

UKRAINE NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE Department of Analytical and Bioinorganic Chemistry & Water Quality

WORKBOOK

in CHEMISTRY (V) (analytical)

of student_

(Name, Surname)

(group, year of study) Branch of knowledge – 10 Natural Sciences Speciality – 101 Ecology

Kyiv-2019

УДК 546 (07)

Робочий зошит призначено для виконання лабораторного практикуму з аналітичної хімії. Включає методики виконання експериментальних задач, форми протоколів аналізу, питання для самоперевірки.

Рекомендовано методичною радою факультету захисту рослин, біотехнологій та екології Національного університету біоресурсів і природокористування України для спеціальності 101 – Екологія, для яких викладання ряду дисциплін проводиться англійською мовою (протокол № _____ від _____ 2019 р.).

Рецензенти: д.х.н., проф. Максін В.І., НУБіП України; к.х.н., доц. Бухтіяров В.К., НУБіП України.

Voitenko, L.V. Workbook in analytical (V) chemistry (Speciality 101-Ecology) / Kyiv : DDP "Expo-druk". – 2019. – 92 p.

Відповідальний за випуск: к.х.н., доц. Войтенко Л.В.

UDC 546 (07)

The workbook is intended to train in lab course of Analytical chemistry. It contains the description of experimental strategies, lab techniques, the templates of lab reports, test questions for own training.

Recommended for publication by the by the Methodical board of the Plant Protection, the Biotechnologies & Ecology faculty of National University of Life and Environmental Sciences, for Speciality 101 – Ecology.

Report # ____, Data _____2019.

Reviewers: Doctor of Chem. Sci., Prof. Maksin V.I., NUBiP of Ukraine; Candidate of Chem. Sci., Ass. Prof. Buchtiyarov V.K., NUBiP of Ukraine.

Responsible for the edition: Cand. of Chem. Sci., Ass. Prof. Voitenko L.V.

CONTENT

INTRODUCTION	5
GENERAL CHEMISTRY SAFETY AND LABORATORY RULES	5
1.2. LAB GLASSWEARE CLEANING RULES	6
CHAPTER 1. QUALITATIVE ANALYSIS	8
1.1. ANALYTICAL REAGENTS AND REACTIONS	8
1.2. QUALITATIVE REACTIONS OF THE CATIONS	9
1.3. THE FIRST GROUP OF CATIONS	11
1.3.1. Characteristic reactions of Ammonia cations NH_4^+	11
1.3.2. Characteristic reactions of Potassium cations K ⁺	12
1.3.3. Characteristic reactions of Sodium cations Na ⁺	13
1.4. THE SECOND GROUP OF CATIONS	14
1.4.1. Action of group reagent $(NH_4)_2$ HPO ₄	14
1.4.2. Characteristic reactions of Magnesium cations Mg^{2+}	16
1.4.3. Characteristic reactions of Calcium cations Ca ²⁺	16
1.4.4. Characteristic reactions of Strontium cations Sr ²⁺	17
1.4.5. Characteristic reactions of Manganese cations Mn ²⁺	18
1.4.6. Characteristic reactions of Ferrous cations Fe ²⁺	19
1.4.7. Characteristic reactions of Ferric cations Fe ³⁺	20
1.4.8. Characteristic reactions of Aluminium cations Al ³⁺	21
1.5. THE THIRD GROUP OF CATIONS	22
1.5.1. Action of group reagent $(NH_4)_2$ HPO ₄	22
1.5.2. Characteristic reactions of Copper cations Cu^{2+}	23
1.5.4. Characteristic reactions of Cobalt cations Co^{2+}	26
1.5.5. Characteristic reactions of Nickel cations Ni ²⁺	28
1.6. THE FOUTH GROUP OF CATIONS	.29
1.6.1. Action of group reagent HCl	.29
1.6.2. Characteristic reactions of Silver cations Ag^+	30
1.6.3. Characteristic reactions of Lead cations Pb ²⁺	31
1.7. REACTIONS OF THE ANIONS	.33
1.7.1. The first group of anions	33
1.7.2. The second group of anions	.42
1.7.3. The third group of anions	.44
1.8. PROTOCOL CATIONS MIXTURE OF ANALYSIS	.47
1.9. QUALITATIVE ANALYSIS OF THE INORGANIC	
SUBSTANCES	59
1.9.1 A soluble salt	59
1.9.2 Insoluble substances	.66
EXAMPLES OF CONTROL TASKS FOR QUALITATIVE ANALYSIS	5
******	.69

CHAPTER 2. QUNTITATIVE ANALYSIS
2.1. Lab work - Precipitate gravimetry (mass analysis). Determination of
Barium content in Hydrated Barium Chloride71
2.2. Laboratory work – Volumetric neutralization method. Determination
of alkali concentration in solution73
2.3. Lab work – Oxidation-reduction (RedOx) titration (RedOxmetry).
Determination of Iron(II) content in Mohr's salt77
2.4. Laboratory work – Iodometry. Determination of Copper(II) Content
in Copper Vitriol81
2.5. Laboratory work – Complexonometry. Determination of Calcium
concentration in solution
EXAMPLES OF CONTROL TESTS FOR QUANTITATIVE ANALYSIS
MY RATING TABLE

INTRODUCTION

GENERAL CHEMISTRY SAFETY AND LABORATORY RULES

Chemistry laboratories can be hazardous if the rules are not followed. During a chemistry course a student may handle materials which are carcinogenic, poisonous, flammable, and explosive. Some of these materials and equipment may also cause severe burns, cuts, or bruises if handled improperly or carelessly. Most accidents that occur in the chemistry laboratory are a result of carelessness, impatience, improper or unauthorized experimentation, and disregard for safety rules or proper operating procedures. In order to minimize the chances of an accident in the laboratory certain rules and regulations must be obeyed at all times when one is working or observing in a chemical laboratory. Therefore, it is not advisable for anyone to work in a laboratory without proper knowledge of the dangers involved. Due to the inherent dangers present in a chemical laboratory exercise, it should be understood that the following rules must be obeyed to minimize the chance of an accident. The student is expected to exercise proper judgement and extreme caution at all times when working in the laboratory.

1. Do not perform unauthorized experiments or work in a laboratory alone.

2. Approved eye protection must be worn at all times in the laboratory. If you do get a chemical in your eye rinse immediately with large quantities of water using the eye-wash stations.

3. Long hair and loose clothing must be confined while in a laboratory.

4. Appropriate clothing must be worn at all times while in the laboratory. Your legs must be completely covered below the knee by your choice of clothing. If your clothing does not meet the requirement you may choose to wear an approved laboratory coat or apron which does cover your legs to your knees.

5. Closed shoes with socks must be worn.

6. Know the location and proper use of fire extinguishers, fire blankets, eye wash devices, and first aid kits.

7. Before obtaining any chemicals carefully read the label on the reagent bottles.

8. Eating, smoking, and drinking are not allowed in a chem laboratory.

9. Thoroughly wash your hands after leaving the laboratory.

10. Use the fume hoods when toxic or irritating vapours are involved.

11. Mouth suction is never used to fill a pipette.

13. Never direct the open end of test tube toward yourself or anyone else.

14. Never pour water into concentrated acid (especially H₂SO₄).

15. Learn the proper procedure for igniting and operating a laboratory burner. Always extinguish the flame when the burner is not being used. Make sure that all flammable reagents are well removed before lighting the burner.

16. Liquid and solid waste containers must be properly used at all times.

17. Never place chemicals directly on the balance pan. Always use a proper weighing container when using a balance to weigh a chemical. Never pour chemicals directly over the balance.

18. Never return unused chemicals to their original container (unless directed to do so by the instructor).

19. Securely replace lids, caps, and stoppers after removing reagents from containers.

20. Always wipe spatulas clean before and after inserting into reagent bottles.

21. Report any accident and/or injury, however minor, to your instructor immediately.

22. Never place anything that is not directly required for the experiment on laboratory desks; other items may interfere with the experiment.

23. All personal belongings should be placed in the bookcases as you enter the laboratory.

24. Clean up any spill immediately.

25. Before leaving the laboratory, make sure your work area is clean and dry.

26. Your instructor is available for any assistance you may need. Never hesitate to ask questions especially if there is any question concerning proper operating procedure. Be sure that you understand every instruction before proceeding.

1.2. LAB GLASSWEARE CLEANING RULES

In the analysis of samples the preparation of scrupulously clean glassware is mandatory. Lab glassware cleaning procedures must follow specific method requirements. If procedures are not listed then the method of cleaning should be adapted to both the substances that are to be removed, and the determinations (tests) to be performed. Recommendations for such cleaning procedures are listed below. <u>Analysis/Parameter</u> Cleaning Procedure

Cleaning Procedure (In order specified)

ORGANICS

INORGANICS	
Trace Metals:	1-4, 9, 8 (optional), 4
Nutrients, Minerals:	1-4, 8, 4
Solids:	1-4, 11
	(Volatile Solids 16)
Non-Metals, Physical Properties:	1-4, 14
(Cyanide)	
MICROBIOLOGY	1-4 (Sterilize per approved method)
BIOASSAY	
Freshwater:	18, 2, 3, 9 or 8, 4, 5, 4, 20
Marine & Estuarine:	19, 2, 3, 9 or 8, 4, 5, 4, 20
RADIONUCLIDES	17, 3, 8, 4
Cleaning Procedures	

1. Remove all labels using sponge or acetone.

2. Wash with hot tap water and a brush to scrub inside of glassware, stopcocks, and other small pieces, if possible, using a suitable laboratory-grade detergent. Organics - Liquinox, Alconox or equivalents. Inorganic anions - Liquinox or equivalent. Inorganic cations - Liquinox, Acationox, Micro or equivalents.

3. Rinse thoroughly with hot tap water.

4. Rinse thoroughly with distilled water (DW).

5. Rinse thoroughly with pesticide grade Acetone.

6. Rinse thoroughly with pesticide grade Methanol.

7. Rinse thoroughly with pesticide grade Hexane.

8. Rinse or soak with 1:1 HCl (Hydrochloric Acid).

9. Rinse or soak with >10% HNO₃ (Nitrate Acid).

10. Bake at 105 °C for 1 hour.

11. Bake at 180 °C (prior to use as per method).

12. Drain, then heat in muffle furnace for 30-60 minutes at 400 °C.

13. Clean, dry glassware should be sealed and stored in dust-free environment.

14. Soak in oxidizing agent (Chromic acid or equivalent); preferably hot (40-50 $^{\circ}$ C).

15. Last step (prior to use) should be a rinse with the solvent used in analysis.

16. Drain, then heat in muffle furnace for 1 hour at 550 °C.

17. Heat 1 hour in EDTA solution at 90-100 °C.

18. New glassware must be soaked overnight in 10% HNO₃ or HCl.

19. New glassware must be soaked overnight in seawater.

20. Rinse thoroughly with DW.

7

CHAPTER 1. QUALITATIVE ANALYSIS

1.1. ANALYTICAL REAGENTS AND REACTIONS

Using chemical method the analyzed substance is transformed into new compound having characteristic properties: colour, odour, and defined physical state. Chemical transformation which takes place is called qualitative analytical reaction and the substances initiated this transformation are called **analytical reagents**.

Group reagents react with the group of ions and provide the same effect; **specific reagents** react with only one ion; **selective reagents** react with a few ions.

Analytical reactions to be carried out are mostly influenced by the following:

- pH;

- Ion concentration;

- Temperature.

The sensitivity of the reaction is determined by the following:

- Detectable minimum;

- Minimum concentration;

- Maximum dilution.

Detectable minimum (m) is the less quantity of substance or ion, which can be detected by given reaction at certain conditions. It is expressed in $\gamma = 10^{-6}$ g.

Concentration limit (c) is the minimum concentration of determined ion in solution at which the analytical reaction gives positive effect. Concentration limit is expressed as the ratio of substance mass (1 g) to solution volume (in mL). For example, for qualitative determination of Cu^{2+} by reaction with water solution of ammonia NH_3H_2O minimum concentration is 1 : 250 000. It means that 1 g of Cu^{2+} may be detected in 250 liters of analyzing solution. Analytical tests must have **not less than 1** : **1000.**

Maximum dilution (MD) is an index inverse to minimum concentration: MD = 1/c. Maximum dilution indicates at which solution volume 1 g of the substance should be presented in order the reaction to be visible.

So the sensitivity of reaction is higher if maximum dilution is bigger; but detectable minimum and minimum concentration are is smaller.

Detectable minimum and concentration limit are interrelated:

 $m = c \cdot V \cdot 10;$ $c = m/V \cdot 10^{6}$, where V - volume of solution, mL.

1.2. QUALITATIVE REACTIONS OF THE CATIONS

Ammonia-phosphate classification of cations is based (table 1) on the difference in solubility of phosphates in water, weak and strong acids, alkali and ammonia.

Environmental practice is connected with studying of the next common biologically active cations:

- Macronutrients: NH_4^+ , Ca^{2+} , K^+ , Na^+ , Mg^{2+} ;
- Micronutrients: Mn^{2^+} , Zn^{2^+} , Co^{2^+} , Ni^{2^+} , Cu^{2^+} , Ag^+ , Fe^{2^+} , Fe^{3^+} ;
- Cations of toxic and radioactive elements: Al^{3+} ; Sr^{2+} , Cu^{2+} , Ag^{+} , Pb^{2+} .

The main idea is to use the separation of cations analyzing the mixture.

For example, **propose** the order of separation of cations in mixture.

1. Cation Co^{2+} is included to the 3d group, $\text{Ca}^{2+} - 2^{d}$ group, A-subgroup (see Table 1).

2. The 2^d and 3^d cations group reagent is the same in fact – $(NH_4)_2HPO_4$ (see Table 1). So, adding this reagent, both cations of mixture were precipitated:

 $3Co(NO_3)_2 + 2(NH_4)_2HPO_4 + 2NH_3 \cdot H_2O = Co_3(PO_4)_2 \downarrow + 6NH_4NO_3 + 2H_2O;$ $Mg(NO_3)_2 + (NH_4)_2HPO_4 + NH_3 \cdot H_2O = MgNH_4PO_4 \downarrow + 2NH_4NO_3 + H_2O.$

3. For separating of sediments obtained we use their different solubility in excess of water ammonia $NH_3 \cdot H_2O$: sediments of the 2^d cations group are insoluble, the 3^d one – soluble:

 $Co_3(PO_4)_2\downarrow +18NH_3 \cdot H_2O$ (in excess)= $[Co(NH_3)_6]_3(PO_4)_2(soluble) + 18H_2O$; MgNH₄PO₄ $\downarrow + NH_3 \cdot H_2O$ (in excess) \rightarrow not solute.

So, the chart of operation is:

|--|

		Group reagent	Properties of sediments				
Group	Cations			Solubility in:			
			$\rm H_2O$	NH ₃ H2 O	CH ₃ CO -OH	HCl, HNO ₃	NaOH
1	NH_4^+, Na^+, K^+	no	—	-	-	-	-
2 A	$\begin{matrix} Mg^{2+}, Mn^{2+}, \\ Ca^{2+}, Sr^{2+}, \\ Fe^{2+} \end{matrix}$	$(NH_4)_2HPO_4 + NH_3H_2O$	Insoluble	Insoluble	Soluble	Soluble	Insoluble
В	Fe^{3+}, Al^{3+}		in water		Insoluble		Only AlPO ₄ soluble, forming Na[Al(OH) ₄]
3	Cu ²⁺ , Zn ²⁺ , Co ²⁺ , Ni ²⁺	(NH ₄) ₂ HPO ₄ or Na ₂ HPO ₄	Insoluble in water	$\frac{\left[\mathrm{Me}^{\mathrm{n+}}(\mathrm{NH}_3)_{(2-3)\mathrm{n}}\right]^{\mathrm{n+}}}{\mathrm{soluble}}$	Soluble	Soluble	Only Zn ₃ (PO ₄) ₂ soluble, forming Na ₂ [Zn(OH) ₄]
4	Ag ⁺ , Pb ²⁺	HC1	Insoluble (PbCl ₂ soluble partially in boiling H_2O)	[Ag(NH ₃) ₂]Cl soluble	Insoluble	Insoluble	$\begin{array}{c} AgCl-\\ insoluble;\\ PbCl_2 \ soluble,\\ forming\\ Na_2[Pb(OH)_4] \end{array}$

1.3. THE FIRST GROUP OF CATIONS

Observation Content Description **Explanation** Add 4-5 drops of NaOH or KOH $NH_4^+ + OH^- = NH_3 + H_2O$ 1. Alkali (NaOH, KOH) at heating. solution to 3-4 drops of ammonia $NH_4Cl + NaOH \longrightarrow NH_3\uparrow +$ Reaction is salt and heat in a water bath. Gas highly NaCl + H₂O. sensitive. *specific*; may be identified by its odour limit (cautiously smell the vapor after concentration moving the test-tube from the water *c*=1:5000000. bath), or by its turning moistened litmus paper blue. $NH_4^+ + 2[HgI_4]^{2-} + 4KOH =$ 2. Nessler's reagent Add 2-3 drops of Nessler's reagent $K_2[HgI_4]+KOH$ to 1 drop of any soluble ammonia NH₂ I (alkaline solution of salt. potassium $+7 I^{-} + 3H_{2}O$: tetraiodomercurate(II)). NH₄Cl+2K₂[HgI₄]+4KOH =Reaction is *extremely* sensitive, concentration NH_2 *limit* c = 1:1000000. 7KI + +Interferences cations KCl+3H₂O. formed insoluble hydroxides (Fe²⁺, Fe³⁺, Cu^{2+} et al.)

1.3.1. Characteristic reactions of Ammonia cations NH₄⁺

Content	Description	Observation	Explanation
1. Potassium	Add 3-4 drops of reagent to 2-3 drops		$2K^{+} + Na^{+} + [Co(NO_{2})_{6}]^{3-} =$
hexanitritocobaltate(III)	of potassium salt solution.		$K_2Na[Co(NO_2)_6]\downarrow;$
$Na_3[Co(NO_2)_6].$ The	Analyzed solution should have pH>7		$2 \text{ KCl} + \text{Na}_{3}[\text{Co}(\text{NO}_{2})_{6}] =$
NH_4^+ ions prevent the	because reagent easily decomposed:		$K_2Na[Co(NO_2)_6] \downarrow + 2NaCl.$
determination, because	$Na_3[Co(NO_2)_6]+3NaOH=Co(OH)_3\downarrow+$		
ammonia gives similar	6NaNO ₂ .		
sediment. Non specific,	At pH<7 unstable acid forms which		
concentration limit $c =$	not reacts with K ⁺ ions:		
1:50000.	$Na_3[Co(NO_2)_6]\downarrow+3HCl=H_3[Co(NO_2)_6]$		
	(solution) + 3NaCl;		
	$2H_3[Co(NO_2)_6]+4HCl=5NO+2CoCl_2$		
	$+7NO_{2} + 5H_{2}O.$		
2. Sodium hydrotartrate	Add to 4-5 drops of K ⁺ salt solution		$\mathbf{K}^{+} + \mathbf{H}\mathbf{C}_{4}\mathbf{H}_{4}\mathbf{O}_{6}^{-} = \mathbf{K}\mathbf{H}\mathbf{C}_{4}\mathbf{H}_{4}\mathbf{O}_{6}\downarrow;$
$NaHC_4H_4O_6$. The NH_4^+	the same volume of reagent.		$KCl + NaHC_4H_4O_6 =$
ions prevent the	Conditions:		$\text{KHC}_4\text{H}_4\text{O}_6\downarrow + \text{NaCl.}$
determination, because	$- pH = 5 \div 7;$		
ammonia gives similar	- Ammonia ions absence, because the		
sediment. Non specific,	similar sediment forms:		
<i>low concentration limit c</i>	$NH_4Cl + NaHC_4H_4O_6 = NH_4HC_4H_4O_6$		
= 1:1000.	\downarrow + NaCl;		
	- Cooling;		
	- Crystallization center formation (rub		
	the tube inner surface by glass stick).		

Content	Description	Observation	Explanation
1. Potassium	Add 5-6 drops of NaCl		$Na^{+} + [Sb(OH)_{6}]^{-} = Na[Sb(OH)_{6}]\downarrow$
hexahydroxostibiate	solution to 10-15 drops		$NaCl + K[Sb(OH)_6] = Na[Sb(OH)_6]\downarrow +$
$K[Sb(OH)_6]$ Non specific - the	$K[Sb(OH)_6]$; rub the tube		KCl.
NH_4^+ ions prevent the	well by glass stick;		
determination, because the	cooling tube content in		
ammonia salts are hydrolyzed	cold water.		
in acidic medium.			
K[Sb(OH) ₆] decomposes			
forming sediment of			
methastibate acid $[Sb(OH)_6]^{-1}$			
+H ⁺ =HSbO ₃ \downarrow +3H ₂ O; pH 5-7.			
Concentration limit			
<i>c</i> =1:3300.			
2. Zinc-Uranyl-Acetate	Initialization of		$Na^{+} + Zn^{2+} + 3 UO_2^{2+} + 8CH_3COO^{-} +$
$Zn(UO_2)_3(CH_3COO)_8$ forms	crystallization by rubbing		$CH_3COOH + 9H_2O = =$
crystalline sediment. Reaction	of tube sides by glass		$NaZn(UO_2)_3(CH_3COO)_9.9H_2O\downarrow;$
is <i>sensitive</i> (concentration	stick.		
limit $c=1:4000$), highly	Add 8-10 drops of Zinc-		NaCl + $Zn(UO_2)_3(CH_3COO)_8$ +
specific (acetic acid medium).	Uranyl-Acetate (reagent		$CH_3COOH + 9H_2O =$
	- in lab fume hood) to		$NaZn(UO_2)_3(CH_3COO)_9.9H_2O\downarrow +$
	3-4 drops of sodium salt		HC1.
	solution and rub of tube		
	sides by glass stick.		

1.4. THE SECOND GROUP OF CATIONS

1.4.1. Action of group reagent (NH₄)₂HPO₄

Content	Description	Observation	Explanation
The reaction is carried out in	Take 7 tubes. Add 3-	, st	1. $MgCl_2 + (NH_4)_2HPO_4 + NH_3 H_2O =$
presence of mixture $NH_3 \cdot H_2O$ +	5 drops $NH_3 \cdot H_2O$, 3-5	1 st tube	$ MgNH_4PO_4\downarrow + 2NH_4CI + H_2O; $ $ Mg^{2+} + HPO_4^{2-} + NH_2H_2O - MgNH_4PO_4 + $
NH_4Cl (buffer solution pH=9-10).	drops NH_4Cl and 4-5	colour of sediment	H_2O .
At such conditions the cations	drops $(NH_4)_2HPO_4$.		$2. 3CaCl_2 + 2(NH_4)_2HPO_4 + 2NH_3 H_2O =$
Ca^{2+} , Sr^{2+} , Fe^{2+} , Fe^{3+} , Al^{3+} are	Add 2-3 drops MgCl ₂	2 ^a tube	$Ca_3(PO_4)_2\downarrow + 6NH_4Cl + 2H_2O;$
deposited as orthophosphates:	in the 1^{st} tube. CaCl ₂	colour of sediment	$3Ca^{2+} + 2HPO_4^{2-} + 2NH_3 \cdot H_2O = Ca_3(PO_4)_2 \downarrow +$
$Ca_2(PO_4)_2 Sr_2(PO_4)_2 Fe_2(PO_4)_2 $	- in the 2 ^d one		$2NH_4^+ + 2H_2O;$
$FePO_{1} \land IPO_{2} \land and cation Mg^{2+}$	$Sr(NO_2)_2 = in the 3^d$	3^{d} tube	5. $3SI(NO_3)_2 + 2(NH_4)_2HPO_4 + 2NH_3 H_2O =$ $Sr_2(PO_4)_2 + 6NH_3 NO_2 + 2H_2O_2$
Mn^{2+} are deposited as double	$MnSO_{1}$ in the J^{th}	colour of sediment	$3Sr^{2+} + 2HPO_4^{2-} + 2NH_3 H_2O = Sr_3(PO_4)_2 + +$
will are deposited as double	$V_{113}O_4 = III IIIE 4$,		$2NH_4^+ + 2H_2O;$
saits of Magnesium-ammonium	FeSO ₄ (bottle with	4 th tube	4. $MnSO_4$ + $(NH_4)_2HPO_4$ + $NH_3 \cdot H_2O$ =
phosphate and Manganese-	this solution is	colour of sediment	$MnNH_4PO_4\downarrow + (NH_4)_2SO_4 + H_2O;$
ammonium phosphate:	placed in lab fume		$Mn^{2\tau} + HPO_4^{2\tau} + NH_3 \cdot H_2O = MnNH_4PO_4 \downarrow + HOO_4^{2\tau} + HOO$
$MgNH_4PO_4\downarrow$, $MnNH_4PO_4\downarrow$	hood) – in the 5^{m} ,	5 th tube	H_2O . 5 3EeSO + 2(NH), HPO + 2NH, HO -
	$FeCl_3$ – in the 6^{th} ,	colour of sediment	$Fe_3(PO_4)_2 + 3(NH_4)_2SO_4 + 2H_2O_3$
	$Al_2(SO_4)_3$ – in the		$3Fe^{2+} + 2HPO_4^{2-} + 2NH_3 \cdot H_2O = Fe_3(PO_4)_2 \downarrow +$
	7 th . Note on the	6 th tube	$2NH_4^+ + 2H_2O;$
	colour of sediments.	colour of sediment	6. $FeCl_3 + (NH_4)_2HPO_4 + NH_3 \cdot H_2O =$
		colour of seament	FePO ₄ + 3NH ₄ Cl + H ₂ O F_{2}^{3+} , HPO ²⁻ , NH H O F PO + NH ⁺
		7 th turk a	$Fe^{+} HPO_4 + NH_3 H_2O = FePO_4 \downarrow + NH_4 + H_2O$
		/ tube	7. Al ₂ (SO ₄) ₂ + 2(NH ₄) ₂ HPO ₄ + 2NH ₂ ·H ₂ O =
		colour of sediment	$2AIPO_4 \downarrow + 3(NH_4)_2SO_4 + 3 H_2O;$
			$Al^{3+} + HPO_4^{2-} + NH_3 \cdot H_2O = AlPO_4 \downarrow + NH_4^+ + HPO_4^{2-} $
			H ₂ O.

Solubility of sediments obtained at the action of group reagent					
Content	Description	Observation	Explanation		
All above mentioned precipitates	Add CH ₃ COOH by		1. $Me_3(PO_4)_2 \downarrow + 4CH_3COOH =$		
aren't dissolved in excess of	drops to content of		$2Me(CH_3COO)_2 + Me(H_2PO_4)_2$		
$NH_3 \cdot H_2O$. Phosphates of both	tubes # 1-7. Describe		(where $Me - Ca^{2+}$, Sr^{2+} , Fe^{2+});		
sub-groups are soluble in mineral	the effects.		$Me_3(PO_4)_2 + 4CH_3COOH = 2Me^{2+} +$		
acids.			$4CH_{3}COO^{-} + Me^{2+} + 2H_{2}PO_{4}^{-};$		
As related to solubility of					
phosphates in acetic acid, cations			2. MeNH ₄ PO ₄ \downarrow + 2CH ₃ COOH =		
of the second group subdivide			$Me(CH_3COO)_2 + NH_4H_2PO_4$		
into two groups:			(where $Me - Mg^{2+}$, Mn^{2+});		
II-A sub-group – includes cations			$MeNH_4PO_4\downarrow + 2CH_3COOH =$		
Mg^{2+} , Ca^{2+} , Sr^{2+} , Mn^{2+} , Fe^{2+} ,			$Me(CH_3COO)_2 + NH_4H_2PO_4;$		
phosphates are soluble in acetic			$Me_3(PO_4)_2 + 2CH_3COOH = 3Me^{2+}$		
acid.	Add 15-20 drops		$+ 2CH_{3}COO^{-} + NH_{4}^{+} + H_{2}PO_{4}^{-}.$		
II-B sub-group – includes cations	NaOH in tube # 7.				
Fe^{3+} , Al^{3+} – phosphates of these	Describe the effect.		$AlPO_4 \downarrow + 4NaOH = Na[Al(OH)_4] +$		
cations are insoluble in acetic			Na ₃ PO ₄ ;		
acid.			$AlPO_4 \downarrow + 4OH^- = [Al(OH)_4]^- +$		
Due to amphoteric property			PO_4^{3-} .		
AlPO ₄ is soluble in alkalis.					

1.4.2. Characteristic reactions of Magnesium cations Mg²⁺

Content	Description	Observation	Explanation
Group reagent $(NH_4)_2HPO_4$ at	Add 3-5 drops $NH_3 \cdot H_2O$,		$MgCl_2 + (NH_4)_2HPO_4 + NH_3 \cdot H_2O =$
pH 9-10 (buffer mixture NH ₃ ·H ₂ O	3-5 drops NH ₄ Cl and 2-3		$MgNH_4PO_4\downarrow + 2NH_4Cl + H_2O;$
+ NH ₄ Cl) deposits Magnesium	drops MgCl ₂ .		Mg^{2+} + HPO_4^{2-} + $NH_3 \cdot H_2O$ =
ions as crystalline precipitate			$MgNH_4PO_4\downarrow + H_2O.$
$MgNH_4PO_4$. That is the			
qualitative reaction of Mg ²⁺ ions			
is the reaction that is similar to			
the action of group reagent.			

1.4.3. Characteristic reactions of Calcium cations Ca²⁺

Content	Description	Observation	Explanation
1. Sulfate acid H_2SO_4 or soluble	Add 2-3 drops of Sodium		$CaCl_2 + Na_2SO_4 = CaSO_4 \downarrow + 2NaCl.$
sulfates in presence of acetone	sulfate Na_2SO_4 to 4-5		$Ca^{2+} + SO_4^{2-} = CaSO_4 \downarrow$
give CaSO ₄ white precipitate. It is	drops of Calcium salt		$CaSO_4 \downarrow + (NH_4)_2SO_4 =$
soluble in concentrated	solution.		$(NH_4)_2[Ca(SO_4)_2]$
ammonium sulfate $(NH_4)_2SO_4$	Add 10-15 drops of		$CaSO_4 \downarrow + 2NH_4^+ + SO_4^{2-} = 2NH_4^+$
solution in the result of complex	saturated $(NH_4)_2SO_4$		+ $[Ca(SO_4)_2]^{2-}$.
salt $(NH_4)_2[Ca(SO_4)_2]$ forming.	(bottle is placed in lab		
Reaction is selective; the same	fume hood) in a tube, boil		
effect is observed of Ca^{2+} cations.	in a water bath 1 min, and		
	add to a tube with		
	sedimentation CaSO ₄ .		

2. Ammonium oxalate	Add 2-3 drops of	$CaCl_2 + (NH_4)_2C_2O_4 = CaC_2O_4 \downarrow +$
$(NH_4)_2C_2O_4$ gives white	Ammonium oxalate to 3-4	$2NH_4Cl;$
crystalline precipitate with	drops of $CaCl_2$ solution.	$\operatorname{Ca}^{2+} + \operatorname{C}_2\operatorname{O}_4^{2-} = \operatorname{Ca}\operatorname{C}_2\operatorname{O}_4 \downarrow.$
Calcium ions. It is soluble in	Dissolve obtained	
mineral acids but is insoluble in	sediment, adding by drops	$CaC_2O_4 \downarrow + 2HCl = CaCl_2 +$
acetic acid. Reaction is selective	HCl.	$H_2C_2O_4;$
the same effect is observed of Sr^{2+}		$CaC_2O_4 \downarrow + 2H^+ = Ca^{2+} + H_2C_2O_4.$
cations.		

1.4.4. Characteristic reactions of Strontium cations Sr^{2+}

Content	Description	Observation	Explanation
1. Sulfate acid H_2SO_4 and soluble	Add 2-3 drops of Sodium		$Sr(NO_3)_2 + H_2SO_4 = SrSO_4 \downarrow +$
sulfates give SrSO ₄ precipitate. It	sulfate Na_2SO_4 to 4-5		2HNO ₃ ;
is insoluble in $(NH_4)_2SO_4$	drops of $Sr(NO_3)_2$		$\mathrm{Sr}^{2+} + \mathrm{SO}_4^{2-} = \mathrm{SrSO}_4 \downarrow.$
concentrated solution. Reaction is	solution.		
selective; the same effect is			
observed of Ca^{2+} cations.			
2. Ammonium oxalate	Add 2-3 drops of		$\mathrm{Sr(NO_3)_2} + (\mathrm{NH_4})_2\mathrm{C_2O_4} = \mathrm{SrC_2O_4} \downarrow$
$(NH_4)_2C_2O_4$ gives crystalline	Ammonium oxalate to 3-		$+ 2NH_4NO_3;$
precipitate with Sr^{2+} ions. It is	4 drops of $Sr(NO_3)_2$		$\mathrm{Sr}^{2+} + \mathrm{C}_2 \mathrm{O}_4^{2-} = \mathrm{Sr} \mathrm{C}_2 \mathrm{O}_4 \downarrow;$
soluble in mineral acids but	solution.		
insoluble in cold acetic acid.	Add by drops HCl till		$SrC_2O_4\downarrow + 2HCl = SrCl_2 + H_2C_2O_4;$
Reaction is selective; the same	dissolving of sediment.		$\operatorname{SrC}_2\operatorname{O}_4\downarrow + 2\operatorname{H}^+ = \operatorname{H}_2\operatorname{C}_2\operatorname{O}_4 + \operatorname{Sr}^{2+}.$
effect is observed of Ca^{2+} cations.			
3. Gypsum Water (saturated	Add 1-2 mL of Gypsum		$Sr(NO_3)_2 + CaSO_4 = SrSO_4 \downarrow +$
water solution of CaSO ₄) gives	water (reagent - in lab		$2Ca(NO_3)_2;$

sediment SrSO ₄ in form of white	fume hood) to 5-10	$\mathrm{Sr}^{2+} + \mathrm{SO}_4^{2-} = \mathrm{Sr}\mathrm{SO}_4 \downarrow.$
turbidity. Gypsum CaSO ₄ is a	drops of Strontium salt	
slightly soluble substance	solution. Heat mixture in	
$(SP=6,1\cdot10^{-5})$, but more soluble,	a water bath 3-5 min.	
that $SrSO_4$ (SP-2,8·10 ⁻⁷). Therefore		
concentration of SO_4^{2-} in CaSO ₄		
saturated solution is sufficient for		
exceeding of SrSO ₄ solubility		
product (SP). Reaction is selective,		
because Ag^+ , Pb^{2+} gives insoluble		
sulfates too.		

1.4.5. Characteristic reactions of Manganese cations Mn²⁺

Content	Description	Observation	Explanation
1. Sodium Bismuthate NaBiO ₃	Add 15-20 drops of		$2Mn(NO_3)_2 + 5NaBiO_3 + 16HNO_3 =$
oxidizes Mn^{2+} to MnO_4^- in diluted	diluted Nitrate acid, 1-2		2HMnO ₄ +5Bi(NO ₃) ₃ +5NaNO ₃ +
nitrate acid medium.	drops of MnSO ₄ and a few		7H ₂ O;
Reaction is very sensitive and	grains of solid Sodium		$2Mn^{2+} + 5BiO_3^{-} + 14H^{+} = 2MnO_4^{-}$
high specific.	Bismuthate (volume as		$+5Bi^{3+}+7H_2O;$
	one match-head) (reagent		$Mn^{2+}-5e \rightarrow Mn^{7+}$ 2
	- in lab fume hood).		$Bi^{5+}+2e \rightarrow Bi^{3+} \qquad 5$
2. Hydrogen peroxide H_2O_2	Add 2-3 drops of		$Mn(NO_3)_2 + H_2O_2 + 2 NH_3 \cdot H_2O =$
oxidizes Mn^{2+} up to Mn^{4+} in	Ammonium hydroxide		$H_2MnO_3\downarrow + 2NH_4NO_3 + H_2O;$
ammonia or alkaline medium and	and 3-4 drops of 3% or		Mn^{2+} + H_2O_2 + 2 $NH_3 \cdot H_2O$ =
sedimentates Manganese in the	10% H ₂ O ₂ (reagent - in		$H_2MnO_3\downarrow + 2NH_4^+ + H_2O.$
form mixed oxide-hydroxide. The	lab fume hood) to 2-3		

black precipitate is formed.	drops of MnSO ₄ solution.	$Mn^{2+} - 2e \rightarrow Mn^{4+}$	1
Reaction is selective; the same	Heat mixture in a water	$2\mathrm{O}^{1-} + 2\mathrm{e} \rightarrow 2\mathrm{O}^{2-}$	1
effect is observed of cations	bath 1-2 min.		
formed insoluble hydroxides with			
alkali ($Fe(OH)_3$, $Cu(OH)_2$ etc.).			

1.4.6. Characteristic reactions of Ferrous cations Fe²⁺

Content	Description	Observation	Explanation
1. Alkalis (NaOH, KOH)	Add 3-5 drops of NaOH,		$FeSO_4 + 2NaOH = Fe(OH)_2 \downarrow +$
deposits Fe ²⁺ ions. This reagent is	1-2 drops of FeSO ₄		$Na_2SO_4;$
used for separation of Ferrous	(reagent - in lab fume		$\operatorname{Fe}^{2+} + 2\operatorname{OH}^{-} = \operatorname{Fe}(\operatorname{OH})_2 \downarrow.$
ions. Reaction is selective; the	hood). Observe the colour		Oxidation of sediment in the air:
same effect is observed of cations	changing as the result of		$4Fe(OH)_2 + O_2 + 2 H_2O =$
formed insoluble hydroxides in	oxidation of Fe^{2+} to Fe^{3+}		$4Fe(OH)_3\downarrow$.
alkaline medium $(Ni(OH)_2,$	by air oxygen.		$Fe^{2+}-1e \rightarrow Fe^{3+}$ 4
$Mn(OH)_2$ etc.).			$O_2 + 4e \rightarrow 2O^{2-}$ 1
2. Potassium ferrocyanide	Add 1 drop of HCl and 2-		3FeSO_4 + $2\text{K}_3[\text{Fe}(\text{CN})_6]$ =
$K_3[Fe(CN)_6]$ (red blood salt)	3 drops of Potassium		$Fe_3[Fe(CN)_6]_2\downarrow + 3K_2SO_4;$
gives precipitate $Fe_3[Fe(CN)_6]_2$	ferrocyanide to 2-3 drops		$3Fe^{2+} + 2[Fe(CN)_6]^{3-} =$
(Turnbull's blue) in slightly acidic	of FeSO ₄ (reagent - in lab		$Fe_3[Fe(CN)_6]_2\downarrow$.
medium). It is not soluble in	fume hood).		
acids, but decomposes in alkalis			
forming $Fe(OH)_2$ precipitate.			
Reaction is high sensitive and			
specific.			

Content	Description	Observation	Explanation
1. Alkalis (NaOH, KOH)	Add 3-5 drops of NaOH to		$FeCl_3 + 3NaOH = Fe(OH)_3 \downarrow +$
deposits Fe ³⁺ ions. This reagent	1-2 drops of FeCl ₃ .		3NaCl;
is used for separation of Ferric			$Fe^{3+} + 3OH^{-} = Fe(OH)_3 \downarrow$.
ions. Reaction is selective; the			
same effect is observed of			
cations formed insoluble			
hydroxides in alkaline medium			
$(Co(OH)_2, Mg(OH)_2 \ etc.).$			
2. Potassium ferricyanide	Add 1 drop of HCl and 2-3		4FeCl ₃ + 3 K ₄ [Fe(CN) ₆] =
K_4 [Fe(CN) ₆] (yellow blood	drops of potassium		$Fe_4[Fe(CN)_6]_3\downarrow + 12 KCl;$
salt) gives precipitate (Prussian	ferricyanide to 2-3 drops of		$4Fe^{3+} + 3[Fe(CN)_6]^{4-} =$
<i>blue)</i> with Fe^{3+} ions in acid	FeCl ₃ solution.		$Fe_4[Fe(CN)_6]_3\downarrow$.
medium. It isn't soluble in acids			
but is decomposed in alkalis.			
Reaction is highly specific and			
very sensitive (minimum			
concentration $c = 1:1000000$).			
3. Ammonium or Potassium	Add 1 drop of HCl solution		$FeCl_3 + 6NH_4SCN =$
Thiocyanide (NH ₄ SCN or	and 2-3 drops NH ₄ SCN to		$(NH_4)_3[Fe(SCN)_6] + 3NH_4Cl;$
KSCN) gives the solution of	2-3 drops of $FeCl_3$.		$Fe^{3+} + 6SCN^{-} = [Fe(SCN)_6]^{3-}$.
blood colour. Reaction is very			
sensitive and specific.			

1.4.8. Characteristic reactions of Aluminium cations Al³⁺

Content	Description	Observation	Explanation
1. Alkalis (NaOH, KOH) form	Add solution of		$Al_2(SO_4)_3 + 6NaOH = 2Al(OH)_3\downarrow$
gelatinous precipitate Al(OH) ₃ . Added	$Al_2(SO_4)_3$ (by drops) to		$+ 3Na_2SO_4;$
excess of alkali, sediment dissolved	1-2 drops of alkali as		$Al^{3+} + 3OH^{-} = Al(OH)_{3}\downarrow$
due to amphoteric character of	long as white		In excess of alkali:
aluminium compounds. Reaction is	translucent precipitate is		$Al(OH)_3 \downarrow + NaOH =$
selective; the same effect is observed	formed.		$Na[Al(OH)_4];$
of cations formed amphoteric	Add by drops alkaline		$A1(OH)_3 \downarrow + OH^2 = [A1(OH)_4]^2$.
hydroxides, soluble in alkali $(Zn(OH)_2,$	solution until sediment		
$Pb(OH)_2$).	dissolves completely.		
2. Ammonium chloride NH ₄ Cl.	Add $Al_2(SO_4)_3$ solution		The 1 st step – sedimentation of
Aluminates hydrolyze in water	by drops to 1-2 drops of		Al(OH) ₃ :
solutions. Equilibrium is shifted to the	alkali until $Al(OH)_3$		$Al_2(SO_4)_3 + 6NaOH = 2Al(OH)_3\downarrow +$
left or to the right depends on	precipitate.		$3Na_2SO_4;$
concentrations of ions H^+ and OH^- in	Add by drops alkaline		$Al^{3+} + 3OH^{-} = Al(OH)_3 \downarrow$
solution, i.e. pH of solution. If solid	solution until sediment		Dissolving in excess of alkali:
NH ₄ Cl add to alkaline solution of	dissolved completely.		$Al(OH)_3 \downarrow + NaOH = Na[Al(OH)_4];$
Aluminate, NH ₄ Cl reacts with NaOH	Add 2-3 mL of DW and		$Al(OH)_3 \downarrow + OH^- = [Al(OH)_4]^-;$
firstly. But formation of NH ₃ ·H ₂ O	NH ₄ Cl (solid) to the		Sedimenting of $Al(OH)_3$ in
leads to pH reducing to 7-8 and	saturation (a few		saturated NH ₄ Cl solution:
equilibrium shifts to Al(OH) ₃ . The	crystals fall down and		$Na[Al(OH)_4] + NH_4Cl = Al(OH)_3 \downarrow +$
best results are observed at heating.	don't solute		$NH_3 \cdot H_2O + NaCl;$
Reaction is selective, interferences	completely). Heat the		$\begin{bmatrix} [AI(OH)_4] + NH_4 = AI(OH)_3 \downarrow + \\ NH_2 H_2 O \end{bmatrix}$
cations given insoluble hydroxides.	mixture in a water bath.		1113 1120.

1.5. THE THIRD GROUP OF CATIONS

1.5.1. Action of group reagent (NH₄)₂HPO₄

Content	Description	Observation	Explanation
The cations Cu^{2+} , Zn^{2+} , Co^{2+} ,	Take 4 tubes. Add 1-	1 st tube	1. $3MeSO_4 + 2 (NH_4)_2HPO_4 + 2NH_3 \cdot H_2O$
Ni^{2+} are precipitated by $(NH_4)_2HPO_4$ as orthophosphates	2 drops $NH_3 \cdot H_2O$, 1-2 drops NH_4Cl , and 4-5	colour of sediment	$= Me_{3}(PO_{4})_{2} + 3 (NH_{4})_{2}SO_{4} + 2 H_{2}O;$ $3Me^{2+} + 2HPO_{4}^{2-} + 2NH_{3}H_{2}O =$ $Me_{3}(PO_{4})_{2} + 2NH_{4}^{+} + 2H_{2}O$
$Cu_3(PO_4)_2$, $Zn_3(PO_4)_2$, $Co_3(PO_4)_2$, and $Ni_3(PO_4)_2$.	drops (NH ₄) ₂ HPO ₄ . Add 2-3 drops CuSO ₄	2 ^ª tube colour of sediment	(where $Me - Cu^{2+}$; Zn^{2+} , Ni^{2+});
$Co_3(PO_4)_2$ and $Ni_3(PO_4)_2$ are unstable in open air in the presence of oxygen, changing colour in the result of cations	in the 1^{st} tube, ZnSO ₄ - in the 2^{d} one, CoCl ₂ - in the 3^{d} , and NiSO ₄ - in the 4^{th} . Note on	3 ^d tube colour of sediment	2. $3 \operatorname{CoCl}_{2}+ 2 (\operatorname{NH}_{4})_{2}\operatorname{HPO}_{4} + 2\operatorname{NH}_{3} \cdot \operatorname{H}_{2}O = Co_{3}(\operatorname{PO}_{4})_{2}\downarrow + 6 \operatorname{NH}_{4}\operatorname{Cl} + 2 \operatorname{H}_{2}O;$ $3\operatorname{Co}^{2+} + 2\operatorname{HPO}_{4}^{2-} + 2\operatorname{NH}_{3} \cdot \operatorname{H}_{2}O = Co_{3}(\operatorname{PO}_{4})_{2}\downarrow + 2\operatorname{NH}_{4}^{+} + 2\operatorname{H}_{2}O;$ Oxidation of precipitate in the air:
oxidation.	the colour of sediments and its stability.	Stability of colour 4 th tube	$4\operatorname{Co}_{3}(\operatorname{PO}_{4})_{2}\downarrow + 3\operatorname{O}_{2} + 6\operatorname{H}_{2}\operatorname{O} = 4(\operatorname{CoOH})_{3}(\operatorname{PO}_{4})_{2}.$ $3\operatorname{Co}^{2+} - 3\operatorname{e} \rightarrow \operatorname{Co}^{3+} \mid 4$
		colour of sediment Stability of colour	$O_2^0 + 4e \rightarrow 2O^{2-} \qquad \qquad 3$

Solubility of sediments obtained at the action of group reagent

Content	Description	Observation	Explanation
All above mentioned precipitates are dissolved in excess of	Add 10-15 drops of water ammonia to		1. $Me_3(PO_4)_2\downarrow + 12NH_3 \cdot H_2O = [Me(NH_3)_4]_3(PO_4)_2 + 12 H_2O$
$NH_3 \cdot H_2O$. They are soluble in mineral acids (HCl, H_2SO_4) and acetic acid CH_3COOH .	content of tubes # 1- 4. Describe the visual effects.		$(where Me - Cu2+, Zn2+);Me_3(PO_4)_2 \downarrow + 12NH_3 \cdot H_2O = 3[Me(NH_3)_4]^{2+} + 2PO_4^{3-} + 12 H_2O;$

Zinc orthophosphate due to	2. $Me_3(PO_4)_2 \downarrow + 18 NH_3 H_2O =$
amphoteric character is soluble in	$[Me(NH_3)_6]_3(PO_4)_2 + 18 H_2O$
excess of alkali solution	(where $Me - Co^{2+}$, Ni^{2+});
excess of alkali solution.	$Me_3(PO_4)_2\downarrow$ + 18 $NH_3\cdot H_2O$ =
	$3[Me(NH_3)_6]^{2+} + 2PO_4^{3-} + 18 H_2O;$
	$Zn_3(PO_4)_2 \downarrow + 12NaOH = 3 Na_2[Zn(OH)_4]$
	$+ 2Na_{3}PO_{4};$
	$Zn_3(PO_4)_2\downarrow + 12OH^- = 3[Zn(OH)_4]^{2-} +$
	$2PO_4^{3-}$.

1.5.2. Characteristic reactions of Copper cations Cu²⁺

Content	Description	Observation	Explanation
1. Water ammonia $NH_3 \cdot H_2O$ in	Add 1-2 drops of water		The reaction is carried out in two
stoichiometrical quantity gives	ammonia in test tube and		stages:
precipitate of a basic copper salt;	add by drops CuSO ₄		the 1 st :
adding in excess – dissolved the	solution until precipitate		$2CuSO_4 + 2NH_3 \cdot H_2O =$
sediment. Due to the colour of	formation. Note on the on		$(CuOH)_2SO_4\downarrow + (NH_4)_2SO_4;$
solution this test is specific	its colour.		$2Cu^{2+} + SO_4^{2-} + 2NH_3 \cdot H_2O =$
reaction of Cu^{2+} and highly	After that add by drops		$(CuOH)_2SO_4\downarrow + 2NH_4^+;$
<i>sensitive</i> (<i>c</i> =1:500000.	an excess of water		the 2 ^d :
	ammonia till the		$(CuOH)_2SO_4\downarrow + (NH_4)_2SO_4 +$
	complete dissolving of		$6NH_3 \cdot H_2O = 2[Cu(NH_3)_4]SO_4 +$
	precipitate. What's colour		8H ₂ O;
	of solution?		$(CuOH)_2SO_4\downarrow+2NH_4^++6NH_3\cdot H_2O =$
			$2[Cu(NH_3)_4]^{2+} + 8H_2O.$
2. Alkalis (NaOH, KOH) give	Add 2-3 drops of NaOH		$CuSO_4 + 2NaOH = Cu(OH)_2 \downarrow +$
precipitate with copper(II) ions.	to solution of CuSO ₄		$Na_2SO_4;$

This reaction is <i>selective</i> ; uses for	until sedimentation.	$Cu^{2+} + 2OH^{-} = Cu(OH)_2 \downarrow.$
separation of Cu ²⁺ ions from	Copper hydroxide has	
cations mixture.	weak amphoteric	
	properties, dissolved in	
	mineral and acetic acids.	
3. Potassium ferricyanide	Add 1 drop of HCl and 2-	$2CuCl_2 + K_4[Fe(CN)_6] =$
K ₄ [F e(C N) ₆] (yellow blood salt)	3 drops of $K_4[Fe(CN)_6]$	$Cu_2[Fe(CN)_6]\downarrow + 4KCl;$
forms precipitate with Cu ²⁺ ions	to 3-4 drops of $CuCl_2$	$2Cu^{2+}$ + $[Fe(CN)_6]^{4-}$ =
(pH<7).	solution.	$Cu_2[Fe(CN)_6]\downarrow$.
Reaction is selective; but highly		
<i>sensitive</i> $(c=1:2500000).$		
Precipitate $Cu_2[Fe(CN)_6]$ isn't		
dissolve in diluted acids, but		
solves in excess of water		
ammonia.		
4. Potassium Iodide KI reacts	Add 2-3 drops of KI	$2CuSO_4 + 4KI = 2CuI + I_2 +$
with copper salt formed white	solution to 3-4 drops of	$2K_2SO_4;$
precipitate CuI. But reactive	CuSO ₄ solution.	
mixture has brown-red colour due		$2\mathrm{Cu}^{2+} + 4\mathrm{I}^{-} \rightarrow 2\mathrm{Cu}\mathrm{I} \downarrow + \mathrm{I}_2.$
to free I_2 isolation. Reaction is		
selective; but highly sensitive		$2I^{-} - 2e \rightarrow I_{2}$ 1
(<i>c</i> =1:300000).		$Cu^{2+} + 1e \rightarrow Cu^{+}$ 2

1.5.3. Characteristic reactions of Zinc cations Zn²⁺

Content	Description	Observation	Explanation
1. Water ammonia $NH_3 \cdot H_2O$ in	Add 1-2 drops of water		The reaction is carried out in two
stoichiometrical quantity	ammonia in test tube and		stages:
precipitates zinc hydroxide;	add by drops ZnSO ₄		the 1 st :
adding in excess – dissolves the	solution until the		$ZnSO_4 + 2NH_3 \cdot H_2O = Zn(OH)_2 \downarrow +$
sediment. This test is selective	sedimentation.		$(NH_4)_2SO_4;$
reaction of Zn^{2+} .	After then add by drops		$Zn^{2+} + 2NH_3 H_2O = Zn(OH)_2 \downarrow +$
	an excess of ammonia till		2NH4 ²⁺ ;
	the complete dissolving.		the 2^d :
	Note on the colour of		$Zn(OH)_2 \downarrow + 4 NH_3 \cdot H_2O_{(in excess)} =$
	solution.		$[Zn(NH_3)_4](OH)_2 + 4H_2O;$
			$Zn(OH)_2\downarrow$ + 4 $NH_3 \cdot H_2O$ =
			$[Zn(NH_3)_4]^{2+} + 4H_2O.$
2. Alkalis (NaOH, KOH) give	Add slowly 10-12 drops		The reaction is carried out in two
white $Zn(OH)_2$ gelatinous	of ZnSO ₄ solution to 2-3		stages:
precipitate with Zn^{2+} ions. This	drops of NaOH or KOH		the 1 st :
sediment has amphoteric	solution up to forming of		$ZnSO_4 + 2NaOH = Zn(OH)_2 \downarrow +$
properties and soluble in mineral	white precipitate		$Na_2SO_4;$
acids and excess of alkalis. This	$Zn(OH)_2$. After then add		$Zn^{2+} + 2OH^{-} = Zn(OH)_2 \downarrow;$
test is selective, used for the	excess of alkali to		the 2 ^d : adding excess of alkali:
separation of Zn^{2+} from cations	complete dissolving of		$Zn(OH)_2 \downarrow + 2NaOH =$
mixture.	sediment obtained before.		$Na_2[Zn(OH)_4]$:
			$\left Zn(OH)_2 \downarrow + 2OH^{-} = [Zn(OH)_4]^2 \right .$

3. Potassium ferrocyanide	Add 1 drops HCl and 2-3	$3ZnSO_4 + 2K_3[Fe(CN)_6] =$
$K_3[Fe(CN)_6]$ (red blood salt)	drops of $K_4[Fe(CN)_6]$ to	$Zn_3[Fe(CN)_6]_2\downarrow + 3K_2SO_4;$
forms precipitate of mustard	2-3 drops of ZnSO ₄	$3Zn^{2+}$ + $2[Fe(CN)_6]^{3-}$ =
colour with Zn ions (pH<7). It	solution.	$Zn_3[Fe(CN)_6]_2\downarrow$.
solves in alkalis. This test is		
selective, Fe ³⁺ interferences.		

1.5.4. Characteristic reactions of Cobalt cations Co²⁺

Content	Description	Observation	Explanation
1. Water ammonia $NH_3 \cdot H_2O$	Add 1-2 drops of water		The reaction is carried out in two
in stoichiometrical quantity	ammonia in test tube and		stages:
precipitates basic cobalt salt;	add by drops CoCl ₂ solution		the 1 st :
adding in excess – dissolves	till the sedimenting of		$\operatorname{CoCl}_2 + \operatorname{NH}_3 \cdot \operatorname{H}_2 O = \operatorname{CoOHCl} + \operatorname{NH}_4 Cl;$
the sediment. Test is <i>selective</i> .	precipitate.		$Co^2 + Cl + NH_3 \cdot H_2O = CoOHCl + NH_4'.$
	After then add by drops an		L = 2: L =
	excess of ammonia till the		$[Co(NH_3)_6](OH)_2 + NH_4Cl + 6H_2O;$
	complete dissolving. Note on		$CoOHCl \downarrow +7 \text{ NH}_3 \cdot \text{H}_2\text{O} = [Co(\text{NH}_3)_6]^{2+}$
	the colour of solution, which		$+2OH^{-} + NH_{4}^{+} + Cl^{-}$.
	is changing quickly in the		
	result of oxidation $Co^{2+} \rightarrow$		
	Co ³⁺ .		
2. Alkalis (<i>NaOH</i> , <i>KOH</i>) give	Add 1 drop of NaOH to 3-4		$CoCl_2 + NaOH = CoOHCl \downarrow +$
gelatinous precipitate of basic	drops of $CoCl_2$ solution.		NaCl;
salt with Co ²⁺ ions. Excess of	Note on the colour of		$\operatorname{Co}^{2+} + \operatorname{OH}^{-} + \operatorname{Cl}^{-} = \operatorname{CoOHCl}_{\downarrow}.$
alkali converts CoOHCl at	sediment. Add excess of		$CoOHCl \downarrow + NaOH = Co(OH)_2 \downarrow$
heating in $Co(OH)_2$ of pink	alkali. Observe change of		+NaCl;

colour. Test is <i>selective</i> .	sediment colour. Oxidation	CoOHO	$Cl\downarrow + OH^{-} = Co(OH)_{2}\downarrow + Cl^{-}.$
	by air oxygen, $Co(OH)_2$	Oxidati	on: $4Co(OH)_2 + O_2 + 2H_2O =$
	converts to Co(OH) ₃ . Note	4Co(OI	H) ₃ ↓:
	on the colour of solution.	Co ²⁺ -	$1e \rightarrow Co^{3+}$ 4
		$O_2^0 + A_2^0$	$4e \rightarrow 2O^{2-}$ 1
3. Ammonium or Potassium	Add 4-5 drops of NH ₄ SCN	CoCl ₂	+ $6NH_4SCN =$
Thiocyanide (NH ₄ SCN or	saturated solution in acetone	$(NH_4)_4$	$[Co(SCN)_6] + 2NH_4Cl;$
<i>KSCN</i>) (<i>Vogel reaction</i>) solution	(reagent - in lab fume	$Co^{2+} +$	$6\mathrm{SCN}^{-} = [\mathrm{Co}(\mathrm{SCN})_6]^{4-}.$
in organic solvents (acetone)	hood) to $3-4$ drops of CoCl ₂ .		
gives the dark blue solution.	Shake up content of tube and		
Reaction is very sensitive, but	wait a few seconds Note on		
selective. Interference of Fe^{3+}	the colour of upper layer		
ions can be eliminated by adding	the colour of upper luyer.		
some solid potassium fluoride			
crystals NaF. The colourless			
hexafluoroferrate(III) $[FeF_6]^{3-1}$			
complex does not interfere,			
because it is more stable that			
$[Fe(SCN)_6]^{5-}$. Concentration			
limit 1 : 100000.			
4. Potassium Nitrite KNO ₂ in	To 5-7 drops of $CoCl_2$	CoCl_2+7	$(KNO_2+2CH_3COOH) =$
presence of acetic acid	solution add solid crystals		$(O_2)_6]\downarrow + 2KCI + 2CH_3COOK + O_1$
oxidizes Co ²⁺ to Co ³⁺ forming	KNO_2 to saturation. Add	$100 + 11_2$ $Co^{2+} - 1$	$e \rightarrow Co^{3+}$ 1
with excess of KNO ₂ sediment	concentrated acetic acid		
$K_3[Co(NO_2)_6]$. Reaction is	(reagent - in lab fume	$N_{2+}^{3+} + 1$	$e \rightarrow N^{2+}$ 1
very sensitive, but not specific.	hood) by drops up to	$Co^{2+}+7N$	$MO_2^- + 3 K^+ + 2CH_3COOH =$
	formation of precipitate.	K ₃ [Co(N	$(O_2)_6]\downarrow +2CH_3COO + H_2O + NO.$

Content	Description	Observation	Explanation
1. Water ammonia $NH_3 \cdot H_2O$ in	Add by drops 2NH ₃ ·H ₂ O		The reaction is carried out in two
stoichiometrical quantity	solution to 3-4 drops of		stages:
precipitates basic nickel salt;	NiSO ₄ up to basic salt		the 1 st :
adding in excess – dissolved the	precipitate and then the		$2NiSO_4 + 2NH_3 \cdot H_2O = (NiOH)_2SO_4 \downarrow$
sediment. Test is <i>selective</i> , Cu^{2+}	excess of ammonia up to		$+ (NH_4)_2 SO_4;$
and Co^{2+} ions interfere. Reaction	the dissolving of		$2Ni^{2+}$ +2SO ₄ ²⁻ + 2NH ₃ ·H ₂ O =
is selective.	precipitate.		$(NiOH)_2SO_4 \downarrow +2NH_4^+;$
			the 2^d :
			$(NiOH)_2SO_4 \downarrow + (NH_4)_2SO_4 +$
			$2NH_3 \cdot H_2O = 2[Ni(NH_3)_6]SO_4 + 12H_2O;$
			$(NiOH)_2SO_4\downarrow + 2NH_4^+ + 10NH_3 \cdot H_2O =$
			$2[Ni(NH_3)_6]^{2+} + SO_4^{2+} + 12H_2O.$
2. Alkalis (NaOH, KOH) give	Add by drops NiSO ₄ to 1-		$NiSO_4 + 2NaOH = Ni(OH)_2 \downarrow +$
gelatinous precipitate Ni(OH) ₂ .	2 drops of NaOH.		$Na_2SO_4;$
Nickel(II) hydroxide dissolves in			$Ni^{2+} + 2OH^{-} = Ni(OH)_2\downarrow.$
mineral acids, excess of water			
ammonia, solutions of ammonia			
salts, but isn't soluble in excess of			
alkali. Reaction is selective.			
3. Dimethylglioxime (Chugaev's	Add 5-7 drops of water		$NiSO_4 + 2C_4H_8N_2O_2 + 2NH_3 \cdot H_2O =$
reagent) $C_4H_8N_2O_2$ in ammonia	ammonia solution		$[Ni(C_4H_7N_2O_2)_2]\downarrow + (NH_4)_2SO_4 + 2H_2O;$
medium (pH=9) forms precipitate	$NH_3 \cdot H_2O$ and 3-5 alcohol		$Ni^{2+}+2C_4H_8N_2O_2+2NH_3\cdot H_2O=$
of intra-complex salt with Ni ²⁺	solution of Chugaev's		$[Ni(C_4H_7N_2O_2)_2]\downarrow + 2NH_4^+ + 2H_2O.$

ions. It solves in acids, alkalis, but	reagent (or	
doesn't dissolve in diluted	Dimethylglioxime - in	
ammonia solution.	lab fume hood) to 2-4	
Reaction is very sensitive,	drops of NiSO ₄ solution.	
concentration limit $c=1:300000$.	Reaction may be realized	
Ions of Fe^{2+} , Fe^{3+} , Cu^{2+}	in the form of drop test	
<i>interference of Ni</i> ²⁺	on paper filter.	
determination.		

1.6. THE FOUTH GROUP OF CATIONS

1.6.1. Action of group reagent HCl

Content	Description	Observation	Explanation
The diluted HCl and soluble	Take 2 tubes. Add 2-	1 st tube	$AgNO_3 + HCl = AgCl \downarrow + HNO_3;$
chlorides deposits Ag^+ and Pb^{2+}	3 drops of AgNO ₃	colour of sediment	$Ag^+ + Cl^- = AgCl\downarrow;$
in form of white precipitates of	(reagent - in lab	od	$Pb(NO_3)_2 + 2HCl = PbCl_2\downarrow +$
AgCl and $PbCl_2$, not soluble in	fume hood) in the	2 ^ª tube	2HNO ₃ ;
diluted HNO ₃ and H_2SO_4 .	first tube; 2-3 drops	colour of sediment	$Pb^{2+} + 2Cl^{-} = PbCl_2\downarrow;$
	$Pb(NO_3)_2$ in the	3 ^d tube	$PbCl_2 \downarrow \xrightarrow{t^{\circ}C} Pb^{2+} + 2 Cl^{-}$
	second tube. Add the	5 tube	(dissolving in boiling water);
	same quantity of		$AgCl\downarrow + 2NH_3 \cdot H_2O = [Ag(NH_3)_2]Cl$
	diluted HCl. Formed		$+ 2H_2O$ (dissolving in concentrated
	precipitates of AgCl	4 th tube	ammonia);
	and PbCl ₂ divide into		$AgCl\downarrow + 2NH_3 \cdot H_2O = [Ag(NH_3)_2]^{2+}$
	4 tubes each. Study		$+ Cl^{-} + 2H_2O;$
	their solubility in hot		$AgCl\downarrow + (NH_4)_2CO_3 = [Ag(NH_3)_2]Cl$

H ₂ O, concentrated	5 th tube	$+2H_2O+CO_2\uparrow$ (dissolving in
$NH_3 \cdot H_2O$ (reagent -		concentrated ammonia carbonate);
in lab fume hood),		$ \operatorname{AgCl} + 2\operatorname{NH}_4^+ + \operatorname{CO}_3^{2^-} = [\operatorname{Ag}(\operatorname{NH}_3)_2]^+$
concentrated	41	+ Cl^{-} + $2H_2O + CO_2\uparrow$;
$(NH_4)_2CO_3$ (reagent -	6 th tube	$AgCl\downarrow +HCl = H[AgCl_2];$
in lab fume hood,		$AgCl\downarrow + H^+ + Cl^- = H^+ + [AgCl_2]^-;$
concentrated HCl		$PbCl_2\downarrow + 2HCl = H_2[PbCl_4];$
(reagent - in lab	ath is 1	$PbCl_2\downarrow +2H^++2Cl^-=2H^++[PbCl_4]^{2-}$.
fume hood). PbCl ₂ in	7 th tube	
contrast to AgCl		
dissolves well in hot		
DW. This technique	oth tube	
is used for the		
separation of AgCl		
and PbCl ₂		
precipitates.		

1.6.2. Characteristic reactions of Silver cations Ag⁺

Content	Description	Observation	Explanation
1. Water ammonia $NH_3 \cdot H_2O$ precipitates silver cation in form of Ag ₂ O, which is dissolved in excess of reactant. Reaction <i>is</i> <i>selective</i> .	Add by drops water ammonia solution to 1- 2 drops of AgNO ₃ solution till precipitate formation. Observe dissolving of turbidity at adding of excess of NH ₃ ·H ₂ O.		$ \begin{array}{l} AgNO_3 + NH_3 \cdot H_2O = AgOH \downarrow + NH_4NO_3; \\ Ag^+ + NH_3 \cdot H_2O = AgOH \downarrow + NH_4^+; \\ 2AgOH \downarrow = Ag_2O \downarrow + H_2O; \\ Ag_2O \downarrow + 4NH_3 \cdot H_2O = 2[Ag(NH_3)_2]OH + \\ 3H_2O; \\ Ag_2O \downarrow + 4NH_3 \cdot H_2O = 2[Ag(NH_3)_2]^+ + 2OH^- + \\ 3H_2O. \end{array} $

1.6.3. Characteristic reactions of Lead cations Pb²⁺

Content	Description	Observation	Explanation
1. Potassium Iodide KI isolates	Add 1-3 KI drops to 2		$Pb(NO_3)_2 + 2KI = PbI_2\downarrow +$
sediment PbI ₂ . The compound is	drops of $Pb(NO_3)_{2}$		2KNO ₃ ;
colourless when dissolved in hot	acidified by 1-2 drops of		$Pb^{2+} + 2I^{-} = PbI_2\downarrow.$
water, but crystallizes on cooling	CH ₃ COOH. Add 5-7 mL		
as thin but visibly larger bright	DW to precipitate and boil		
yellow flakes, that settle slowly	mixture in a water bath.		
through the liquid — a visual effect	After complete dissolving		
often described as "golden rain".	of precipitate, cool mixture		
This reaction is called sometimes	quickly at stream of tap		
"golden rain". Conditions of re-	water. For acceleration of		
crystallization: pH less than 7, fast	re-crystallization rub tube		
cooling. The test is selective.	sides of glass stick.		
2. Potassium Chromate	Add 1-2 drops of K ₂ CrO ₄		$Pb(NO_3)_2 + K_2CrO_4 =$
(Dichromate) K_2CrO_4 ($K_2Cr_2O_7$)	or $K_2Cr_2O_7$ solution to 1-2		$PbCrO_4 \downarrow +2KNO_3;$
gives yellow precipitate PbCrO ₄	drops of $Pb(NO_3)_2$		$Pb^{2+} + CrO_4^{2-} = PbCrO_4\downarrow.$
with Pb^{2+} ions. This sediment	solution.		
doesn't dissolve in acetic and			
hydrochloric acids, but solutes in			
alkali and nitrate acid. Conditions:			
pH less than 7 (in presence of			
acetic acid), absence of reducing			
agents, reduced Cr^{6+} to Cr^{3+} (for			
example, Fe^{2+} Reaction is			

32	

selective, in presence of Ag ⁺ brick-		
red sediment Ag ₂ CrO ₄ or dark-red		
$Ag_2Cr_2O_7$ is precipitated.		
3. Diluted Sulfate Acid H_2SO_4	Add 1-2 drops of diluted	$Pb(NO_3)_2 + H_2SO_4 = PbSO_4 \downarrow$
and soluble sulfates precipitate	H_2SO_4 to 2-3 drops of	+2HNO ₃ ;
Pb^{2+} cation in the form of	$Pb(NO_3)_2$.	$Pb^{2+} + SO_4^{2-} + PbSO_4.$
crystalline precipitate PbSO ₄ .		
Sediment doesn't dissolve in		
excess of diluted H_2SO_4 , but		
dissolves in alkalis, ammonia		
acetate, conc. H_2SO_4 and HCl.		
Conditions: pH<7, because PbSO ₄		
dissolves in alkalis, absence of		
$ Ca^{2+} and Sr^{2+} ions in examined$		
solution. Reaction is selective.		

1.7. REACTIONS OF THE ANIONS

The methods available for the detection of anions are not as systematic as those which have been described in the previous chapter 1 for cations. No really satisfactory scheme has yet been proposed which permits of the separation of the common anions into major groups, and the subsequent unequivocal separation of each group into its independent constituents. In must, however, be mentioned that it possible to separate the anions into major groups dependent upon the solubility of their silver salts, or their barium salts. These however, can only be regarded as useful in giving an indication of the limitations of the method ad for the confirmation of the results obtained by the simpler procedures to be described below.

Group	Ι	II	III
Anions	$SO_4^{2-}; SO_3^{2-};$	Cl ⁻ , Br ⁻ , I ⁻	$NO_3^-, NO_2^-,$
included	$CO_3^{2-}; PO_4^{3-};$		CH ₃ COO ⁻
	$SiO_3^{2-}; BO_2^{-}$ (or		
	$B_4O_7^{2-}$; MoO ₄ ²⁻		
Group reagent	BaCl ₂ in neutral	AgNO ₃ in the	No group reagent,
	or weakly	presence of	practically all salts
	alkaline	diluted HNO ₃ .	are soluble in water.
	medium.		
Properties	Barium salts are	Silver salts are	Barium and silver
of precipitates	insoluble in	insoluble in	salts dissolve in
	H ₂ O but soluble	H_2O and	water.
	in diluted acids	HNO ₃ .	
	(excepting		
	BaSO ₄).		

Classification of anions

1.7.1. The first group of anions

BaCl₂ as group reagent deposits the first group anions in the form of white precipitates BaSO₄, BaSO₃, BaCO₃, Ba₃(PO₄)₂, Ba(BO₂)₂ or BaB₄O₇, BaSiO₃, BaMoO₄. All precipitates are soluble in Hydrochloric HCl and Nitrate HNO₃ acids, excluding BaSO₄. Precipitates Ba₃(PO₄)₂, BaCO₃ and Ba(BO₂)₂ solve in acetic acid CH₃COOH. For example,

$$\begin{split} &Na_2SO_4 + BaCl_2 = BaSO_4 \downarrow + 2NaCl; \\ &Na_2SO_3 + BaCl_2 = BaSO_3 \downarrow + 2NaCl; \\ &2Na_3PO_4 + 3BaCl_2 = Ba_3(PO_4)_2 \downarrow + 6NaCl; \\ &Na_2B_4O_7 + 2BaCl_2 + H_2O = 2Ba(BO_2)_2 \downarrow + 2NaCl + 2HCl; \\ &Na_2CO_3 + BaCl_2 = BaCO_3 \downarrow + 2NaCl; \\ &Na_2SiO_3 + BaCl_2 = BaSiO_3 \downarrow + 2NaCl; \\ &(NH_4)_2MoO_4 + BaCl_2 = BaMoO_4 \downarrow + 2NH_4Cl. \end{split}$$

Content	Description	Observation	Explanation		
Characteristic reactions of Sulfate anions SO ₄ ²⁻					
1. BaCl ₂ (group reagent) in	Add 1-2 drops of BaCl ₂		$Na_2SO_4+BaCl_2=BaSO_4\downarrow+2NaCl;$		
neutral medium deposits SO_4^{2-}	solution to 2-3 drops of		$SO_4^{2-}+Ba^{2+}=BaSO_4\downarrow;$		
in form of precipitate BaSO ₄ ,	Na_2SO_4 . Divide the		$BaSO_4 \downarrow + HCl \rightarrow no react;$		
insoluble in acids and alkali.	sediment on two test		$BaSO_4\downarrow + NaOH \rightarrow no react.$		
	tubes. Add 10-15 HCl				
	drops to the first one, and				
	5-10 NaOH drops to the				
	second one.				
2. Soluble Lead salt (i.e.,	Add 1-2 drops of		$Na_2SO_4+Pb(NO_3)_2=PbSO_4\downarrow+$		
$Pb(NO_3)_2$) precipitates SO_4^{2-}	$Pb(NO_3)_2$ to 2-3 drops of		2NaNO ₃ ;		
anions in the form of PbSO ₄ ,	Na ₂ SO ₄ . Add by drops of		$SO_4^{2-} + Pb^{2+} = PbSO_4\downarrow;$		
insoluble in acids, but soluble	NaOH until obtained		$PbSO_4 \downarrow + 4NaOH (excess) =$		
in alkali (in contrast to BaSO ₄).	precipitate is dissolved		$Na_2[Pb(OH)_4] + Na_2SO_4;$		
	completely.		$PbSO_4 \downarrow +4OH^{-} = [Pb(OH)_4]^{2^{-}} + SO_4^{2^{-}}.$		
Characteristic reactions of Sulfite anions SO ₃ ²⁻					
1. BaCl ₂ (group reagent) in	Add 1-2 drops of BaCl ₂		$Na_2SO_3 + BaCl_2 = BaSO_3 \downarrow + 2NaCl;$		
neutral medium gives	solution to 2-3 drops of		$SO_3^{2-}+Ba^{2+}=BaSO_3\downarrow$		
precipitate BaSO ₃ , soluble in	Na_2SO_3 . Divide the		$ BaSO_3 \downarrow + 2HCl \rightarrow BaCl_2 + SO_2 \uparrow +$		
strong mineral acids (excluding	sediment on two test		$H_2O;$		
H_2SO_4). For example, the	tubes. Add 10-15 HCl		$ BaSO_3 \downarrow + 2H^+ \rightarrow Ba^{2+} + SO_2 \uparrow +$		
precipitate dissolves in dilute	drops to the first one, and		$H_2O.$		
HCl, when SO ₂ (has odour of	5-10 NaOH drops to the		$BaSO_3\downarrow + NaOH \rightarrow no react$		
burning matches) evolves.	second one.				

2. Dilute hydrochloric acid <i>HCl</i> or dilute sulfate acid <i>H2SO</i> ₄ : decomposition, more rapidly at warming, with the evolution of sulfur oxide(IV) SO_2 : The gas may be identified by its suffocating odour of burning sulfur, or by the green colouration, due to the formation of chromium(III) ions, produced when a filter paper, moistened with acidified potassium dichromate solution,	Place 8-10 drops of fresh-prepared solution of Sodium Sulfite Na ₂ SO ₃ upon test-tube, add 8-10 drops of HCl. Identify the gas using described method.	$\begin{split} & Na_2SO_3 + 2HCl = SO_2\uparrow + 2NaCl + \\ & H_2O; \\ & SO_3^{2^-} + 2H^+ = H_2SO_3; \\ & H_2SO_3 \rightarrow SO_2\uparrow + H_2O; \\ & 3SO_2 + K_2Cr_2O_7 + H_2SO_4 = Cr_2(SO_4)_3 \\ & + K_2SO_4 + H_2O; \\ & 3SO_2 + Cr_2O_7^{2^-} + 2H^+ = 2Cr^{3^+} + 3SO_4^{2^-} \\ & + H_2O. \end{split}$
is field over the mouth of the test-tube. 3. Lime water $Ca(OH)_2$. This test is carried out by adding dilute hydrochloric acid to the solid sulfite, and bubbling the evolved gas through lime water; a white precipitate of calcium sulfite CaSO ₃ is formed.	This test is best carried out in the apparatus shown in fig. The solid Na ₂ SO ₃ (near 0,05- 0,1 g) is placed in the test- tube or small distilling flask (10-25 mL capacity), dilute hydrochloric acid added, and the cork immediately replaced. The gas which is evolved (warming may be necessary) is passed into lime water (reagent - in lab fume hood) contained in the test-	Na ₂ SO ₃ + Ca(OH) ₂ = CaSO ₃ \downarrow + 2NaOH; SO ₃ ²⁻ + Ca ²⁺ = CaSO ₃ \downarrow

	tube; the production of a turbidity indicates the presence of a sulfite.				
4. Strong oxidation agents $(KMnO_4 \text{ or free } I_2 \text{ solution}).$	Add2dropsofPotassiumpermanganate	$2KMnO_4+5Na_2SO_3+8H_2SO_4=$ $2MnSO_4+5Na_2SO_4+K_2SO_4+8H_2O;$			
Potassium permanganate	upon test-tube, acidify by	$5SO_3^{2-} + 2MnO_4^{-} + 6H^+ = 2Mn^{2+} + 5SO_4^{2-} + 2UO_4^{2-}$			
sulfate acid before the testing.	H ₂ SO ₄ and add 5-6 drops	$55O_4 + 5H_2O;$			
reacts with Sulfite solution with	of fresh-prepared	$2Na_2SO_3 + I_2 = Na_2S_2O_6 + 2NaI;$			
discolouration, owing to	solution of Na ₂ SO ₃ .	$2SO_3^{2-} + I_2 = S_2O_6^{2-} + 2I^{-}.$			
reduction to Mn^{2+} ions.	To repeat the previous				
If to use free iodine solution,	test with iodine (iodine				
visual effect of reaction is to	water) solution.				
discolouration of solution					
owing to transformation of free					
I_2 to colourless iodide-ions.					
Characteristic reactions of Carbonate anions CO ₃ ²⁻					
--	--	--	--	--	--
1. <i>BaCl</i> ₂ (group reagent).	Add 2-3 drops of Na ₂ CO ₃	$Na_2CO_3 + BaCl_2 = BaCO_3 \downarrow + 2NaCl;$			
Obtained precipitate BaCO ₃ ,	to 2-3 drops of $BaCl_2$.	$\text{CO}_3^{2^-} + \text{Ba}^{2^+} = \text{BaCO}_3\downarrow;$			
soluble in HCl with gas	Dilute the obtained	$BaCO_3\downarrow + 2HCl = BaCl_2 + CO_2\uparrow +$			
bubbles of CO_2 (no odour)	sediment in HCl.	$H_2O;$			
isolation indicates the presence		$BaCO_3\downarrow + 2H^+ = Ba^{2+} + CO_2\uparrow + H_2O.$			
of CO_3^{2-} ions in solution.					
2. Mineral acids (<i>H</i> ₂ SO ₄ , <i>HCl</i> ,	Add 1-2 mL of HCl to	$Na_2CO_3 + 2HCl = CO_2\uparrow + 2NaCl +$			
HNO_3 etc.), and acetic acid	10-15 drops of Na_2CO_3 .	$H_2O;$			
<i>CH</i> ₃ <i>COOH</i> decompose		CO_3^{2-} + 2H ⁺ =CO ₂ ↑+ H ₂ O;			
carbonates with gassing of					
CO ₂ .					
	Characteristic reactions of	² Phosphate anions PO ₄ ³⁻			
1. BaCl ₂ (group reagent) in	Add 2-3 drops of	$2Na_2HPO_4 + 3BaCl_2 = Ba_3(PO_4)_2\downarrow +$			
neutral medium sediments	Na ₂ HPO ₄ to 2-3 drops of	4NaCl + 2HCl;			
PO_4^{3-} in form of precipitate	BaCl ₂ .	$2HPO_4^{2-} + 3Ba^{2+} = Ba_3(PO_4)_2 \downarrow + 2H^+;$			
$Ba_3(PO_4)_2$, soluble in strong	Dissolve the obtained	$Ba_3(PO_4)_2\downarrow + 6HCl = 3BaCl_2 +$			
acids (except H_2SO_4).	precipitate by adding 10-	$2H_{3}PO_{4};$			
	15 drops of HCl.	$Ba_3(PO_4)_2\downarrow + 6H^+ = 3Ba^{2+} + 2H_3PO_4.$			
2. Magnesia mixture (MgCl ₂	Add to test tube 2-3	$Na_2HPO_4 + MgCl_2 + NH_3 \cdot H_2O =$			
in presence of buffer mixture	drops of MgCl ₂ and	$MgNH_4PO_4\downarrow + 2NaCl + H_2O;$			
$NH_3 \cdot H_2O + NH_4Cl$) reacts with	NH ₄ Cl solutions, add to	$HPO_4^{2-} + Mg^{2+} + NH_3 \cdot H_2O =$			
phosphates forming white	prepared mixture 2-3	$MgNH_4PO_4\downarrow + H_2O.$			
crystalline precipitate	drops of $(NH_4)_2HPO_4$				

MgNH ₄ PO ₄ .	solution. Shuffle mixture and add solution of $NH_3 \cdot H_2O$ for alkali reaction of medium (use	
	litmus).	
3. Molvbdenum liquid (the	Add 5-8 drops of	$Na_2HPO_4+12(NH_4)_2MoO_4+23HNO_3=$
mixture of $(NH_4)_2MoO_4$ and	Molybdenum liquid to 2-	$(NH_4)_3H_4[P(Mo_2O_7)_6]\downarrow+$
HNO_3). As the result of	3 drops of Phosphate	$2NaNO_3+21NH_4NO_3+10H_2O;$
reaction the yellow crystalline	solution. Boil mixture.	$HPO_4^{2^-}+3NH_4^++12MoO_4^{2^-}+23H^+=$
precipitate		$=(NH_4)_3H_4[P(Mo_2O_7)_6]\downarrow +10H_2O.$
$(NH_4)_3H_4[P(Mo_2O_7)_6]$ is		
formed.		
С	haracteristic reactions of B	Sorate anions $B_4O_7^{2-}(BO_2^{-})$
1. <i>BaCl</i> ₂ (group reagent)	Add 5-6 drops of BaCl ₂	$Na_2B_4O_7 + 2 BaCl_2 + H_2O =$
precipitates Barium	to 10-15 drops of	$2Ba(BO_2)_2\downarrow + 2NaCl + 2HCl;$
metaborate $Ba(BO_2)_2$ from	Na ₂ B ₄ O ₇ (reagent - in lab	$B_4O_7^{2-} + 2Ba^{2+} + H_2O = 2Ba(BO_2)_2\downarrow$
concentrated solution of	fume hood).	$+ 2H^+;$
borates.	Dissolve the precipitate	$Ba(BO_2)_2 \downarrow + 2HCl + 2H_2O = BaCl_2 +$
	by adding hydrochloric	2H ₃ BO ₃ ;
	acid HCl by drops.	$Ba(BO_2)_2\downarrow + 2H^+ + 2H_2O = Ba^{2+} +$
		2H ₃ BO _{3.}
2. Silver nitrate AgNO ₃	Add 1-2 drops of Silver	$Na_2B_4O_7 + 2AgNO_3 + 3H_2O =$
precipitates Silver Metaborate	Nitrate solution to 10-15	$2AgBO_2\downarrow + 2H_3BO_3 + 2NaNO_3.$
from moderate concentrated	drops of $Na_2B_4O_7$	$B_4O_7^{2-} + 2Ag^+ + 3H_2O = 2AgBO_2\downarrow +$
solutions. In very diluted	(reagent - in lab fume	$2H_3BO_3$.

solutions at cool and in more concentrated ones at heating it forms brown precipitate of Silver Oxide $2AgBO_2+3H_2O=Ag_2O\downarrow+2H_3BO_3$.	hood). Observe slow formation of precipitate.		
3. Flame test. Bringing of volatile Boron compounds (Methyl Ether $(CH_3O)_3B$ or Ethyl Ether $(C_2H_5O)_3B$ or free Borate acid) in colourless flame, it is observed specific colouring of flame.	0,5-1 mL of Na ₂ B ₄ O ₇ (reagent - in lab fume hood) add in small evaporating dish and heat to dry residue on electric stove. Add 10-15 drops of concentrated Sulfate acid to dry residue (Carefully! reagent - in lab fume hood), 1-2 mL of ethyl alcohol (reagent - in lab fume hood) and set fire to surface of mixture in the plate.		$Na_{2}B_{4}O_{7} + H_{2}SO_{4} \text{ (conc.)} + 5H_{2}O =$ $4H_{3}BO_{3} + Na_{2}SO_{4};$ $B_{4}O_{7}^{2-} + 2H^{+} + 5H_{2}O = 4H_{3}BO_{3};$ $H_{3}BO_{3} + 3C_{2}H_{5}OH = B(OC_{2}H_{5})_{3} +$ $3H_{2}O;$ $2B(OC_{2}H_{5})_{3} + 18O_{2} \xrightarrow{t} B_{2}O_{3} +$ $12CO_{2} + 15H_{2}O.$
C	Characteristic reactions of I	Molybdate anions	MoO ₄ ²⁻
1. $BaCl_2$ (group reagent) precipitates Barium Molybdate BaMoO ₄ from concentrated solution of molybdates.	Add 1-2 drops of Silver Nitrate solution to $10-15$ drops of Na ₂ MoO ₄ (reagent - in lab fume hood). Weight a few		$\begin{array}{rll} Na_2MoO_4 &+ & BaCl_2 &= & BaMoO_4 \downarrow &+ \\ 2NaCl; & & \\ MoO_4^{2^2} + & Ba^{2^+} &= BaMoO_4 \downarrow. \end{array}$

	minutes Observe slow				
	formation of procipitate				
	A sidify 1 well of Codiana	$2N_{\rm T} M_{\rm T} O \rightarrow C_{\rm T} O \rightarrow 10 NULCON$			
2. Ammonium Iniocyanide	Acidity I mL of Sodium	$2 \text{Na}_2 \text{MOO}_4 + \text{SnCI}_2 + 10 \text{NH}_4 \text{SCN} + 10 \text{NH}_4 $			
(Rodanide) NH_4SCN forms	Molybdate Na_2MoO_4	$12\text{HCl} = 2\text{Na}_2[\text{MoO}(\text{SCN})_5] + \text{SnCl}_4$			
complex rodanides with	solution (reagent - in lab	$+ 10NH_4Cl + 6H_2O;$			
molybdates. Ions Fe^{3+}	fume hood) by 0,5 mL	$2 \text{ MoO}_4^{2^-} + \text{Sn}^{2^+} + 10\text{SCN}^- + 12\text{H}^+ =$			
interferes to this reaction. Fe^{3+}	of HCl, add 1-2 mL of	$2[MoO(SCN)_5]^{2-} + Sn^{4+} + 6H_2O.$			
ions are masked by reducing to	saturated solution of				
Fe ²⁺ added reducing agents, for	Tin(II) chloride SnCl ₂				
example, Sn^{2+} compounds. The	(reagent - in lab fume				
last reagents in the same time	hood) and add 5-6 drops				
reduce Mo^{6+} to Mo^{5+} .	of 10% NH ₄ SCN (in lab				
	fume hood).				
3. Hydrogen Peroxide <i>H</i> ₂ <i>O</i> ₂ in	Add 1 mL of	$Na_2MoO_4 + 2 NH_3 H_2O \leftrightarrow$			
presence of concentrated	concentrated Ammonia	$(NH_4)_2MoO_4 + 2NaOH;$			
ammonia $NH_3 \cdot H_2O$ gives	(in lab fume hood) to 1-2	$(NH_4)_2MOO_4 + H_2O_2 = (NH_4)_2[MOO_5]$			
Permolybdate red coloured	mL of Na ₂ MoO ₄ solution	+ H ₂ O			
solution. Colour is unstable,	(in lab fume hood). Add	$MoO_4^{2-} + H_2O_2 \leftrightarrow [MoO_5]^{2-} + H_2O$			
may be observed during 10-30	by drops 10% Hydrogen	$Mo^{6+} - 2e \rightarrow Mo^{8+}$ 1			
sec after Peroxide was added.	Peroxide H_2O_2 (in lab	$2O^{1-} + 2e \rightarrow 2O^{2-} \qquad 1$			
	fume hood).				
Characteristic reactions of Silicate anions SiO ₃ ²⁻					
1. <i>BaCl</i> ₂ (group reagent) gives	Add 5-6 drops of BaCl ₂	$Na_2SiO_3 + BaCl_2 = BaSiO_3 \downarrow + 2NaCl;$			
Barium Silicate BaSiO ₃	to 10-15 drops of	$SiO_3^{2^+} + Ba^{2^+} = BaSiO_3 \downarrow$.			
precipitate from concentrated	Na ₂ SiO ₃ (reagent - in lab	······································			

solution of soluble silicates.	fume hood). Wait a few	
	minutes.	
2. Diluted acids (<i>HCl</i> , H_2SO_4)	Add slowly by drops	$Na_2SiO_3 + 2HCl = H_2SiO_3\downarrow + 2NaCl;$
isolate voluminous gelatinous	concentrated HCl (in lab	$\operatorname{SiO}_3^{2-} + 2\mathrm{H}^+ = \mathrm{H}_2\mathrm{SiO}_3\downarrow.$
precipitate of silicate acids	fume hood). to 15-20	
from concentrated silicate	drops of Na ₂ SiO ₃ (in lab	
solutions. At certain conditions	fume hood).	
(high concentration of silicate,		
slowly adding of mineral acid)		
this precipitate coagulates		
completely and don't pour out		
from tube. If HCl was added		
quickly to diluted solution of		
silicate, silicate acids form		
colloid solution and don't		
precipitate for a long time.		
3. Silver nitrate AgNO ₃	Add slowly by drops	$Na_2SiO_3 + 2AgNO_3 = Ag_2SiO_3\downarrow +$
isolates yellow precipitate of	AgNO ₃ solution (in lab	$2NaNO_3;$
Silver Silicate Ag ₂ SiO ₃ from	fume hood) to 5-10 drops	$\operatorname{SiO}_3^{2^-} + 2\operatorname{Ag}^+ = \operatorname{Ag}_2\operatorname{SiO}_3\downarrow + 2\operatorname{NO}_3^$
concentrated silicate solutions.	of concentrated Na ₂ SiO ₃	
	(in lab fume hood).	
4. Ammonium Salts (for	Add 3-6 drops of	$Na_2SiO_3 + 2NH_4Cl + 2H_2O =$
example, <i>NH</i> ₄ <i>Cl</i>) isolate	concentrated NH ₄ Cl (in	$H_2SiO_3\downarrow + 2 NH_3 H_2O + 2NaCl;$
gelatinous precipitate of silicate	lab fume hood) solution	$SiO_3^{2-} + 2NH_4^{+} + 2H_2O = H_2SiO_3\downarrow +$
acids more completely, than	to 5-10 drops of Na ₂ SiO ₃	$2 \text{ NH}_3 \cdot \text{H}_2 \text{O}.$
mineral acids. Silicate acids	solution (in lab fume	

precipitate	more	quickly	at	hood), heat mixture in a	
heating.				water bath.	

1.7.2. The second group of anions

Content	Description	Observation	Explanation			
	Characteristic reactions of Chloride anions Cl					
1. Silver Nitrate AgNO ₃ in	Add 1-2 drops of AgNO ₃		$NaCl + AgNO_3 = AgCl\downarrow +$			
presence of HNO ₃ reacts with	solution (in lab fume		NaNO ₃ ;			
Cl ⁻ forming precipitate AgCl,	hood) to 2-3 drops of		$Cl^{-} + Ag^{+} = AgCl\downarrow;$			
which is dissolved in water	HNO ₃ and 1-2 drops of					
ammonia NH ₃ ·H ₂ O. Reaction is	NaCl solution.					
accompanied by the formation	Add concentrated		$AgCl\downarrow + 2NH_3 H_2O =$			
of soluble complex compound	$NH_3 \cdot H_2O$ (in lab fume		$[Ag(NH_3)_2]Cl + 2H_2O;$			
diamminosilver chloride	hood) to the precipitate		$AgCl\downarrow + 2NH_3 \cdot H_2O =$			
$[Ag(NH_3)_2]Cl.$	up to complete		$[Ag(NH_3)_2]^+ + Cl^- + 2H_2O;$			
	dissolving.					
	Add by drops solution of		$[Ag(NH_3)_2]Cl + 2HNO_3$			
	HNO ₃ up to precipitate		$=$ AgCl \downarrow + 2NH ₄ NO ₃ ;			
	formation (turbidity).		$[Ag(NH_3)_2]^+ + Cl^- + 2H^+ =$			
			$AgCl\downarrow + 2NH_4^+$.			
Characteristic reactions of Bromide anions Br						
1. Silver Nitrate $AgNO_3$ in	Add 1-2 drops of AgNO ₃		$KBr + AgNO_3 = AgBr\downarrow +$			
presence of HNO ₃ gives with	solution (in lab fume		KNO ₃ ;			
Br ⁻ precipitate AgBr, which is	hood) to 2-3 drops of		$Br^{-} + Ag^{+} = AgBr\downarrow.$			
slightly soluble in NH ₃ ·H ₂ O in	HNO ₃ and 2-3 drops of					

unlike AgCl.	KBr solution.		
	Add concentrated		
	$NH_3 \cdot H_2O$ (in lab fume		
	hood). Study solubility		
	of sediment in		
	concentrated ammonia.		
2. Chloric water Cl_2 (<i>the</i>	Add 5-6 drops of		$2KBr + Cl_2 \rightarrow Br_2 + 2KCl;$
solution of Cl_2 in H_2O). Cl_2	benzene C_6H_6 (in lab		$2Br^{-} + Cl_2 \rightarrow Br_2 + 2Cl^{-}$.
reacts with bromides displacing	fume hood) and 4-5		
free bromine Br_2 from its salts.	drops of chloric water (in		
The isolated Bromine Br ₂ is	lab fume hood) to 6-8		
better dissolved in benzene	drops of KBr. Shake the		
than in H ₂ O and benzene layer	mixture. Wait a few		
is colouring yellow.	seconds till separating of		
	water and benzene layers.		
	Characteristic reaction	ns of Iodide anions I ⁻	
1. Silver Nitrate AgNO ₃ in	Add 1-2 drops of AgNO ₃		$KI + AgNO_3 = AgI\downarrow + KNO_3;$
presence of HNO ₃ reacts with I	solution (in lab fume		$I + Ag^+ = AgI\downarrow.$
given precipitate AgI, which is	hood) to 2-3 drops of		
slightly soluble in NH ₃ ·H ₂ O in	HNO ₃ and KI solution.		
unlike AgCl.	Add concentrated		
	$NH_3 \cdot H_2O$ (in lab fume		
	hood). Study solubility		
	of sediment in		
	concentrated ammonia.		

2 Chloric water Cl. (it is the	Add 5_{-6} drops of	$2KI \pm CI_{2} \rightarrow I_{2} \pm 2KCI_{2}$
2. Children water Cl_2 (<i>u</i> is the	Add 5-0 drops of	$2\mathbf{K}\mathbf{I} + \mathbf{C}\mathbf{I}_2 \rightarrow \mathbf{I}_2 + 2\mathbf{K}\mathbf{C}\mathbf{I},$
solution of Cl_2 in H_2O). Cl_2	benzene C_6H_6 (in lab	$2I^{-} + CI_{2} \rightarrow I_{2} + 2CI^{-}$.
reacts with iodides displacing	fume hood) and 4-5	
free Iodine I_2 from its salts. The	drops of chloric water (in	
isolated I_2 is better dissolved in	lab fume hood) to 6-8	
benzene than in H_2O and	drops of KI. Shake the	
benzene layer is colouring pink	mixture. Wait a few	
or crimson. In excess of chloric	seconds till separating of	
water colour may vanish due to	water and benzene layers.	
oxidation of free I_2 to iodate(V)		
acid HIO ₃ :		
$I_2 + 5CI_2 + 6H_2O = 2HIO_3 + 10HCI$		
3. Copper salts (for example,	Mix 5-6 drops of KI and	$2\mathrm{CuSO}_4 + 4\mathrm{KI} = 2\mathrm{CuI} \downarrow + \mathrm{I}_2 + \mathrm{I}_2$
Copper Sulfate <i>CuSO</i> ₄) react	1-2 drops of CuSO ₄ . Add	$2K_2SO_4;$
with I given milk-white	2-4 drops Na ₂ S ₂ O ₃ until	$2\mathbf{C}\mathbf{u}^{2+} + 4\mathbf{I}^{-} = 2\mathbf{C}\mathbf{u}\mathbf{I}\downarrow + \mathbf{I}_{2}.$
precipitate CuI. Mixture has	discolouration of	$\operatorname{Cu}^{2+} + 1e \rightarrow \operatorname{Cu}^{1+} 2$
brown colour due to free Iodine	mixture. Note on the	$2I^{-}-2e \rightarrow I_{2}$ 1
I ₂ .	colour of CuI precipitate.	

1.7.3. The third group of anions

Content	Description	Observation	Explanation	
	Characteristic reactions	of Nitrite anions NO ₂		
1. Potassium Iodide (KI) is	Add 1 drop of fresh-		$2KNO_2 + 2KI + 4CH_3COC$	= HC
oxidized in acetous medium by	prepared starch, 2 drops		= I ₂ +2NO+4CH ₃ COOK+2H	H_2O
nitrite ions up to free I_2 .	of CH ₃ COOH, 1 drop of		$N^{3+} + 1_e \rightarrow N^{2+}$	2
Presence of free Iodine may be	KI, and 2-3 drops of		$2I - 2_e \rightarrow I_2$	1

determined by adding of starch.	NaNO ₂ or KNO ₂).		$2NO_2^- + 2I^- + 4CH_3COOH = I_2$
Starch is very sensitive and			$+ 2NO + 4CH_3COO^- + 2H_2O.$
specific indicator for Iodine.			
2. Potassium Permanganate	Add 1-2 drops of		$5KNO_2 + 2KMnO_4 + 3H_2SO_4 =$
($KMnO_4$). In acid medium	Potassium Permanganate		$5KNO_3 + 2MnSO_4 + K_2SO_4$
KMnO ₄ oxidizes the nitrite ions	KMnO ₄ , 1-2 drops of		+3H ₂ O
up to nitrate ions. The colour of	H_2SO_4 to 2-3 drops of		$N^{3+} - 2 e \rightarrow N^{5+} \qquad 5$
KMnO ₄ disappears and the	Sodium or Potassium		$Mn^{7+}+5 e \rightarrow Mn^{2+}$ 2
solution becomes colourless.	Nitrite (NaNO ₂ or		$5NO_2^- + 2MnO_4^- + 6 H^+ =$
	KNO ₂).		$5NO_3^- + 2Mn^{2+} + 3H_2O.$
3. Strong acids decompose	Add 2-3 drops of Sulfate		$2NaNO_2 + H_2SO_4 = Na_2SO_4 +$
Nitrites gives gaseous reddish-	acid H_2SO_4 to 2-3 drops		2HNO ₂ ;
brown NO ₂ (sometimes named	of Sodium or Potassium		$2NO_2^{-}+2H^+=2HNO_2;$
"foxtail").	Nitrite (NaNO ₂ or		$2HNO_2 = NO_2\uparrow + NO\uparrow + H_2O.$
	KNO ₂). Heat the mixture		
	in a water bath.		
	Characteristic reactions	of Nitrate anions NO ₃ ⁻	
1. Iron(II) Sulfate (FeSO ₄) (in	Add 4-5 drops of		$2NaN^{5+}O_3+6Fe^{2+}SO_4+4H_2SO_4=$
excess) in presence of	saturated solution FeSO ₄		$3Fe_2^{3+}(SO_4)_3+2N^{2+}O+Na_2SO_4+$
concentrated sulfate acid	(in lab fume hood) to 4-5		$4H_2O$
H_2SO_4 gives complex	drops of NaNO ₃ , shake		$2E_{2}^{2+}$ $2\frac{1}{2}$ $2E_{2}^{3+}$ 3
compound [Fe(NO)]SO ₄ . The	mixture. The		$\begin{array}{c c} 21 & c & -2e & \rightarrow 21 \\ \hline \\ - & & \end{array}$
reaction is called "brown	concentrated H_2SO_4 (in		$N^{5+} + 3\overline{e} \longrightarrow N^{2+}$
ring''.	lab fume hood) should		$NO + FeSO_4 = [Fe(NO)]SO_4$
Note that the presence of	be CAREFULLY (Be		

nitrite ions will interfere with	attentive! Dangerous)		\frown
this test.	slowly adding by drops at		()
	the test-tube wall (in		
	bending state). Do not		
	mix the solution! Slowly		Drops of conc.
	lift test-tube in vertical		"BROUN RING"
	state. A brown ring will		
	form at the junction of the		\sim conc. H ₂ SO ₄
	two layers, indicating the		
	presence of the nitrate		
	ion.		
(Characteristic reactions of	Acetate anions CH ₃ COO).
1. Strong acids. At HCl or	Add 3-4 drops of H ₂ SO ₄		$2CH_3COONa + H_2SO_4 =$
H_2SO_4 action to acetates free	to 5-6 drops of Sodium		$Na_2SO_4 + 2CH_3COOH\uparrow;$
acetic acid is isolated which	Acetate CH ₃ COONa, heat		$CH_3COO^- + H^+ = CH_3COOH\uparrow.$
can be identified by odour.	the mixture in a water		
	bath.		
2. Iron(III) Chloride (FeCl ₃)	Add 1-2 drops of FeCl ₃		FeCl ₃ + 3CH ₃ COONa =
with solution of Acetate gives	solution to 5-6 drops of		$Fe(CH_3COO)_3 + 3NaCl;$
reddish-brown solution of	CH ₃ COONa. Add 4-6 mL		$Fe(CH_3COO)_3 + 2H_2O =$
Iron(III) Acetate. When this	of DW and heat mixture		$Fe(OH)_2CH_3COO\downarrow$ +
solution was diluted and	in a water bath until		$2CH_{3}COOH.$
heated, the precipitate of basic	forming of gelatinous		
salt deposited in the result of	precipitate.		
hydrolysis intensification.			

1.8. PROTOCOL CATIONS MIXTURE OF ANALYSIS

Content of operation	Observation	Conclusion		
1. Pre-definition				
A. Colour of solution				
Previous hypothesis about presence or absence of coloured ions (Fe^{2+} , Fe^{3+} , Cu^{2+} , Co^{2+} , Ni^{2+} , Mn^{2+}) in examined mixture	Your result			
B. Odour				
<i>Previous hypothesis about presence or absence of</i> NH_4^+ <i>ions</i>	Your result			
C. pH of solution				
Previous hypothesis about presence or absence of ions of weak bases $(NH_4^+, Fe^{2+}, Fe^{3+}, Cu^{2+}, Co^{2+}, Ni^{2+}, Mn^{2+}, Al^{3+}, Zn^{2+}, Mg^{2+})$ in the case of pH less than 7.	Your result			
2. Fractional analysis				
1. Test of NH_4^+: To 6-10 drops of the examined mixture add				
10 drops of 20% NaOH (in lab fume hood) and the obtained				
solution heat in a water bath. If ammonia odour fixes or wet	Your result	Presence or absence NH_4^+ in examined		
litmus paper turns blue, this is $\mathbf{NH_4}^+$.		mixture		
2. Test of Na⁺ : To 3-4 drops of the examined mixture add 2				
drops of DW and 3-5 drops of Zinc-Uranyl-Acetate				
$Zn(UO_2)_3(CH_3COO)_8$ (in lab fume hood). Isolation of light-	Your result	Presence or absence Na ⁺ in examined mixture		
green precipitate means that Na^+ presents in a mixture.	2000 100000			

3. Test of Fe²⁺: To 4 drops of the examined mixture add 2		
drops CH ₃ COOH (pH~5) and 3 drops of $K_3[Fe(CN)_6]$.	Vour regult	
Isolation of dark-blue precipitate means that Fe^{2+} presents in	Iour result	Presence or absence Fe²⁺ in examined
a mixture.		mixture
4. Test of Fe³⁺: To 4-5 drops of the examined mixture add		
1-2 drops of HCl and 2-3 drops of $K_4[Fe(CN)_6]$. Isolation of	Your result	Presence or absence Fe³⁺ in examined
blue precipitate means that \mathbf{Fe}^{3+} presents in a mixture.		mixture
5. Test of Cu ²⁺ : To 12-15 drops of the examined mixture		
add 10-12 drops of concentrated NH ₃ ·H ₂ O (in lab fume		
hood). Wait 2-3 min. If was observed cornflower color of	Your result	$P_{\text{resource on absence }} C u^{2+}$ in examined
upper layer of tube content, it means that examined mixture		mixture
contains Cu ²⁺ cations.		
6. Test of Co ²⁺ : Select <i>Variant A</i> or <i>Variant B</i> depends on		
result, obtained of p. 4.		
Variant A. In presence of Fe ³⁺ (see p. 4): to 6-8 drops of		
the examined mixture add a few grains of solid NaF; mix		
content to its complete dissolving. Then add 2-3 drops of		
NH ₄ SCN solution, saturated in acetone (in lab fume hood)		
(if the solution is red, one should add NaF till the red colour	Your result	$P_{random ac}$ or absence Co^{2+} in examined
disappears). If the blue colour solution is observed - there is		rresence of ubsence Co in examined
Co^{24} .		mixture
Variant B. In absence of Fe ³⁺ (see p. 4): Add 6-8 drops of		
the examined mixture to 2-3 drops of NH ₄ SCN solution		
saturated in acetone (in lab fume hood). If observes blue		
colour of solution, then there is \mathbf{Co}^{2+} .		

7. Test of Mn²⁺ : To 5-6 drops of the examined mixture add		
10 drops of HNO ₃ and a few grains of NaBiO ₃ (in lab fume	Vour regult	
hood). Wait 1 min. If magenta colour is observed – there is	<i>Iour result</i>	Presence or absence Mn²⁺ in examined
Mn^{2+} .		mixture or observe trace quantities of this ion
hood). Wait 1 min. If magenta colour is observed – there is Mn^{2+} . 8. Test of Ni ²⁺ : Select <i>Variants A, or B, or C, or D, or E</i> according to results of pp. 3, 4, 5 and 6. Variant A. It is realized in absence Fe^{3+} and Cu^{2+} : To 6-8 drops of the examined mixture add 10-15 drops of concentrated NH ₃ ·H ₂ O (in lab fume hood), shuffle tube content and add 2-3 drops of Dimethylglioxime C ₄ H ₈ N ₂ O ₂ (Chugaev's reagent) (in lab fume hood); if crimson coloured sediment formed, then there is Ni ²⁺ . Variant B. It is realized in presence of Fe^{3+} : To 6-8 drops of the examined mixture add a few grains of NaF up to complete solving, and then 10-12 drops of concentrated NH ₃ ·H ₂ O (in lab fume hood) and 2-3 drops of Dimethylglioxime (in lab fume hood); if crimson precipitate observed, then there is Ni ²⁺ . Variant C. It is realized in presence of Cu^{2+} : To 6-8 drops of the examined mixture in centrifuge tube add 3-4 drops of diluted	Your result	Presence or absence Mn^{2+} in examined mixture or observe trace quantities of this ion Presence or absence Ni^{2+} in examined mixture or observe trace quantities of this ion
the examined mixture in centrifuge tube add 3-4 drops of diluted CH ₃ COOH and then 5-6 drops of KI solution and the precipitate is separated by centrifuge. Add to brown supernatant liquid by drops Na ₂ S ₂ O ₃ till the solution gets colourless. Then one should add 10-15 drops of concentrated NH ₃ ·H ₂ O (in lab fume hood) and 2-3 drops of Dimethylglioxime (in lab fume hood). If		
crimson coloured sediment observed, then there is Ni ⁻ .		

tic analysis	
	ntic analysis

Variant B. It is realized in presence of NH_4^+ , but absence of		
Cu²⁺: To 2-3 mL of the examined mixture (in centrifugal test-		
tube) add by drops 2-3 mL of saturated solution of Na_2CO_3 (in		
lab fume hood); the mixture is centifugated. The filtrate is		
transported in the crucible, evaporate liquid, and then calcinate		
in muffle during 1,5 hours at 700-800 °C. A few crystals of dry		
residue transport in test-tube, add 10 drops of DW and 1-2		
drops of Nessler's reactant (in lab fume hood). If no reddish		
precipitate, $\mathbf{NH_4}^+$ was removed completely. Residue is dissolved		
in 1-2 mL of DW. Then add 1-2 drops CH ₃ COOH to pH=6, 5-6		
drops of Na ₃ [Co(NO ₂) ₆] (in lab fume hood); if there is yellow-		
orange precipitate - there is \mathbf{K}^+ .		
	Vour regult	
Variant C. It is realized in absence of NH ₄ ⁺ , but presence of	1001 Tesuli	
Cu ²⁺ : To 1-2 mL of the examined mixture in centrifugal test-		Presence or absence K^+ in examined mixture
tube add 7-10 drops of solution of NaI (in lab fume hood), and		
the precipitate obtained is separated using centrifuge (don't		
forget test of fullness of precipitation!). The supernatant		
solution has to be decanted in test-tube. Then $Na_2S_2O_3$ is added		
till the solution gets colourless. Add 1-2 mL of saturated		
solution of Na_2CO_3 (in lab fume hood). The mixture is		
centifugated; supernatant liquid is tested for fullness of		
sedimentation. Then one should add 1-2 drops of CH ₃ COOH to		
pH = 6, to the obtained solution one adds 5-6 drops of		
No $[C_{\alpha}(NO)]$ (in the function hand), if there is wellow even as		
$[Na_3[CO(NO_2)_6]$ (in tab turne nood); if there is yellow-orange		

11. Separation and tests of cations Ca²⁺ and Sr²⁺: Select		
Variant A or B according to result of p. 10.		
Variant A – if no detected the presence of the 4 th group		
cations (Ag ⁺ and/or Pb ²⁺). To 5-10 drops of examined mixture		
add 5-6 drops of 20% H_2SO_4 (in lab fume hood) and 2-3 drops		
of acetone (or alcohol) (in lab fume hood). If there is		
precipitate, then there is Ca $^{2+}$ and/or Sr $^{2+}$. If the solution		
remains clean, then there is no Ca^{2+} and Sr^{2+} . Go to p. 12.		
Test of Ca²⁺. In centrifuge test tube add 1-2 mL of 20% H_2SO_4		
(in lab fume hood) and 5-10 drops of acetone (in lab fume		
hood) to 2-3 mL of the examined mixture. Content of test-tube		
should be mixed and heated in a water bath for 3-4 min. (to 70-		
80°C). The mixture is cooled down, and centrifuged, obtained	Your result	
the Precipitate 4 and the Filtrate 4 (store it in the separate	IOUI ICSUII	Present or absent Ca^{2+} and/or Sr^{2+} in
labeled tube for the next analysis). To the Precipitate 4 in		examined mixture
centrifuge test-tube add 2-3 mL of concentrated (NH ₄) ₂ SO ₄		
solution (in lab fume hood) and then heat it in the water bath 3-		
5 min. If the precipitate didn't dissolve completely, then it		
should be centrifuged again. Decant the Filtrate 5 in clean test-		
tube, add by drops $NH_3 \cdot H_2O$ to pH ~ 5-6 (by universal litmus		
indicator) and add 5-6 drops of $(NH_4)_2C_2O_4$. If there is white		
precipitate, then there is Ca^{2+} .		
Test of Sr²⁺ : Add in test-tube 1-2 mL of saturated $(NH_4)_2SO_4$		
solution (in lab fume hood) and heat 1-2 min. in a water bath,		
and then add 10-12 drops of the examined mixture. If there is		
white precipitate, it means that \mathbf{Sr}^{2+} presents in the mixture.		

Variant B. It is realized in presence of the 4 th group		
cations $(Ag^+ and/or Pb^{2+})$ like the Variant A , there is one		
difference only - examined mixture is replaced of the		
Filtrate 1 (was obtained in p. 11 and was stored in labeled		
tube).		
12. Separation and tests of cations Al ³⁺ and Zn ²⁺ : Select		
Variant A, B, or C depends on results of p. 7, 10 and 11.		
Variant A. If detected the absence of Mn^{2+} (see p. 7), absence the 4 th group cations (Ag ⁺ and Pb ²⁺) (see p. 10), absence cations Ca ²⁺ and Sr ²⁺ (see p. 11). In centrifuge test tube mix 2- 3 mL of examined mixture and 1-2 mL of 10% NaOH (in lab fume hood), heat in a water bath for 2-3 min. After cooling this mixture it should be centrifuged, and obtained The Precipitate 6 (don't use in the next operations) and The Filtrate 6. Decant Filtrate 6 in two test-tubes. Test of Al ³⁺ : To the Filtrate 6 in the first test tube add a few crystals of solid NH4Cl till getting the saturated solution. Heat a test tube in a water bath (for 2-3 min.). If white gelatinous precipitate Al(OH) ₃ was observed, it means that Al ³⁺ was contained in mixture. Test of Zn ²⁺ : To the Filtrate 6 in the second test tube add by drops HCl (to pH~5 by universal litmus paper) and 5-6 drops of K ₃ [Fe(CN) ₆]. If there is yellow-and-orange precipitate, then	Your result	Presence or absence Al ³⁺ and/or Zn ²⁺ in examined mixture
of $K_3[Fe(CN)_6]$. If there is yellow-and-orange precipitate, then there is Zn^{2+} .		

Variant B. If detected the presence of Mn ²⁺ (see p. 7), but	
absence the 4 th group cations (Ag ⁺ and Pb ²⁺) (see p. 10), and	
absence cations Ca^{2+} and Sr^{2+} (see p. 11). In centrifuge test	
tube mix 2-3 mL of examined mixture, 5-6 drops of 6% H_2O_2	
(in lab fume hood), and 1-2 mL of 10% NaOH (in lab fume	
hood), heat in a water bath for 2-3 min. Cool this mixture,	
centrifuge, and obtained The Precipitate 6 (don't use in the	
next operations) and The Filtrate 6. Decant Filtrate 6 in two	
test-tubes. Continue as Variant A – tests of Al^{3+} and Zn^{2+} .	
Variant C. It is realized in the presence of Mn^{2+} (see p. 7),	
presence of the 4^{th} group (Ag ⁺ and/or Pb ²⁺) (see p. 10), but	
absence of Ca^{2+} and/or Sr^{2+} . In centrifuge test tube mix 1-2	
mL of the Filtrate 1, 5-6 drops of 6% H_2O_2 (in lab fume	
hood), and 1-2 mL of 10% NaOH (in lab fume hood), heat in	
a water bath for 2-3 min. After cooling this mixture it should be	
centrifuged, and obtained The Precipitate 6 (keep away) and	
The Filtrate 6. Decant Filtrate 6 in two test-tubes. Continue as	
Variant A – tests of Al^{3+} and Zn^{2+} .	
Variant D. It is realized in the presence of Mn^{2+} (see p. 7),	
presence of the 4^{th} group (Ag ⁺ and/or Pb ²⁺) (see p. 10), and	
presence of Ca²⁺ and/or Sr²⁺. In centrifuge test tube mix 1-2	
mL of the Filtrate 4, 5-6 drops of 6% H_2O_2 (in lab fume	
hood), and 1-2 mL of 10% NaOH (in lab fume hood), heat in	
a water bath for 2-3 min. After cooling this mixture it should be	
centrifuged, and obtained The Precipitate 6 (keep away) and	
The Filtrate 6. Decant Filtrate 6 in two test-tubes. Continue as	
Variant A – tests of Al^{3+} and Zn^{2+} .	

Variant E. It is realized in the absence of Mn ²⁺ (see p. 7),	
presence of the 4^{th} group (Ag ⁺ and/or Pb ²⁺) (see p. 10), and	
absence of Ca^{2+} and/or Sr^{2+} . In centrifuge test tube mix 1-2	
mL of the Filtrate 1 and 1-2 mL of 10% NaOH (in lab fume	
hood), heat in a water bath for 2-3 min. After cooling this	
mixture it should be centrifuged, and obtained The Precipitate	
6 (don't use in the next operations) and The Filtrate 6. Decant	
Filtrate 6 in two test-tubes. Continue as Variant A – tests of	
Al^{3+} and Zn^{2+} .	
Variant F. It is realized in the absence of Mn^{2+} (see p. 7),	
absence of the 4^{th} group (Ag ⁺ and/or Pb ²⁺) (see p. 10), but	
presence of Ca²⁺ and/or Sr²⁺. In centrifuge test tube mix 1-2	
mL of the Filtrate 4 and 1-2 mL of 10% NaOH (in lab fume	
hood), heat in a water bath for 2-3 min. After cooling this	
mixture it should be centrifuged, and obtained The Precipitate	
6 (don't use in the next operations) and The Filtrate 6. Decant	
Filtrate 6 in two test-tubes. Continue as Variant A – tests of	
Al^{3+} and Zn^{2+} .	
Variant G. It is realized in the presence of Mn^{2+} (see p. 7),	
absence of the 4^{tn} group (Ag ⁺ and/or Pb ²⁺) (see p. 10), and	
presence of Ca²⁺ and/or Sr²⁺. In centrifuge test tube mix $1-2$	
mL of the Filtrate 4, 5-6 drops of 6% H_2O_2 (in lab fume	
hood), and 1-2 mL of 10% NaOH (in lab fume hood), heat in	
a water bath for 2-3 min. After cooling this mixture it should be	
centrifuged, and obtained The Precipitate 6 (don't use in the	
next operations) and The Filtrate 6. Decant Filtrate 6 in two	
test-tubes. Continue as Variant A – tests of Al^{3+} and Zn^{2+} .	

Variant G. It is realized in the absence of Mn^{2+} (see p. 7), presence of the 4 th group (Ag^+ and/or Pb^{2+}) (see p. 10), and presence of Ca ²⁺ and/or Sr ²⁺ . In centrifuge test tube mix 1-2 mL of the Filtrate 4, and 1-2 mL of 10% NaOH (in lab fume hood), heat in a water bath for 2-3 min. After cooling this mixture it should be centrifuged, and obtained The Precipitate 6 (don't use in the next operations) and The Filtrate 6. Decant Filtrate 6 in two test-tubes. Continue as Variant A – tests of Al ³⁺ and Zn ²⁺ .		
13. Separation and analysis of cation Mg^{2+} : Select Variant A or B depends on the result of p. 5. Variant A: It is realized in the presence of Cu^{2+} (see p. 5) in the examined mixture. In centrifuge test-tube add 8-10 drops of NaI (in lab fume hood) to 1-2 mL of the examined mixture The sediment obtained should be centrifuged: there is the precipitate (don't use in the next operations) and The filtrate 7. Decant the Filtrate 7 in a centrifuge test-tube, add by drops of Na ₂ S ₂ O ₃ till the solution gets colourless, then one should of the 5-6 drops of solution NH ₄ Cl, 5-6 drops of concentrated NH ₃ ·H ₂ O (in lab fume hood) and 15-20 drops of concentrated (NH ₄) ₂ CO ₃ (in lab fume hood). The mixture is heated in a water bath 2-3 min, cooled after that, and centrifuged. The precipitate (don't use in the next operations) and the Filtrate 8 are obtained. To the Filtrate 8 is decanted in a test-tube, add 5- 6 drops of Na ₂ HPO ₄ . Formation of white precipitate indicates the presence of Mg ²⁺ ions.	Your result	Presence or absence Mg ²⁺ in examined mixture

Variant B: It is realized in the absence of Cu²⁺ (see p. 5): to 1-			
2 mL of the examined mixture add 5-6 drops of concentrated			
$NH_3 \cdot H_2O$ (in lab fume hood) and 15-20 drops of concentrated			
$(NH_4)_2CO_3$ (in lab fume hood. The mixture is heated in a water			
bath 2-3 min, cooled after that, and centrifuged. The precipitate			
(don't use in the next operations) and the Filtrate 7 are			
obtained. To the Filtrate 7 is decanted in a test-tube, add 5-6			
drops of Na ₂ HPO ₄ . Formation of white precipitate indicates the			
presence of Mg^{2+} ions.			
CONCLUSION: Examined mixture contains cations (list of detected cations)			

1.9. QUALITATIVE ANALYSIS OF THE INORGANIC SUBSTANCES

1.9.1 A soluble salt

Unknown substance is considered as the salt soluble in water, and it consists of one cation and one anion. Tests of cations and anions are executed till the first positive reaction.

Qualitative analysis of unknown substance consists of series of operations:

A. Pre-definition;

B. Examination of cation component;

C. Examination of anion component.

A. Pre-definition

Describe *colour*:

Colourless – research object probably doesn't include coloured cations (Fe²⁺, Mn^{2+} , Fe³⁺, Cu²⁺, Co²⁺, Ni²⁺);

Fe²⁺ – light-green, light-grey;

 Mn^{2+} – slightly pink;

 Cu^{2+} – dark blue, blue, green-and-blue;

Co²⁺ – pink, violet;

 Ni^{2+} – light green;

Fe³⁺ – yellow-and-brown;

and *relative size* of particles (coarse-crystalline or powder).

Draw attention to *odour* of substance. Ammonium- and acetate-contained salts have a characteristic odour.

Dissolving of unknown salt

The tests for dissolving of the substance are started from the processing of some quantity of its grains by salt, which are taken for the analysis, are easily dissolved in DW or in diluted nitrate acid HNO₃.

The first testing object, proposed for analysis, is soluble in water or is the solution (in the case of high hygroscopic).

a) If the received sample is the solid substance, so 0,15-0,2 g of substance is dissolved in 6-8 mL of DW (if necessary the solution is heated in a water bath);

b) If the received sample is the solution, so it should be diluted: 3-4 mL of DW is added to 1 mL of solution.

A pH of received solution is examined using universal litmus paper. Acidic reaction of solution indicates that the sample can be the salt of weak base and strong acid (for example, $AlCl_3$, NH_4Cl , $Zn(NO_3)_2$). Alkaline reaction of the solution gives the salts formed of weak acid and strong base (for example, Na_2CO_3 , K_3PO_4 , CH_3COONa). The neutral reaction of the solution indicates that the examined substance is the salt of strong acid and strong base or weak acid and weak base (for example, KCl, Na_2SO_4 , $CaCl_2$, CH_3COONH_4).

B. Determination of cations

1. Test for the presence of the 4th *cations group*

Add the group reagent HCl to separate portion of the examined solution. If precipitate was observed so the cation belongs to the 4^{th} group – Ag^+ or Pb^{2+} .

Test of Ag^+ – to precipitate, obtained at HCl acting, add concentrated NH₃·H₂O (*in lab fume hood*). If precipitate dissolved completely, add nitrate acid HNO₃ by drops till turbidity;

Test of Pb^{2+} – with KI and subsequent re-crystallization of "gold rain".

2. Test for the presence of the 3^d and 2^d cations groups

Add the group reagent $(NH_4)_2HPO_4$ to separate portion of the solution. If precipitate was formed so the cation can belong to 3^d or 2^d group. In this case add some drops of concentrated $NH_3 \cdot H_2O$ (*in lab fume hood*) to the isolated precipitate. If we see that:

- The precipitate dissolved, so the cation belongs to the 3^d group;

- The precipitate is not dissolved so the cation belongs to the 2^d group. **Variant A.** The precipitate is dissolved - cation of the 3^d group; the reactions are performed in separate portions of the solution:

Test of Cu^{2+} – with NH₃·H₂O (excess) (*in lab fume hood*);

Test of Zn^{2+} – with K₃[Fe(CN)₆];

Test of Co^{2+} – with NH₄SCN in acetone (*in lab fume hood*);

Test of Ni^{2+} – with of Dimethylglioxime (Chugaev's reagent) C₄H₈N₂O₂ (*in lab fume hood*).

Variant B. If the precipitate is not dissolved – the 2^d cations group: Test of Fe^{2+} – with K₃[Fe(CN)₆];

Test of Fe^{3+} – with K₄[Fe(CN)₆] or NH₄SCN;

Test of Mn^{2+} – with NaBiO₃ (*in lab fume hood*) + HNO₃;

Test of Al^{3+} – with NaOH and crystalline NH₄Cl at heating;

Test of Ca^{2+} – with $(NH_4)_2C_2O_4$;

Test of Sr^{2+} – with gypsum water (saturated water solution of CaSO₄) (*in lab fume hood*);

Test of Mg^{2+} – with Na₂HPO₄ in presence of NH₃·H₂O + NH₄Cl.

3. Determination of the 1^{st} cations group

The sequence and conditions of reaction performance should be followed:

Test of NH_4^+ – with NaOH at heating;

Test of K^+ – with Na₃[Co(NO₂)₆] (*in lab fume hood*); or NaHC₄H₄O₆;

Test of Na^+ – with Zinc-Uranyl-Acetate $Zn(UO_2)_3(CH_3COO)_8$ (*in lab fume hood*).

C. Determination of anions

It is concluded that series of anions can be present in solution after the definition of cation, taking into account that unknown substance is soluble in water.

1. Determination of the 1st anions group

Add BaCl₂ group reagent to the separate portion of examined solution. If the precipitate is formed so the anion is of the first group. Remember, that anions $B_4O_7^{2-}$, SiO_3^{2-} , MoO_4^{2-} form precipitates only from concentrated solutions.

Test of SO_4^{2-} – HCl acts to precipitation. If the precipitate is not dissolved so SO_4^{2-} is present in examined substance.

Test of CO_3^{2^-} – as the result of HCl action to precipitate, the last is dissolved with bubbles gassing. To be sure of $CO_3^{2^-}$ to pass gas through acidified weak solution of KMnO₄ used test system

If permanganate solution keeps light-crimson, CO_3^{2-} is present.

Test of SO_3^{2-} – as the result of HCl action to precipitation, the last is dissolved with bubbles gassing. To be sure of SO_3^{2-} to pass gas through acidified weak solution of KMnO₄ used gas test system (see above). If permanganate solution decolourized, SO_3^{2-} is present.

*Test of PO*₄³⁻ – as the result of HCl action, the precipitate is dissolved without gas isolation. It can be supposed that there is PO_4^{3-} . Then perform the reaction of PO_4^{3-} determination with molybdenum liquid (*in lab fume hood*) at heating in the separate portion of examined solution.

Even if the result of $BaCl_2$ action the precipitate is not observed, examine the presence of $B_4O_7^{2-}$, SiO_3^{2-} , MoO_4^{2-} .

Test of $B_4 O_7^{2^2}$ – flame test with H₂SO₄ (conc.) (CAREFFULLY!) (*in lab fume hood*) and alcohol (*in lab fume hood*);

Test of $SiO_3^{2^-}$ – with concentrated NH₄Cl solution (*in lab fume hood*);

Test of MoO_4^{2-} – with 10% H₂O₂ (*in lab fume hood*) in presence of concentrated ammonia NH₃·H₂O (*in lab fume hood*).

If all tests are negative, so there is *no the first group* of anions and the search should be continued in the second group of anions.

2. Determination of the 2^d anions group

Add AgNO₃ group reagent (*in lab fume hood*) to the separate portion of examined solution in presence of HNO₃. If the precipitate of white (yellow-white) colour is formed so anion of the 2^d group is present.

Test of Cl⁻ – if the precipitate, obtained on the action of group reagent is dissolved in $NH_3 \cdot H_2O$ and as the result of HNO_3 adding the precipitate becomes turbid so there is Cl⁻ ion.

Test of Br and Γ – chloric water Cl₂ (*in lab fume hood*) and benzene C₆H₆ (*in lab fume hood*) add to the examined solution. If benzene layer becomes yellow, Br is present, crimson – I is present.

If no sediment as the result of group reagent action - *no the second group* of anions, the search should be continued in the third anion group.

3. Determination of the 3^d anions group

Perform the determination reactions in separate portions of examined solution:

Test of NO_3^- – with saturated FeSO₄ (*in lab fume hood*) + concentrated H₂SO₄ (*in lab fume hood*);

Test of NO_2^- – with KI + CH₃COOH;

Test of CH_3COO^- – with HCl at heating.

On the basis of obtained results the report on unknown substance analysis should be prepared and the formula of salt should be given (below).

PROTOCOL OF ANALYSIS SUBSTANCE # 1 (Soluble salt)

Stage of	Content of operation	Observation	Conclusion
analysis			
1.	Colour of solid salt, hygroscopicity		
Predefinition			
	Odour		
	Solubility in water		
	pH of water solution		
2.	Test for the presence of the 4th cations group: + <i>HCl</i>		
Determination	<i>Test of Ag</i> ⁺		
of cations	Test of Pb^{2+}		
	Test for the presence of the 3 ^d and 2 ^d cations groups (if		
	necessary): + $(NH_4)_2HPO_4$ + $NH_4Cl+NH_3\cdot H_2O$; +		
	$NH_3 \cdot H_2O$ (in excess)		
	Test of Cu^{2+}		
	Test of Zn^{2+}		
	Test of Co^{2+}		
	<i>Test of Ni</i> ²⁺		

	Text of Fe^{2+}	-	
3. Determination	Test of Cd	- - -	
of anions	Test of SO_4^{2-} Test of CO_3^{2-} Test of PO_4^{-3-} Test of $B_4O_7^{-2-}$	-	

Test of $SiO_3^{2^-}$	
Test of $MoO_4^{2^-}$	
Test of the 2 ^d anions group (if necessary):	
Test of Cl ⁻	
Test of Br or I	
Test of the 3 ^d group of anions (if necessary):	
Test of NO_3^-	
Test of NO_2^-	
Test of CH_3COO^2	
CONCLUSION: Formula of salt is	 l

1.9.2 Insoluble substances

Unknown substance may be insoluble in water.

In the first case, the previous step of analysis – to dissolve of unknown substance.

It may be free metals, oxides, basic salts, carbonates, phosphates. Given such substances will be considered to consist of one cation and one anion. Tests of cations and anions are executed till the first positive reaction. The most of such compounds are dissolving in acids or alkalis.

Test of solubility includes examining of the next solvents:

• Boiled DW (for example, $PbCl_2$ is more soluble in hot water, that in cool water);

• Diluted acetic acid CH_3COOH – dissolves the carbonates (with gassing of CO_2), oxides, hydroxides;

• Diluted nitrate acid HNO_3 – for dissolving of free heavy metals, oxides, basic salts, phosphates, and hydroxides;

• Concentrated nitrate acid HNO_3 – for dissolving of free heavy metals, oxides and hydroxides;

• "Aqua regia" – mixture of concentrated HCl and concentrated HNO₃ (in volume ratio 3:1) – for dissolving of the most insoluble compounds.

The next order of analysis is the same described above. **Remember, that prepared solution would be acidic, if we dissolved the unknown substance in weak or strong acid**. For tests of cations and anions it is necessary to regulate pH of examined solution to add corresponding agents (for example, diluted NaOH by drops till required medium). Of course, anion of acid, used for dissolving, will present in examined solution.

For tests of cations and anions it is necessary to regulate pH of examined solution to add corresponding agents. Remember, that components of analytes used for regulation of pH will be detected in examined solution.

The next order of analysis is the same one as described in p. 1.9.1.

PROTOCOL OF ANALYSIS SUBSTANCE # 2 (Insoluble)

Stage of	Content of operation	Observation	Conclusion
analysis			
1.	Colour of Substance		
Predefinition	Solubility in:		
	■ Boiled DW;		
	■ Diluted acetic acid CH ₃ COOH;		
	■ Diluted nitrate acid HNO ₃ ;		
	■ Concentrated nitrate acid HNO ₃ ;		
	■ "Aqua regia"		
	Observation of gassing		
	pH of obtained solution		
2.	Test for the presence of the 4 ^d cations group:		
Determination	Test of Ag^+		
of cations			
	Test for the presence of the 3^d and 2^d cations groups (if		
	necessary):		
	Test of Cu^{2+}		

3.	Test of the 1 st anions group:	
Determination	Test of SO_4^{2}	
of anions		
	Test of the 2 ^d anions group (if necessary):	
	Test of Cl	
	Test of the 3 ^d anions group (if necessary):	
	<i>Test of NO</i> ₃ ⁻	
CONCL	USION: Formula of substance is	

1. Write the equation of the chemical reaction of group reagent $(NH_4)_2HPO_4$ (in the presence of ammonia $NH_3 \cdot H_2O$) and soluble Strontium soluble salt (for example, $Sr(NO_3)_2$) in molecular from. Write the equation of the dissolving of obtained sediment in the Acetic acid CH₃COOH.

2. Propose the reagent for the separation of cations:

Solution:CationSediment:(chemical formula)Write the molecular equation of the precipitation reaction.

3. Note on the characteristic analytical test of Molybdate MoO_4^{2-} anions:

A	Action of Hydrogen peroxide	C	Action of Silver nitrate AgNO ₃	
	H_2O_2 and water ammonia		and the following dissolving of	
	NH ₃ ·H ₂ O		isolated sediment in water	
			ammonia NH ₃ ·H ₂ O	
B	Action of FeSO ₄ (saturated) and	D	Action of Potassium	
	H_2SO_4 (concentrated)		Permanganate KMnO ₄ in	
			presence of H_2SO_4 (diluted)	

4. Write reaction of FeCl_3 and yellow blood salt in molecular form and calculate the sum of coefficients in this reaction (*remember, that absence of coefficient before formula means figure 1*)

5. Note the correspondence of the anions and their group reagents:

Α	BaCl ₂ (at pH-7)	1	NO_3^-
B	AgNO ₃ (at pH=2)	2	CH ₃ COO ⁻
С	No group reagent	3	I
		4	CO_{3}^{2}
		5	Cl
		6	PO_4^{3-}

6. Note on the highest pure analyte grade of a reagent:

Α	Extra Pure grade	C	Guaranteed Reagent (GR)
B	Ultra pure grade	D	Technical grade

7. Minimum value of concentration limit of qualitative analytical reaction must be not less than

Α	1:1000
B	1:100000
С	1:10
D	1:1000000

8. NaOH may be the selective analytical reagent for such group of cations:

Α	Ions of alkali metals;
B	Ions of alkali-earth metals;
С	Ions of amphoteric metals;
D	Ions of d-elements.
9. Wh	at reactant may be used for separation of Ca^{2+} and Co^{2+} cations?
Α	NaOH;
B	$(NH_4)_2CO_3$ (concentrated);

C NH₄Cl (concentrated);

 $NH_3 \cdot H_2O$ (in excess). D

D $|NH_3 \cdot H_2O$ (in excess). **10. Put** in the sentence a missing word: *Qualitative reaction of* $SiO_3^{2^2}$ anion with NH₄Cl (saturated solution) is accompanied by visual effect of _____ sediment.

11. Determine correspondence of the cations and their groups according to phosphate classification:

1	1		
Α	1st	1	Ca ²⁺
B	2d (A)	2	Cu^{2+}
С	2d (B)	3	$\mathrm{NH_4}^+$
D	3d	4	Fe ²⁺
Ε	4th	5	Fe ³⁺
		6	Co^{2+}
		7	Mg^{2+}
		8	$\tilde{K^+}$
		9	Ag^+

CHAPTER 2. QUNTITATIVE ANALYSIS

2.1. Lab work - Precipitate gravimetry (mass analysis). Determination of Barium content in Hydrated Barium Chloride

REAGENTS

- 1. Sulfate acid H₂SO₄, 2N solution;
- 2. Hydrochloric acid HCl, 2N solution;
- 3. DW.

GLASSWARE

- 1. Watch glass, 80-90 mm diameter;
- 2. Two beakers, volume 230-300 mL;
- 3. Wash bottle;
- 4. Glass stick;
- 5. Glass funnel;
- 6. Porcelain crucible, 30-35 mm diameter;
- 7. Dessicator;

8. Filter paper (Whatman Blue Ribbon filter paper. Ashless standard filter paper for very fine precipitates (class 2d acc. to DIN 53 135);

- 9. Scissors;
- 10. Spatula;

11. Crucible tongs.

EQUIPMENT

- 1. Analytical balances;
- 2. Electric oven;
- 3. Lab dry box;
- 4. Muffle.

BACKGROUND

The historical method of choice for sulfate in waters and wastewaters is the gravimetry with barium:

 $Ba^{2+} + SO_4^{2-} = BaSO_4$ (precipitate)

1. Barium sulfate precipitates quantitatively by adding excess of ion Ba^{2+} under acidic conditions; low pH is required to avoid the coprecipitation of barium carbonates and/or phosphates.

2. The formation of high purity and non-filterable crystals implies to allow reaction to continue for at least 2 hours at temperature over 80-90 °C. This process (digestion of the precipitate) minimizes the formation of filterable BaSO₄ crystals from the initial colloidal particles.

3. Filter the precipitate by decantation on a filter paper and the resulting solid mass is washed and dried in an oven for 1 hour at 800 $^{\circ}$ C.

This calcination procedure (1 hour at 800-900 °C) should be performed on the porcelain crucible used for this operation.

4. Finally it is weighed at room temperature (keep it into a dessicator).

Determination of barium as $BaSO_4$. The precipitate is not carried out by slow addition of precipitant to the analyte containing solution. Such a procedure tends to produce conditions of super-saturation and a consequent rapid formation of small, relatively impure solid particles results. This effect cannot be entirely eliminated and is a source of error. The homogeneous precipitation techniques are able to avoid this erroneous effect; the precipitating reagent is generated slowly and homogeneously in presence of hydrochloric acid in boiling aqueous solution.

Procedure:

1. Determine mass of examined salt, using analytical balance.

Note on the $W_1 =$ _____ g (your result).

2. Weigh empty clean calcinated during 30 min. porcelain crucible (do not forget number of crucible!)

Note on the W $_{crucible} = ____g (your result);$ Number of crucible (or sign) _____.

3. Weighted mass of salt is transported to the 350-300 mL beaker, after then solid salt is dissolved by hot DW. Total volume of water in beaker must be not more 100-150 mL. Add 3 mL of 2N HCl for acidification of solution.

4. Prepare solution of precipitate agent in the other 100-150 mL beaker, added 4-5 mL of 2N H_2SO_4 and 25-50 mL of hot DW and stir up mixture.

5. Solutions of $BaCl_2$ and H_2SO_4 warm up practically to boiling state (to 80-90 °C). Very slowly (during at least 15 min.), by drops add solution of H_2SO_4 to solution of Barium salt, stirring well permanently by glass stick.

6. Let beaker with mixture settle for 24 hours at room temperature and protected from dust by paper list, **note on the surname of student**.

7. Test the fullness of precipitation adding 2-3 drops of $1N H_2SO_4$ into beaker with precipitate. If no turbidity, it's OK.

8. Decant transpired upper layer (mother liquid) from beaker on paper filter, contained in funnel. Wash precipitate in beaker of 2-3 portions of hot DW (30-50 mL each portion).
9. Transport the precipitate from beaker to filter completely. Wash it 2-3 times of DW on filter.

10. Test the filtrate of absence of Cl⁻ with AgNO₃. If your filtrate remains clear, dispose of the filtrate in the appropriate waste container.

8. Dry filter with precipitate at 110 °C during 0,5-1 hour.

9. Ash filter with precipitate by heating in gas burner.

10. Then calcinate the precipitate with the aid of porcelain crucible in muffle at 800 $^{\circ}$ C during 30-35 min.

11. Cool crucible to room temperature in a dessicator.

12. Weigh crucible with calcinated precipitate.

Note on the $W_2 =$ _____ g (your result).

13. Calculate content of barium in examined example of Barium chloride:

$$\mathbf{Z} = \mathbf{\%} \mathbf{Ba} = \frac{0.5884(W_2 - W_{\text{crucible}}) \times 100\%}{W_1} = -----=$$

Check the result of the analysis in the teacher.

Calculate absolute and relative errors of analysis:

Absolute error:

 $\Delta = |\%$ Ba experimental (your result) - %Ba true (given by teacher)| =

Relative error:

 $\boldsymbol{\sigma} = \frac{\Delta}{\% \operatorname{Ba true}} \times 100\% = ____.$

_____=_____

Remember, that relative error of gravimetry is not more 2%.

2.2. Laboratory work – Volumetric neutralization method. Determination of alkali concentration in solution

REAGENTS

1. Titrated solution of borax $Na_2B_4O_7$ (0,1000N);

- 2. Concentrated HCl solution (~38-40 w/w %);
- 3. Methyl orange indicator (solution);
- 4. DW.

GLASSWARE

1. 2-3 Erlenmeyer flasks, volume 250-300 mL;

- 2. 50 mL Burette fastened on a ring stand;
- 3. 20 mL Pipette;
- 4. 10 mL graduate cylinder;
- 5. Burette clamp;
- 6. Glass or plastic funnel (diameter 20-30 mm);
- 7. Wash bottle.

BACKGROUND

In the narrow sense in chemistry, neutralization means that equal amount of acids and bases in a solution react to produce salt and water. In the neutralization reaction between a strong acid and base in a solution, salt, which is produced, ionized almost perfectly so that hydrogen ions and hydroxide ions form water. Therefore, when acids and bases are equal, the hydrogen ion concentration ionizes to de-mineralized water (pH=7), which is neutral.

In chemical reactions, the various reacting substances always react in definite amounts. Taking the neutralization:

HCl + NaOH \rightarrow NaCl + H₂O

1 mole 1 mole

So, according to Law of equivalents 1 mole of HCl (36,5 g) will react exactly with 1 mole of NaOH (40,0 g).

Suppose we have two standard solutions: one of these (HCl) has a concentration of 1 M while the other (NaOH) also has a concentration of 1 M. Then, it follows that 1000 cm³ of that NaOH solution will react exactly with 1000 mL of the HCl solution, since these volumes contain **equimolar amounts** (the same number of moles) of the reactants. In fact, since definite amounts of acid and base are involved, we know that for the neutralization:

 $\begin{array}{l} \text{Acid + base} \rightarrow \text{salt + water;} \\ \text{Amount of acid = amount of base;} \\ \hline \text{Volume of acid (mL) \times Normality of acid (g - eq/L)} \\ \hline 1000 \\ \hline \text{Volume of base (mL) \times Normality of base (g - eq/L)} \end{array}$

1000

The above relationship is the basis for acid-base titrations. If we know one concentration accurately, as well as the two volumes, which neutralize each other exactly, we can easily calculate the unknown concentration.

Working solutions of neutralization method

Solutions of acids and alkalis are working solutions of method of neutralization. Solutions of H_2SO_4 , HNO_3 and NaOH, KOH are used more frequent. Dissolution of exact mass of the analytically pure substance (AR) in the definite volume of solution is the most exact method of preparation of titration working solutions. But it is practically impossible in the case of the indicated acids and alkalis, because they do not respond to requests to the initial matters and solutions and their exact initial concentration is unknown. Therefore working solutions are prepared with approximate concentration in the method of neutralization, and then their exact concentration is determined by initial solutions with the prepared concentration.

More frequent for determination of exact concentration of acids is used a **borax** $Na_2B_4O_7 \cdot 10H_2O$ or waterless salt $Na_2B_4O_7$ as a primary standard and oxalic acid $H_2C_2O_4 \cdot 2H_2O$ is applied for determination of exact concentration of alkalis.

Preparation of HCl working solution. Order of preparation of solution:

- Take 4,5-5,0 mL concentrated Hydrochloric acid by the measured cylinder or conical measuring test tube;

- To carry it to glass jar on 0,5 L;
- To rinse a cylinder by DW and outpour this water in glass jar;
- To dilute acid in glass approximately to 0,5 L by DW;
- To close glass by a cork, to mix a reagent carefully;
- To sign the last name of student and name of reagent.

DETERMINATION OF NORMALITY OF HCl WORKING SOLUTION (Secondary standard)

Procedure:

1. Before the beginning of work to wash carefully all glassware.

2. To wash burette by HCl solution.

3. To wash pipette by borax solution.

4. Using funnel to fill a burette by HCl solution and obtain absence of air bubbles in the tap of burette.

5. To take off funnel and show out the level of liquid in a burette to the zero mark.

6. To take aliquot of borax solution by a pipette in washed by distilled water Erlenmeyer flask.

7. To add 1-2 drops of methyl orange indicator to borax solution in a flask; solution will becomes yellow.

8. To put a flask with borax solution under a burette and a sheet of white paper under flask.

9. To doze HCl solution slowly with constantly mixing a liquid in a retort by smooth circular motions.

10. It is necessary to catch a moment when yellow colour of solution in a flask will change on a pink from one drop of HCl.

11. To mark volume of HCl solution, used for titration.

12. To repeat titration of a new portion of borax solution.

TO MEMORIZE: any titration analyses must be conducted minimum three times (it is called parallel determinations). Thus the data about the volume of titrant which was used for titration are used for computations if they differ no more than on 0,1 mL. If three results have divergence more than 0,1 mL it is needed to conduct the fourth titration and etc. (until the absence of divergence).

Results fix in the table 1.

Table 1. Determination of accurate concentration of Hydrochloric acid solution used primary standard – borax

	1 .	1		
_	Normality of	Volume of	Volume of	Normality of
ior	borax solution,	borax in	HCl used for	HCl,
trat	g-eq/L	titration, mL	titration, mL	g-eq/L
f ti		(equal to		
# 0		volume of		
T-		pipette)		
1.	0,1000	20,0	Your result	
2	0.1000	20.0	Vour result	0
2.	0,1000	20,0	1001 105011	
3.	0,1000	20,0	Your result	
1	1			

For calculation of normality of HCl solution applies average volume from two parallel titrations which differ no more than on 0,1 mL. The value of normality is calculated within **a fourth sign** after a comma. A result must be added to the table 1 (to calculate for the average value of the acid volume that was used for titration).

DETERMINATION OF ALKALI SOLUTION NORMALITY

REAGENTS

1. HCl solution with definite normal concentration (see table 1);

2. Methyl orange indicator.

GLASSWARE: alike in a previous section.

Procedure: it is similar to the previous section, but instead of borax solution must be taken alkali solution. Results write in the table 2.

Table 2. Determina	ation of equiv	alent concentration	OF NAOH
Normality of HCl	Volume of	Volume of NaOH	Normality of
solution,	HCl in	for determination,	NaOH,
g-eq/L	titration,	mL	g-eq/L
	mL	(equal to volume	
		of pipette)	
From previous	Your result	20,0	
table, last column	Your result	20,0	0,
] 0,	Your result	20,0	
	Table 2. Determina Normality of HCl solution, g-eq/L From previous table, last column 0,	Table 2. Determination of equivalence Normality of HCl solution, g-eq/L Volume of HCl in titration, mL From previous Your result table, last column Your result 0, Your result	Normality of HCl solution, g-eq/LVolume of HCl in titration, mLVolume of NaOH for determination, mL (equal to volume of pipette)From previousYour result20,0table, last column 0,Your result20,00,Your result20,0

Table ? Determination of equivalent concentrati

$$N(NaOH) = \frac{N(HCl) \cdot V(HCl \text{ for titration, average})}{N(HCl)} = -----=$$

V(NaOH)

0,_____g-eq/L.

Check the result of the analysis in the teacher.

Calculate absolute and relative errors of analysis:

Absolute error:

 Δ =N(NaOH) experimental (your result) - N(NaOH) true (given by teacher)|

= _____= ____= _____= _____. **Relative error:**

 $\frac{\Delta}{\text{N(NaOH true)}} \times 100\% = _$ σ=

Remember, that relative error of volumetry is not more 1%.

2.3. Lab work – Oxidation-reduction (RedOx) titration (RedOxmetry). Determination of Iron(II) content in Mohr's salt

REAGENTS

1. Primary standard of oxalate acid $H_2C_2O_4$ solution (0,0500 N);

2. Working solution Potassium Permanganate KMnO₄, approximately 0,05N;

3. 2N Sulfate acid H_2SO_4 solution;

4. DW.

GLASSWARE

- 1. 2-3 Erlenmeyer (titration conical) flasks, volume 250-300 mL;
- 2. 50 mL Burette fastened on a ring stand;
- 3. 20 mL Pipette;
- 4. Laboratory tilt measure (10 mL);
- 5. Burette clamp;
- 6. Lab electric oven;
- 7. Glass or plastic funnel (diameter20-30 mm);
- 8. Wash bottle.

DETERMINATION OF CONCENTRATION OF KMnO₄ WORKING SOLUTION

BACHGROUND

Reaction based on method:

 $5 \ H_2 C_2 O_4 \cdot 2 H_2 O + 2 \ KMn O_4 + 3 \ H_2 SO_4 = 10 \ CO_2 + 2 \ Mn SO_4 + K_2 SO_4 + 18 \ H_2 O;$

 $\begin{array}{c|c} Mn^{7+} + 5e \longrightarrow Mn^{2+} & 2 \text{ oxidation agent;} \\ 2C^{3+} - 2e & \rightarrow 2C^{4+} & 5 \text{ reducing agent.} \end{array}$

If precise concentration of oxalate acid is known and reacted volumes of permanganate and oxalate acid solutions, the precise concentration of KMnO₄ may be calculated according Law of Equivalents:

 $N(KMnO_4) = \frac{N(H_2C_2O_4) \cdot V(H_2C_2O_4)}{V(KMnO_4)}.$

Procedure

1. Clean pipette, burette and Erlenmeyer flasks, as described above.

2. Add 20 mL of oxalate acid solution from measuring pipette to 250-300 mL Erlenmeyer flask. Acidify this solution adding 20 mL of 2N H_2SO_4 using tilt measure. Add near 40 mL of DW. Heat prepared solution to 70-80 °C. **BE CAREFUL, NOT BOIL SOLUTION** (because oxalic acid decomposes at 100 °C)!

3. Using a burette, slowly add the KMnO₄ solution to hot solution in flack. KMnO₄ acts as its own indicator. That is, at the start of the titration the deep violet colour of MnO_4^- will be lost because it is changing to Mn^{2+} , but as soon as there is no more oxalate acid in the solution for the MnO_4^- to react with, the MnO_4^- will remain in the reaction solution. The slightly pink colour of the dilute solution MnO_4^- indicates the end of the reaction. This colour must safe during at least 1 min. This is known as the "end point" or equivalence point of the titration.

4. The procedure of titration repeats two times or more. The results of so-called parallel titrations must distinguish one from other not more than 0,1 mL.

Results of experiment present in the form of table 3.

Table 3. Determination of accurate concentration of Permanganate solution used primary standard – oxalate acid

				••••=•=
_	Normality of	Volume of	Volume of	Normality of
ior	oxalate acid	oxalate acid	KMnO ₄ used	KMnO ₄ ,
trat	$H_2C_2O_4$	$H_2C_2O_4$ solution	for titration,	g-eq/L
f til	solution,	in titration, mL	mL	
10 #	g-eq/L	(volume of		
11-		pipette)		
1.	0,0500	20,0	Your result	
2.	0,0500	20,0	Your result	0,
3.	0,0500	20,0	Your result	

Accurate concentration of permanganate solution is equal to:

 $N(KMnO_4) = \frac{N(H_2C_2O_4) \cdot V(H_2C_2O_4)}{V(KMnO_4)} = =$ $=\frac{0,0500 \text{ g}-\text{eq/L}\cdot 20 \text{ mL}}{\text{your result}\underline{\qquad} \text{mL}}=0, \underline{\qquad} g-\text{eq/L}.$

DETERMINATION OF IRON(II) CONCENTRATION IN THE MOHR'S SALT SOLUTION

Mohr's salt is a double salt - Iron(II)-Ammonium sulphate hexahydrate (Fe(NH₄)₂(SO₄)₂·6H₂O) included ions of Fe(II). The last one may reacts with potassium permanganate in acidic medium:

10 $Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O + 2 KMnO_4 + 8 H_2SO_4 = 5 Fe_2(SO_4)_3 + 2$ $MnSO_4 + 10 (NH_4)_2SO_4 + K_2SO_4 + 68 H_2O;$

 $\begin{array}{c} \operatorname{Mn}^{7+} + 5\overline{e} \to \operatorname{Mn}^{2+} & 2 \\ \operatorname{2Fe}^{2+} - 2\overline{e} \to 2\operatorname{Fe}^{3+} & 5 \end{array} \quad \text{reducing agent.} \end{array}$

This reaction isn't heating, because ion Fe (II) may oxidizes by air oxygen transformed to Fe (III) with rising of temperature.

Procedure

1. Add 20 mL of Mohr's salt solution (according to your variant of task) with unknown concentration used measuring pipette to 250-300 mL Erlenmeyer flask. Acidify this solution adding 20 mL of 2N H₂SO₄ using

graduated cylinder. Add near 40 mL of DW. BE CAREFUL, DON'T HEAT SOLUTION!

2. Using a burette, slowly add the KMnO₄ solution to hot solution in flack. The slightly pink colour of the dilute solution MnO_4^- (stable 1 min. at least) indicates the end of the reaction. This colour must safe during at least 1 min. The procedure of titration repeats two times or more as described above.

Results of experiment present in the form of table 4:

 Table 4. Determination of Iron(II) concentration in Mohr's salt solution

	Normality of	Volume of	Volume of	Equivalent
n	KMnO ₄	KMnO ₄ in	Mohr's salt	concentration
atic	solution,	titration, mL	solution for	(normality) of
itr	g-eq/L		determination,	Fe^{2+} in
of 1			mL (volume of	examined
#			pipette)	solution,
				g-eq/L
1.	From previous	Your result	20,0	
-	table. last	** *	20.0	0
2.	column	Your result	20,0	0,
3.	0,	Your result	20,0	

Calculate the concentration of Fe⁺² present in the Mohr's salt solution:

$$N(Fe^{2+}) = \frac{N(KMnO_4) \cdot V(KMnO_4 \text{ avarage})}{V(Mohr's \text{ salt solution})} = \frac{1}{20mL} = \frac{1}{1}$$

$$= 0, _ _ _ g-eq/L.$$

Check the result of the analysis in the teacher. Calculate absolute and relative errors of analysis: Absolute error: $\Delta = N(Fe^{2+} \text{ experimental (your result)} - N(Fe^{2+}) \text{ true (given by teacher)}| =$

Relative error:

 $\boldsymbol{\sigma} = \frac{\Delta}{\mathrm{N(Fe^{2+}true)}} \times 100\% = ____.$

_____=____=______=_____.

Remember, that relative error of volumetry is not more 1%.

2.4. Laboratory work – Iodometry. Determination of Copper(II) Content in Copper Vitriol

REAGENTS

- 1. 0,0500N Standard Thiosulfate Na₂S₂O₃;
- 2. 2N acetate acid CH₃COOH solution;
- 3. 10% Potassium Iodide KI solution;
- 4. Starch, fresh-prepared solution;
- 5. DW.

GLASSWARE

- 1. Watch glass, diameter 70-80 mm;
- 2. 100 mL Measuring flack;
- 2. 2-3 Erlenmeyer flasks, volume 250-300 mL;
- 3. 50 mL Burette fastened on a ring stand;
- 4. 20 mL Pipette;
- 5. Laboratory tilt measure (10 mL);
- 6. 5 mL cylinder;
- 7. Burette clamp;
- 8. Spatula;
- 9. Glass or plastic funnel (diameter20-30 mm);
- 10. Wash bottle.

EQUIPMENT

Analytical balance.

BACKGROUND

Iodometric determination of copper is based on the oxidation of iodides to iodine by copper (II) ions, which get reduced to Cu^+ . Reaction taking place in the solution is:

 $2Cu^{2+} + 4I^{-} \rightarrow 2CuI\downarrow + I_2$

and produced equivalent amount of iodine can be titrated with Thiosulfate solution:

 $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-.$

Finally, united process may be presented as:

 $2Cu^{2+} + 2S_2O_3^{2-} + 2I^- \rightarrow 2CuI_+ + S_4O_6^{2-}$, or

 $2CuSO_4 + 2Na_2S_2O_3 + 2KI \rightarrow 2CuI \downarrow + Na_2S_4O_6 + K_2SO_4 + Na_2SO_4.$

For the best results reaction should take place in the slightly acidic solution (pH near 4-5), adding a few drops of acetate acid. Solution should be free of other substances that can oxidize iodides to iodine (for example, Fe^{3+} or nitrites).

Procedure

1. Weight out accurately near 1,3 g of the analyzed salt.

Note on the $W_1 = 1, ___ g$.

2. Transport the probe in 100 mL measuring flack, dissolve in DW. Add 10-15 drops of 2N Acetate acid CH₃COOH. Make up volume of solution to 100 mL. Shake well.

3. Pipette 20,0 mL of this solution into a 250 mL titration conical flack, add 10 mL of 10% KI solution (using tilt measure);

4. Place the conic flack into dark place for 5-10 min;

5. Titrate swirling the flask the liberated iodine with standard 0,0500N sodium thiosulphate until a pale yellow colour of mixture;

6. Add 1 mL of fresh prepared starch solution – indicator;

7. Titrate swirling the flask, until blue colour disappears.

6. Repeat the titration. Results write in table 5.

Table 5. Determination of Copper(II) content in Copper Vitriol

				11
	Normality	Volume of	Volume of	Copper(II)
f on	of $Na_2S_2O_3$	$Na_2S_2O_3$ in	copper(II) solution	content in
≠ o] ati	solution,	titration, mL	for determination,	Copper Vitriol,
≠ titı	g-eq/L		mL (volume of	wt. %
			pipette)	
1.	0,0500	Your result	20,0	
2.	0,0500	Your result	20,0	
2		XZ I.	20.0	1
3.	0,0500	Your result	20,0	

Wt. % Cu = $\frac{N(Na_2S_2O_3) \cdot V(Na_2S_2O_3 \text{ for titration, average}) \cdot E(Cu) \cdot V(\text{flack}) \cdot 100\%}{V(\text{pipette}) \cdot 1000 \cdot W_1} =$

 $\frac{0,0500 \cdot V(Na_2S_2O_3 \text{ for titration, average}) \cdot 63,543 \cdot 100 \cdot 100}{20.0,1000}$

$$20,0.1000 \cdot W_1$$

 $=\frac{1,58858 \cdot V(Na_{2}S_{2}O_{3} \text{ for titration})}{W_{1}} = \frac{1,58858 \cdot __}{_}, __%.$

Check the result of the analysis in the teacher.

Calculate absolute and relative errors of analysis:

Absolute error:

 $\Delta = |\%$ Cu_{experimental} (your result) - %Cu_{true} (given by teacher)| =

Relative error:

 $\boldsymbol{\sigma} = \frac{\Delta}{\% \text{ Cu true}} \times 100\%. = \underline{\qquad}\%.$

= ______- _ _____ = _____.

Remember, that relative error of volumetry is not more 1%.

2.5. Laboratory work – Complexonometry. Determination of Calcium concentration in solution

REAGENTS

- 1. Primary standard -0,0500N Zinc Sulfate solution ZnSO₄;
- 2. Working solution Trilon B, approximately 0,05N;
- 3. Ammonia buffer solution (pH=10);
- 4. Eriochrome black T indicator, solid, 1% (w/w) in Sodium Chloride;
- 5. DW.

GLASSWARE

- 1. 2-3 Erlenmeyer flasks, volume 250-300 mL;
- 2. 50 mL Burette fastened on a ring stand;
- 3. 20 mL Pipette;
- 4. 10 mL cylinder;
- 5. Burette clamp;
- 6. Glass or plastic funnel (diameter20-30 mm);
- 7. Wash bottle.

BACKGROUND

The most important one in titrimetric analysis has a complexing of metals ions with halide- or pseudo-halide ions (SCN⁻, CN⁻), and with group of polyamine carboxylic acids (chelators).

The most commonly used regent for this method Trilon B may forms a very stable complex compound with a great number of cations (alkaliearth metals, copper, zinc, iron, manganese etc.) according to the reaction:

Different cations form stable complexes with Trilon B depending on their nature. For example, triple-charged cations form stable complexes when pH very low (1-3), while cations of alkaline earth metals – at pH 10.

Determination of titration endpoint is realized using special metallochromic indicators. They are a weak complexing agents made own

colour and formed colour complexing compounds with metal cations. Last ones have a weak stability. One of such indicators is an Eriochrome black T. Its own colour in solution - sky-blue, when colour of his complexes with metals – wine-red. In general, schemes of titration processes are:

Me^{n+}	+ Ind	\leftrightarrow	MeInd ⁿ⁺	
	Sky-blue solution		Wine-red solution	
MeInd ⁿ⁺	+ EDTA	\leftrightarrow	MeEDTA	+ Ind
Wine-red	Colourless		Colourless solution	Sky-blue solution
solution	solution			

DETERMINATION OF NORMALITY OF TRILON B WORKING SOLUTION (Secondary standard)

Procedure:

1. Before the beginning of work to wash carefully all glassware.

2. To wash burette by Trilon B solution.

3. To wash pipette by Zinc Sulfate ZnSO₄ solution.

4. Using funnel to fill a burette by Trilon B solution and to remove of air bubbles from the tap of burette.

5. To take off funnel and show out the level of liquid in a burette to the zero mark.

6. To take aliquot of Zinc Sulfate $ZnSO_4$ solution by a pipette in washed by DW Erlenmeyer flask.

7. To add 5 mL Ammonia buffer (use 10 mL cylinder), and a few grains of Eriochrome black T indicator to Zinc Sulfate $ZnSO_4$ solution in a flask; solution will becomes red-wine.

9. To titrate adding Trilon B solution slowly swirling the flask.

10. To fix volume of Trilon B used for titration, in the moment when colour of mixture in the flask changes from wine-red to blue after adding of one drop of titrant.

11. To repeat titration for a new portion of Zinc Sulfate $ZnSO_4$ solution.

Results of experiment present in the form of table 6:

Table 6. Determination of accurate concentration of Trilon Bsolution used primary standard – Zinc Sulfate ZnSO4

	L V			
_	Normality of	Volume of	Volume of	Normality of
ior	Zinc Sulfate	ZnSO ₄ in	Trilon B used	Trilon B,
trat	ZnSO ₄ ,	titration, mL	for titration,	g-eq/L
f til	g-eq/L	(equal to	mL	
10 #		volume of		
T		pipette)		
1.	0,	20,0	Your result	
2.	0,	20,0	Your result	
				0,
3.	0,	20,0	Your result	

 $N(Trilon B) = \frac{N(ZnSO_4) \cdot V(ZnSO_4)}{V(Trilon B \text{ for titration, average})} =$

$$= 0, ___g-eq/L.$$

DETERMINATION OF NORMALITY OF CALCIUM Ca²⁺ SOLUTION

REAGENTS

- 1. Trilon B solution with definite normal concentration (see table 6);
- 2. Ammonia buffer solution (pH=10);
- 3. Eriochrome black T indicator, solid, 1% (w/w) in Sodium Chloride;
- 4. DW.

GLASSWARE: alike in a previous section.

Procedure

It is similar to the previous section, but instead of Zinc Sulfate $ZnSO_4$ solution must be taken Calcium Ca²⁺ solution.

Results write in the table 7.

Solu				
	Normality of	Volume of	Volume of	Normality of
	Trilon B	Trilon B in	Calcium	Ca^{2+} of
ior	solution,	titration, mL	solution for	solution,
trat	g-eq/L		determination,	g-eq/L
f til			mL	
# 0			(equal to	
· · ·			volume of	
			pipette)	
1.	From previous	Your result	20,0	
2	table last column	Your result	20.0	0
2.		10ui resuu	20,0	
3.	0,	Your result	20,0	

Table 7. Determination of Calcium Ca²⁺ concentration in solution

= 0,_____ g-eq/L.

Check the result of the analysis in the teacher. Calculate absolute and relative errors of analysis: **Absolute error:**

$$\Delta = N(Ca^{2+})_{experimental}$$
 (your result) - $N(Ca^{2+})_{true}$ (given by teacher)| =

____-=____=______. **Relative error:**

 $\boldsymbol{\sigma} = \frac{\Delta}{N(Ca^{2+} \text{ true})} \times 100\%.= ___.$

= ____

Remember, that relative error of volumetry is not more 1%.

EXAMPLES OF CONTROL TESTS FOR QUANTITATIVE ANALYSIS

1. Calculate ionic strength I of solution contained 17,43 g K_2SO_4 (M=174,26 g/mol) per 1 L.

Α	0, 10 mol/L	B	0,20 mol/L	С	0,30 mol/L	D	0,50 mol/L

2. Calculate gravimetric factor f for the quantitative determination of Magnesium content in the form MgO (M=40,31 g/mol), if the weighted form of the sediment is Mg₂P₂O₇ (M=222,57 g/mol).

3. Note on the absorption indicator for RedOx volumetric method:

А	Eriochrome black T	С	Methyl orange
В	Starch	D	Phenolphthalein

4. Calculate ppt (∞) concentration of solution contains 0,01 g of solute per 50 g of solution.

5. Calculate pH of 10 N hydrochloride acid HCl (to consider as a strong acid, dissociated completely):

$ \mathbf{A} = 1$ $ \mathbf{B} = 10$ $ \mathbf{C} = 0$ $ \mathbf{D} = 1$
--

6. Put a missing word: A standard solution is a solution containing a precisely known ______ of an element or a substance i.e., a known ______ of solute is dissolved to make a specific volume.

7. Calculate mass of $FeSO_4$ ·7H₂O (MW=278,01 g/mol) for the Iron gravimetric determination on the form of Fe_2S_3 (MW=207,89 g/mol) according to the Tananaev's recommendation.

8. Sample of lime (m _{sample} = 0,8960 g) was dissolved in the nitrate acid and total volume of obtained solution was 200 mL (V _{measuring flack}). Aliquot of this solution (20 mL, V _{pipette}) was titrated triply by 0,0505N Trilon B and obtained the next results: 14,6; 13,6; 13,5 mL. Calculate Calcium content (w/w %) in this sample.

9. Figure below demonstrates the curve of titration of _____(weak or strong) _____ (acid or base) by ______ (weak or strong) ______ (acid or base) (put the missing words).

10. Refer to the titration curve below for questions:

- The titration curve shown above describes the:
- A. Titration of a strong base. C. Titration of a strong acid.
- **B**. Titration of a weak acid. **D**. Titration of a weak base.
- The equivalence point occurs at:
- **A.** 7,50 mL titrant added.
- **B.** 30,0 mL titrant added.
- The titrant is a
- A. Strong acid.
- **B.** Strong base.
- 11. Note on the figure of Fixanale :

C. Weak acid. **D.** Weak base.

12. What is aim of the next previous operation of titration (see picture)?

- 13. Calculate the pH of a 0,1 M Na₂CO₃ ($pK_1 = 6,52$; $pK_2 = 10,22$) and 0,1 M NaOH.
- 14. Determine the types of sediments in gravimetric analysis:

			<u> </u>
А	Crystalline	1	CoS
В	Amorphous	2	$SrSO_4$
	_	3	Fe(OH) ₂
		4	MgNH ₄ PO ₄

15. Determine the active concentrations (a = $\gamma \cdot c$) of 0,01 M Cl⁻ solution and 0,0001 M Al³⁺ solution in soil solution where ionic power of solution is equals to 0,0005 (See APPENDIX).

APPENDIX Ionic activity coefficients at different ionic strength of solution

Ionic strength I,	Activity coefficients γ for ions with charge Z_i					
mol/L	1+ or 1-	2+ or 2-	3+ or 3-	4+ or 4-		
0,0001	0,99	0,95	0,90	0,83		
0,0002	0,98	0,94	0,87	0,77		
0,0005	0,97	0,90	0,80	0,67		
0,001	0,96	0,86	0,73	0,56		
0,002	0,95	0,81	0,64	0,45		
0,005	0,92	0,72	0,51	0,30		
0,01	0,89	0,63	0,39	0,18		
0,02	0,87	0,57	0,28	0,12		
0,05	0,84	0,50	0,21	0,06		
0,1	0,81	0,44	0,16	0,04		

16. What is the solubility (M) of SrSO₄ in a solution that already contains 0.0600 M SO₄²⁻? The K_{sp} for SrSO₄ is $3,2 \cdot 10^{-7}$ (*Effect of common ion*).

17. Calculate equivalent weight of a $K_2Cr_2O_7$ (M=294,10 g/mol) for RedOx titration in acidic medium.

18. Calculate equivalent weight of a H_3PO_4 (M=97,99 g/mol) for neutralization reaction: $H_3PO_4 + NaOH = NaH_2PO_4 + H_2O$.

19. Calculate volume (in mL) of 50% Sulfate acid solution (density $d=1,40 \text{ g/cm}^3$) for preparation of 5 L 0,01 N solution (Molar weight (H₂SO₄) = 98 g/mol).

20. Calculate molarity of HCl solution of the Titre 0,01 g/mL.

21. Calculate pH of a 0,1N NH₄Cl solution (pK (NH₃·H₂O)=4,77)

22. Calculate pH of a 10N hydrochloric acid HCl (to consider as a strong acid, dissociated completely)

23. Calculate the pH of a 0,1 M H₃PO₄ (pK₁=1,96; pK₂=6,70; pK₃=12,44).

24. Calculate the pH of a 0,01 M NaClO ($pK_{acid} = 7,50$).

25. Calculate the pH of a 1 M Na₂CO₃ ($pK_1 = 6,52$; $pK_2 = 10,22$).

26. Calculate ppm concentration of solution contains 0,05 g of solute per 1000 g of solution.

27. Calculate solubility (in mol/L and g/L) of Ni(OH)₂ (SP=1, $6\cdot10^{-14}$, MW=92,71 g/mol) in solution of 0,1N KOH (*Be attentive: effect of the common ion into solubility*).

28. Calculate Copper (AW=63,548 g/mol) percent content in 1,0000 g malachite sample, if for iodometric titration 20 mL solution taken of 200 mL measuring flack was used 15,0 mL 0,0500N $Na_2S_2O_3$.

29. Note on the true result of titration (see a figure below)

30. Calculate the RedOx system potential E, included 0,1 M FeCl₃ and 0,01 M FeCl₂ (E° (Fe³⁺/Fe²⁺) = +0,771 V.

31. Calculate the RedOx system potential E, included 0,1 M KMnO₄ and 0,01 M MnSO₄ at pH=1 (E° (MnO₄/Mn²⁺) = +1,51 V.

32. Calculate E of the RedOx system, included zinc electrode, immersed into 1 M ZnSO₄ if $E^{\circ} (Zn^{2+}/Zn^{0}) = -0,764$ V.

33. Equivalent mass of Ce^{3+} cation (AW=140,12 g/mol) in reaction with Trilon B is, g-eq/g:

A 70.06 B 46.83 C 140.12 D 187.32		Α	70,06	B	46,83	С	140,12	D	187,32
---	--	---	-------	---	-------	---	--------	---	--------

34. Determine the order of steps of iodometric analysis.

Α	To add excess of KI to analysing solution
В	To add indicator starch
С	To titrate by thiosulphate solution to slightly yellow colour of solution
D	To stand flack with analysing solution and a certain reactant in dark place
	(near 15 min).
Ε	To titrate by thiosulphate solution to decolourizing of solution

35. Calculate theoretical percent content (w/w) of Magnesium (AW=24,31 g/mol) in epsomite $MgSO_4 \cdot 7H_2O$ (MW= 246,48 g/mol).

MY RATING TABLE

THEORETICAL	Points	EXPERIMENTAL	Points
QUIZZES		TASKS	
Module test 1.		1. Analysis of cations	
Qualitative analysis of		mixture.	
cations			
Module test 2.		2. Analysis of a	
Qualitative analysis of		soluble salt	
substances		3. Analysis of	
		insoluble substance	
Module test 3.		4. Gravimetric	
Heterogeneous		determination of	
equilibrium. Gravimetry		Barium content in	
		Hydrated Barium	
		Chloride	
Module test 4.		5.Volumetric	
Homogeneous		determination of alkali	
equilibrium. Volumetry.		solution normality	
		6. Permanganatometric	
		determination of	
		Iron(II) concentration	
		in the solution of	
		Mohr's salt	
		7. Iodometric	
		determination of	
		Copper(II) content in	
		Copper Vitriol	
		8. Complexonometric	
		determination of	
		normality of Calcium	
		Ca ² solution	