodstuffs according		
to ISO 5521:1981 Fruits, vegetables and derived		
products - Qualitative method for the detection of		
Sulphur dioxide. Lab Report		
On-line testing		10
Module 2 control work		30
Written Essay in Biogeochemical modern problems		30
according to individual task		
Self-study 2 Testing via Elern		10
Total for module 2		100
Class work	$(M1 + M2)/2*0,7 \le 70$	
Exam/credit	30	
Total for year	$(Class work + exam) \le 100$	

8.2. Scale for assessing student's knowledge

0.20 % 0.010 101 4.0500551	ang statetine s inno (vicenge
Student's rating, points	National grading (exam/credits)
90-100	excellent
74-89	good
60-73	satisfactory
0-59	unsatisfactory

8.3. Assessment policy

o.c. rissessinent poney				
Deadlines and exam retaking rules	Works that are submitted late without valid reasons will be assessed with a lower grade. Module tests may be retaken with the permission of the lecturer if there are valid reasons (e.g. a sick leave).			
Academic integrity	Cheating during tests and exams is prohibited (including using mobile devices).			
rules	Term papers and essays must have correct references to the literature used			
Attendance rules	Attendance is compulsory. For good reasons (e.g. illness, international internship), training can take place individually (online by the faculty dean's consent)			

9. Teaching and learning aids:

- 1. E-learning course of the discipline https://elearn.nubip.edu.ua/course/view.php?id=2314.
- 2. Voitenko L. Chemistry with the foundations of biogeochemistry (2019). Kyiv: Naukova stolytsa, 2019. (400 p.) (In Ukrainian).
- 3. Lab Manual / Voitenko, L.V. (2020). Lab workbook of Biogeochemistry for Bachelor students of Ecology, NUBIP Publ., Kyiv. (98 pp.)

10. Recommended sources of information

- 1. Аналітична хімія природного середовища: Підручник/Б.Й. Набиванець, В.В. Сухан, Л.В. Калабіна. К,: Либідь, 1996. 304 с.
- 2. Аналітична хімія поверхневих вод //Б.Й.Набиванець, В.І.Осадчий, Н.М.Осадча та ін. Київ: Наук. Думка, 2007.-457 с.
- 3. Schlesinger, William & Bernhardt, Emily. (2013). Biogeochemistry: An Analysis of Global Change, Third Edition. Biogeochemistry: An Analysis of Global Change, Third Edition. Academic Press, San Diego. 672 pp.
- 4. Abraham, Ralph. (2009). A Review of "Geochemistry and the Biosphere: Essays by Vladimir I. Vernadsky". World Futures. 65. 436-441. 10.1080/02604020802631709. https://www.researchgate.net/publication/249036756_A_Review_of_Geochemistry_and_the_Biosphere Essays by Vladimir I Vernadsky
- 5. Samuel S. Butcher et al. (Eds.), 1992, Global Biogeochemical Cycles. Academic, ISBN-8. Global Biogeochemical Cycleshttp://www.agu.org/journals/gb/Biogeochemistry http://www.springer.com/west/home/geosciences?SGWID=4-10006-70-35757517-0. A journal published by Springer.
- 7. Biogeochemistry articles from across Nature Portfolio. https://www.nature.com/subjects/biogeochemistry
- 8. Biogeochemistry Basics Fundamental to Earth Science www.youtube.com/watch?v=WTpkame9Sd0