

COURSE SYLLABUS «INORGANIC AND ANALYTICAL CHEMISTRY»

Degree of higher education - Bachelor
Specialization 202 Plant protection and Quarantine
Educational programme «202 Plant protection and Quarantine»
Academic year 1,semester1_
Form of study full-time _(full-time)
Number of ECTS credits_4
Language of instruction English_(Ukrainian, English, German)
Ph. D. LavrikRuslan
ruslanlavrik@nubip.edu.ua
<u> </u>
https://elearn.nubip.edu.ua/course/view.php?id=1185

Lecturer of the course Contact information of the lecturer (e-mail) Course page on eLearn

COURSE DESCRIPTION

(up to 1000 printed characters)

Inorganic and AnalyticalChemistry is a fundamental discipline, obligatory for teaching students received the specialties in the field of Plant protection and Quarantine of Higher Educational Agrarian Universities of III-IV accreditation levels. This program was developed on the base of Educational Program of Subject "Inorganic and Analytical Chemistry" for specialty (field) "Plant protection and Quarantine".

In modern society Inorganic and Analytical Chemistry is powerful source of productive powers. In particular, intensification of scientific and technological progress in agricultural and food production requires a rational use of chemical science achievement, intensification of ecological monitoring of economic activity.

So, the main goal of presented discipline is the study of properties, preparation methods and use of chemical elements and their compounds, acquiring the skills for execution. The main objectives of Inorganic chemistry are:

- Study the bases for subjects as the part of fundamental training for specialties in the field of Agronomy:
- Creation of a scientific basis for study of professional-oriented and special subjects (Organic Chemistry, Biochemistry, Phytopathology, etc.);
- Assimilation of general ideas of chemical experiments using semi-micromethod.

In the result of study the student should:

To know: the classification of inorganic substances and ideas about genetic relationships between them; modern ideas on atomic structure and molecules; nature and characteristics of chemical bonds; general laws of chemical kinetics and chemical equilibrium; nature of solution formation and processes in solutions (electrolytic dissociation, hydrolysis); basic ideas of RedOx processes; nature, structure, chemical properties of coordination (complex) compounds: structure of electronic shells, chemical properties, methods of isolation, biogeochemical functions, using in human life and, in particular, in agricultural production, macro-, micronutrients, and toxic chemical elements and their compounds; chemical models of biological processes; to receive the knowledge about classical and modern methods of chemical analyses, formation of skills of chemical analysis using the modeling objects, which will be increased on the real objects of Plant protection and Quarantine fields (plants, fertilizers, water, pesticides, foods etc.):

Competencies of the educational programme:

Integrative competency (IC): Ability to solve complex specialized problems and practical problems of professional activity with protection and quarantine of plants and apply theoretical knowledge and methods of phytosanitary monitoring, review, analysis, expertise, which are characterized complexity and uncertainty of conditions_______ General competencies (GC):

1. Ability to abstract thinking, analysis and synthesis
2. Ability to apply knowledge in practical situations______ Professional (special) competencies (PC):_______ Program learning outcomes (PLO) of the educational programme: _______ 4_Have knowledge of the fundamental sections of higher mathematics, biophysics,

_____4_Have knowledge of the fundamental sections of higher mathematics, biophysics, chemistry (analytical, organic, inorganic, physical and colloid), botany andagrozoology to the extent necessary for understanding the processes of the specialty protection and plant quarantine

COURSE STRUCTURE

m •	Hours	Learning	T. 1		
Topic	(lecture/laboratory , practical/ self)	outcomes	Tasks	Assessment	
	, praetical seri)	1 semestr			
Module1					
Theme 1.Introduction		Define that one	Perform in-class	Assessing	
. General laws of	2/4/1	mole of a	labs and provide	content	
stoichiometry and		substance	data to complete	knowledge can	
types of chemical		contains the	lab reports.	be done by	
reactions.		same number	Tests of practical	written	
		of particles	and theoretical	questions	
		(N_A) as the	skills.	where the	
		atoms in 12	Complete	student has to	
		grams of	learning through	respond on.	
		carbon-12.	the independent	Partly that can	
		Explain the	study and wider	be done by	
		conversion	reading for	multiple	
		between	developing	choice but	
		number of		competencies	
		particles to	(includingelearn)	as constructing	
		number of		explanations	
		moles.	Solving	and engaging	
		Calculate	exercises.	in argument as	
		Molar Mass		well as key	
		using atomic		competencies	
		mass.		as	
		Use the		communicatio	
		formula:		n and chemical	
		$m = n \cdot M$ or		competence	
		$\max_{g} (g) =$		need open	
		number of		questions or	
		moles · molar		other ways of	
		mass (g mol ⁻¹).		assessing.	
		Explain that one mole of			
		gas has always			
		the same			
		volume at			
		temperature			
		and pressure			
		given			
		Use the			
		formula:			
		$V = n \cdot V_m$			
Theme 2. Atomic	2/4/1	Understand the	Perform in-class	Assessing	
structure of chemical		historic	labs and provide	content	
elements.		development	data to complete	knowledge can	
		of atomic	lab reports.	be done by	
		models, from	Tests of practical	written	
		Democritus to	and theoretical	questions	
		Bohr.	skills.	where the	
		Construct and	Complete	student has to	
		use graphic	learning through	respond on.	

		descriptions of	the independent	Partly that can
		an atom	study and wider	be done by
		consisting of	reading for	multiple
		U	developing	choice but
		protons,		
		electrons and	knowledge	competencies
		neutrons.	(includingelearn)	as constructing
		Recognize that		explanations
		the number of	Solving	and engaging
		protons defines	exercises.	in argument as
		the elements.		well as key
		Write the		competencies
		notations for		as
		the atomic (or		communicatio
		charge)		n and chemical
		number (Z) and		competence
		mass number		need open
		(A).		questions or
		Apply the		other ways of
		notation of an		_
		element: A _Z X		assessing.
		Recognize that		
		isotopes of the		
		same element		
		have different		
		masses.		
		Explain that		
		the relative		
		atomic mass of		
		an element		
		depends on the		
		relative		
		abundance of		
		its isotopes.		
Theme 3.	2/5/1	Arrange	Perform in-class	Assessing
The Periodic Law and	2/3/1	elements	labs and provide	content
			_	
		according to	data to complete	knowledge can
chemical elements.		their atomic	lab reports.	be done by
		number.	Tests of practical	written
		Understand	and theoretical	questions
		that electron	skills.	where the
		arrangement in	_	student has to
		an atom is	learning through	respond on.
		related to its	the independent	Partly that can
		position in the	study and wider	be done by
		periodic table	reading for	multiple
		and that	developing	choice but
		number of	knowledge	competencies
		electron shells	(includingelearn)	as constructing
		is determined		explanations
		by period	Solving	and engaging
		number or	exercises.	in argument as
		name of shells:	CACICIBOS.	well as key
				2
		K, L,M,N		competencies
		Draw Lewis		as
		representation		communicatio

		of atoms.		n and chemical
		Explain		competence
		reactivity of		need open
		elements as a		questions or
		consequence of		other ways of
		the electron		assessing.
		arrangement in		
		the outer shell;		
		Recall the		
		name and		
		location of the		
		following		
		groups in the		
		periodic table:		
		alkali metals,		
		alkaline-earth		
		metals,		
		halogens and		
		noble gases		
		Group		
		elements		
		according to		
		physical and		
		chemical		
		properties;		
		Connect		
		properties of		
		elements to		
		their position		
		in the periodic		
		table.		
Theme 4. Chemical	2/6/1	Use the octet	Perform in-class	Assessing
bonding and structure		rule to explain	labs and provide	content
of molecules.		the formation	data to complete	knowledge can
		of ions and	lab reports.	be done by
		covalent bond	Tests of practical	written
		formation.	and theoretical	questions
		Understand	skills.	where the
		that ionic bond		student has to
		is the	learning through	
		electrostatic	the independent	-
		attraction	study and wider	be done by
		between ions	reading for	multiple
		of opposite	developing	choice but
		charge; Ability	knowledge	competencies
		to describe and	(includingelearn)	as constructing
		illustrate ionic		explanations
		lattice using for	Solving	and engaging
		instance NaCl	exercises.	in argument as
		as a model;		well as key
		Being able to		competencies
		explain that		as
		ionic		communicatio
		compound		n and chemical
		formula shows		competence

		the ratio of		need open
		positive and		questions or
		negative ions;		other ways of
		Describe the		assessing.
		properties of		
		compounds		
		formed by		
		ionic bonds:		
		e.g. melting		
		point,		
		solubility, and		
		conductivity of		
		electricity.		
		Being able to		
		,		
		draw a schematic		
		representation		
		of a covalent		
		bond, showing		
		one or more		
		pairs of		
		electrons		
		between the		
		atoms. Give		
		examples of		
		molecules		
		formed		
		through		
		covalent		
		bond(s);		
Theme 5. Chemical	2/4/1	Describe a	Tests of practical	Assessing
kinetics and	- / ./ ±	chemical	and theoretical	content
equilibrium.		reaction in	skills.	knowledge can
equinorium.		terms of energy	Complete	be done by
		and mass	learning through	written
		conservation;	the independent	questions
		*	study and wider	where the
			•	student has to
		explain	reading for	
		activation	developing	respond on.
		energy as the	knowledge	Partly that can
		process of	(includingelearn)	be done by
		breaking and		multiple
		forming bonds;	Solving	choice but
		Explain the	exercises.	competencies
		difference		as constructing
		between an		explanations
		exothermic and		and engaging
		an endothermic		in argument as
		reaction.		well as key
		Discuss and		competencies
		being able to		as
		predict how the		communicatio
		factors		n and chemical
		Taciors		
		(concentration, temperature		competence need open

т		T		T
		and active		questions or
		surface) affect		other ways of
		the rate of		assessing.
		reaction.		
		Explain that a		
		catalyst lowers		
		the activation		
		energy of a		
		reaction.		
Theme 6. Solutions,	2/4/1	Define what a	Perform in-class	Assessing
their nature and		solution is.	labs and provide	content
properties.		Illustrate the	data to complete	knowledge can
		different	lab reports.	be done by
		properties	Tests of practical	written
		(conductivity)	and theoretical	questions
		between	skills.	where the
		molecular and	Complete	student has to
		ionic solutions.	learning through	respond on.
		Define	the independent	Partly that can
		concentration	study and wider	be done by
		(mass/volume)	reading for	multiple
			developing	choice but
		•	knowledge	competencies
			(includingelearn)	as constructing
			(meraamgeream)	explanations
			Solving	and engaging
			exercises.	in argument as
			CACICISCS.	well as key
				competencies
				as
				communicatio
				n and chemical
				competence need open
				-
				other ways of
Thomas # Elect 1 t	0/4/1	Doffin : 11	Doufour ! 1	assessing.
Theme 7. Electrolytes	2/4/1	Define acids,	Perform in-class	Assessing
and reactions in their		and bases and	labs and provide	content
solutions.		salts in terms	data to complete	knowledge can
		of Electrolytic	lab reports.	be done by
		dissociation.	Tests of practical	written
		Describe the	and theoretical	1
		meaning of	skills.	where the
		weak and	Complete	student has to
		strong	learning through	
		electrolytes.	the independent	•
		Write the	study and wider	be done by
		dissociation	reading for	multiple
		reactions in	developing	choice but
		molecular,	knowledge	competencies
		ionic and net-	(includingelearn)	as constructing
		ionic form.		explanations
			Solving	and engaging
			exercises.	in argument as
		<u> </u>		

				well as key competencies as communicatio n and chemical competence need open questions or other ways of
Theme 8. Hydrolysis of salts.	2/6/1	Explain the pH-scale as a measure of the concentration of H ⁺ ions in aqueous solutions. Link pH with the acidic, neutral or basic properties of aqueous solutions. Use acid/base indicators, universal indicator (liquid or paper) and pH meter to determine the pH of aqueous solutions. Explain the impact of dilution on the pH-values. Write the hydrolysis reactions in molecular, ionic and netionic form.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (includingelearn). Solving exercises.	Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as communicatio n and chemical competence need open questions or other ways of assessing.
Theme 9. Coordination compounds.	2/4/	Identify properties and characteristics of coordination compounds such as oxidation number, coordination number, and so on. Give proper naming	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for	Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple

and chemical formula of coordination compounds. Identify the structure of coordination compounds based on their coordination numbers. Determine isomers (both optical and structural) of coordination compounds. Theme 10. Redox reactions. Theme 10. Redox reactions as the loss and gain of electrons. Illustrate the redox reaction as a loss of electrons and reduction as a gain of electrons. Understand that reduction and oxidation occur simultaneously . Assign oxidation numbers. Identify the oxidation occur simultaneously . Assign oxidation numbers. Identify the oxidation oxidation numbers. Identify the oxidation and balance the complete reaction using				
half-equations. Compare the	2/4/1	formula of coordination compounds. Identify the structure of coordination compounds based on their coordination numbers. Determine isomers (both optical and structural) of coordination compounds. Define redox reactions as the loss and gain of electrons. Illustrate the redox reaction as the exchange of electrons at atomic level. Define oxidation as a loss of electrons. Understand that reduction as a gain of electrons. Understand that reduction and oxidation occur simultaneously . Assign oxidation numbers. Identify the oxidizing agent and the reducing agent. Write half-equations and balance the complete reaction using half-equations.	knowledge (includingelearn) . Solving exercises. Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (includingelearn) . Solving	competencies as constructing explanations and engaging in argument as well as key competencies as communicatio n and chemical competence need open questions or other ways of assessing. Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as communicatio n and chemical competence need open questions or other ways of

		metals (activity		
		series) Predict the reaction products using the activity series.		
Theme 11. Elements of VII-A subgroup.	2/4/1	Describe the halogens properties, chlorine, bromine and iodine in Group VII-A, as a collection of diatomic non-metals showing a trend in color and density and state their reaction with other halide ions. Identify trends in Groups, given information about the elements concerned.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (includingelearn). Solving exercises.	questions where the student has to respond on.
Theme 12. Elements of VI-A sub-group.	2/2/1	Describe the chalcogens properties, oxigen, sulfur and selenium in Group VI-A. Predict the properties of the elements in Group VI-A, given data where appropriate. Identify trends in Groups, given information about the elements concerned.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (includingelearn). Solving exercises.	where the student has to respond on.

Theme 13. Elements of V-A sub-group.	2/6/1	Describe the pnictogens properties, nitrogen, phosphorus, and arsenic in Group V-A. Predict the properties of the elements in Group V-A, given data where appropriate. Identify trends in Groups, given information about the elements concerned.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (includingelearn). Solving exercises.	communication and chemical competence need open questions or other ways of assessing. Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as communication and chemical competence need open questions or
				other ways of assessing.
Theme 14. General properties of metals.	1/2/1	Describe the general chemical properties of metals. Write reactions with dilute and concentrate hydrochloric, sulfuric and nitric acids.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (includingelearn). Solving exercises.	Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies

		T	<u> </u>	
Theme 15. Analytical chemistry as a science	1/2/1	To know and use safety rules in executing chemical experiments. Understand what glassware, apparatus and reagents use for each analytical experiment.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (includingelearn). Solving exercises.	as communicatio n and chemical competence need open questions or other ways of assessing. Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as
Theme 16. Qualitative analysis	1/6/1	Predict why cations of the Ist and anions of the 3d analytical groups have no group reagent. Perform characteristic reactions of cations and anions. Determin of	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing	need open questions or other ways of assessing. Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but
		elements or ions, which are part of investigated substance.	knowledge (includingelearn) . Solving exercises.	competencies as constructing explanations and engaging in argument as well as key

Theme 17. Quantitative analysis	1/10/1	Determine of the amount or percentage of one or more compounds of a sample. Know and use variety methods for quantitative analyses.	Perform in-class labs and provide data to complete lab reports. Tests of practical and theoretical skills. Complete learning through the independent study and wider reading for developing knowledge (includingelearn). Solving exercises.	competencies as communicatio n and chemical competence need open questions or other ways of assessing. Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competencies as constructing explanations and engaging in argument as well as key competencies as communication and chemical competence need open questions or other ways of
				_
				assessing.
Total for 1 semester				70
Exam				30
Total for course45/60/	15	_1	<u> </u>	100

ASSESSMENT POLICY

Policy regarding	Assignments submitted after the deadline without valid reasons	
deadlines and resits:	will be graded lower. Resitting of modules will be allowed with the	
	permission from the lecturer and in the presence of valid reasons	
	(e.g. medical reasons).	
Academic honesty	Cheating during tests and exams is strictly prohibited (including	
policy:	the use of mobile devices). Coursework and research papers must	
	contain correct citations for all sources used.	
Attendance policy:	Class attendance is mandatory. In case of objective reasons (such	
	as illness or international internships), individual learning may be	
	allowed (in online format by the approval of the dean of the	
	faculty).	

SCALE OF ASSESSMENT OF STUDENT KNOWLEDGE

Student rating,	National grade based on exam results	
points	exams	credits
90-100	excellent	passed
74-89	good	
60-73	satisfactory	
0-59	unsatisfactory	not passed

Technology and methodological requirements

- 1. Inorganic Chemistry. Manual. Voytenko L., Kopilevich V., Prokopchuk N. Kyiv: NAU Publish., 2019. 148 p.
- 2. Workbook on Inorganic Chemistry. Voytenko L., Prokopchuk N. Kyiv: NAU Publish., 2019. 85 p.

Required and recommended literature

Basic

- 1. Introduction in General, Organic and Biochemistry, 7th Edition, by Morris Hein, Leo R. Best, Scott Pattison and Susan Arena, Brooks/Cole Publishing Co., 2010, 872 pp.
- 2. Inorganic Chemistry, second edition, D. F. Shriver, P. W. Atkins, and C.H. Langford; W. H. Freeman and Co., New York, 2013, 913 pp.

Supplemental

1. Concepts and Models of Inorganic Chemistry, third edition, B. E. Douglas, D. H. McDaniel and J. J. Alexander; John Wiley & Sons, Inc., New York, 2014. 990 p.

Normative literature

- 1. ISO 6353-2:1983Reagents for chemical analysis -- Part 2: Specifications -- First series.
- 2. ISO 6058:1984, Water quality Determination of calcium content EDTA titrimetric method ISO 6058:1984, Water quality Determination of calcium content EDTA titrimetric method.
- 3. ISO 6059 1984 Water quality Determination of the sum of calcium and magnesium EDTA titrimetric method.

IT resources

- 1. https://elearn.nubip.edu.ua/course/view.php?id=1185
- 2. http://www.informika.ru/text/database/chemy/Enu/Data/Ch1-7.html
- 3. http://dbhs.wvusd.k12.ca.us/AcidBase/Kw.html
- 4. http://dbhs.wvusd.k12.ca.us/AcidBase/Hydrolysis.html
- 5. http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html
- 6. http://chemlab.pc.maricopa.edu periodic/triangletable.html
- 7. http://www.pc.chemie.uni-siegen.de/pci/versuche/english/kapite14. html

.