NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF **UKRAINE**

Department of physiology, biochemistry of plants and bioenergetics

"APPROVED" Dean of Faculty of Plant protection, Biotechnology and Ecology Kolomiets Y.V. 23 " May 2024 ЕКОЛ**2**

"APPROVED"

on the meeting of physiology, biochemistry of plants and bioenergetics department Protocol № 10 from «22» May 2024 Head of Department Prylutska S.V.

"REVIEWED" Guarantor EO 162 Biotechnology and bioenergetic

Hlowp

Kvasko O.Y. Guarantor EO

PROGRAM OF THE COURSE

INTRODUCTION TO THE PROFESSION

Branch of knowledge 16 "Chemical and bioengineering" Specialty 162 "Biotechnology and Bioengineering" Educational program "Biotechnologies and bioengineering" Faculty of Plant Protection, Biotechnology and Ecology Developers: Head of Department, Dr. of Sci., Prof. Prylutska S.V.

1. Description of the course

«INTRODUCTION TO THE PROFESSION»

Γ

Branch of knowledge, training direction, specialty, education level									
ducational degree Bachelor									
Specialization	162 «Biotechnology and bioenergetic»								
Educational program	«Biotechnology and bioenergetic»								
Cha	aracteristics of the course								
Туре	Comp	<u>oulsory</u>							
Total number of hours	120								
Number of credits ECTS	Number of credits ECTS4								
Number of content modules	Number of content modules2								
Form of control Exam									
Indicators of the academic discipline for full-time and part-time forms of									
higher education									
	full-time education	correspondence form of							
		training							
Course (year of study)	2	2							
Semester	3	4							
Lecture classes	30 hours	4 hours							
Practical, seminar classes	l, seminar classes 15 hours 6 hours								
Laboratory classes									
Self-study	75 hours 110 hours								
Individual assignments	-	-							
Number of weekly hours for	3 hours								
full-time higher education									

1. Purpose, tasks, competencies and program results of the educational discipline

The purpose of the discipline "Introduction to the profession" is the formation of theoretical foundations and principles aimed at determining the main biotechnological directions of using the properties of microorganisms, cells, tissues and plant organs to meet human needs. An important feature of this course is its focus on the practical use of the results of fundamental sciences in various fields of human economic activity.

The task of the discipline "Introduction to the profession" consists in: summarizing the basic concepts, biological and chemical foundations and technological principles of biotechnological productions with the involvement of theoretical and practical knowledge of basic sciences; assimilation of directions and tasks of modern biotechnology, awareness of the connection of biotechnology with other biological and agricultural sciences.

Competence acquisition:

integral competence (IC): - the ability to solve complex specialized tasks and practical problems characterized by complexity and uncertainty in biotechnology and bioengineering, or in the learning process involving the application of theories and methods of biotechnology and bioengineering.

general competencies (CG):

CG5 The ability to learn and master modern knowledge;

CG6 The ability to preserve and multiply moral, cultural, scientific values and achievements of society based on an understanding of the history and patterns of development of the subject area, its place in the general system of knowledge about nature and society and in the development of society, technology and technologies, to use various types and forms of motor activity for active recreation and leading a healthy lifestyle.

special (specialist) competences (SC):

SC3 The ability to analyze regulatory documentation necessary to ensure engineering activities in the field of biotechnology;

SC4 The ability to work with biological agents used in biotechnological processes (microorganisms, fungi, plants, animals, viruses, their individual components);

SC5 The ability to carry out experimental research on the improvement of biological agents, including causing changes in the structure of the hereditary apparatus and the functional activity of biological agents;

SC6 The ability to analyze raw materials, materials, semi-products, target products of biotechnological production

Program learning outcomes (LP):

LP12 using microbiological, chemical, physical, physico-chemical and biochemical methods, be able to carry out chemical control (determining the concentration of solutions of disinfectants, titration agents, concentration of nutrient medium components, etc.), technological control (concentrations of carbon sources and nitrogen in the culture liquid during the process; concentration of the target product); microbiological control (determination of microbiological purity of nutrient media after sterilization, microbiological purity of biological agent, etc.), microbiological purity and sterility of biotechnological products for various purposes;

LP13 to be able to carry out technical and economic substantiation of the production of biotechnological products for various purposes (determining the need for the target product and calculating the production capacity);

LP14 to be able to justify the choice of a biological agent, the composition of the nutrient medium and the method of cultivation, the necessary auxiliary works and the main stages of the technological process;

LP15 based on knowledge of the regularities of mechanical, hydromechanical, heat and mass exchange processes and the main design features, be able to choose the appropriate equipment in the process of designing the production of biotechnological products of various purposes to ensure their maximum efficiency;

LP16 based on the knowledge gained during practice at enterprises and institutions, to be able to perform product calculation and calculation of technological equipment.

	Number of hours												
	full-time education full-time education												
Names of content	week	tota	included			total		included					
modules and topics	S	1	lec	pr	lab	ind	in.	-	le	pr	lab	in	in.
				ac			w.		c	ac		d.	w.
Content module 1. Areas of application of biotechnology								•					
Topic 1.	1	8	2	1			5		1	,,,			6
Biotechnology as a	_			_			-		_				-
branch of science.													
Topic 2 Prospects of	2	8	2	1			5						7
industrial	-	Ŭ	-				Ũ						,
biotechnology													
Topic 3 Current state	3	8	2	1			5						6
of ecological	5		2	1			5						0
biotechnology													
Topic 4 Development	Δ	8	2	1			5						7
of alternative	-	0	2	1			5						,
bioenergy													
Topic 5 Eco-	5	8	2	1			5						6
hiotechnological	5	0	2	1			5						0
approaches to													
approaches to													
protection													
Tonia 6 Prognasta of	6	0	2	1			5						7
agriculturel	0	0	Z	1			3						/
biotochnology													
Topio 7 Pagio	7	0	2	1			5						6
TOPIC /. Dasic	/	0	Z	1			3						0
and his sthiss in													
histochnology													
Topic & Current state	0	0	2	1			5						7
of biomedical	8	8	Z	1			3						/
of biomedical													
technologies.	0	0		1			_		-				6
1 opic 9. Perspectives	9	8	2	1			2						6
of food blotechnology.	10	4	-	1			~						7
Topic 10. Food and	10	4	2	1			5						/
biological supplements	11	0	-	1			~						7
Topic II. Basic	11	8	2	1			5						/
principles of													
nanobiotechnologies.				11			~ ~	70	4				70
Total hours:	88		22		D'		55	73					12
	(Conten	t mod	ule 2.	B101	techno	ologica	al method					7
Topic I.	12	8	2	1			5		1				1
Methodological													
approaches of practical													
use of knowledge and													
skills in modern													
biotechnological													
industries.		1		1	1								

2. Program and structure of the academic discipline- a full-time full-time (correspondence) form of higher education

Topic 2. Modern	13	8	2	1		5				7
methods used in										
biotechnology.										
Topic 3.	14	8	2	1		5				7
Biotechnology of										
cultivation of isolated										
cells and tissues.										
Topic 4. Culture of	15	8	2	1		5				7
isolated protoplasts as										
the basis of cell										
engineering.										
Total hours:	32		8	4		20				28
The total number of	120)	30	15		75	102	2		100
hours:										

3. Topics of laboratory (practical, seminar) classes

N⁰	Topic title	Number of hours
1.	Fundamentals of molecular biology and its importance in	3
	biotechnology.	
2.	Transgenic organisms.	2
3.	Hybridoma technology.	2
4.	Microorganisms as classic objects of cell biotechnology.	2
5.	Animal cells as producers of biologically active substances.	2
6.	Plant cells as objects of biotechnology.	2
7.	Mushrooms as objects of biotechnology.	2
Total	15	

4. Topics of independent work

Mo	Topia titla	Number of
JNO	Topic title	hours
1	World classification of biotechnologies	10
2	Normative and legal basis for the application of biotechnology in	10
	Ukraine and the world	
3	Biotechnology of oil and oil products processing	10
4	Biotechnology of wastewater treatment	10
5	Waste disposal biotechnology	10
6	Biotechnological methods of plant protection	10
7	Biotechnology of growing energy crops	10
8	The labor market in Ukraine. The need for specialist biotechnologists	5

5. Means of diagnosis of learning results

- exam;

- module tests;

- preparation and defense of presentations;

- oral and written survey;

- abstracts.

6. Teaching methods:

- verbal method (lecture, seminar, discussion, interview);

- visual method (illustration method, demonstration method);

- work with educational and methodical literature (summarizing, summarizing, annotating, reviewing, writing an essay);

- video method (remote, multimedia);

- independent work (task performance);

- individual research work of students of higher education.

7. Evaluation methods:

-exam;

- modular testing;

- oral and written survey;

- presentations and speeches at scientific events;

- abstracts.

8. Distribution of points received by students of higher education. The assessment of the knowledge of a higher education student takes place on a 100-point scale and is translated into national assessments according to the table. 1 of the current "Regulations on examinations and assessments at NULES of Ukraine"

Student rating points	National grade based on exam results						
Student rating, points	Exams	Credits					
90-100	Excellent						
74-89	Good	Passed					
60-73	Satisfactory						
0-59	Unsatisfactory	Not passed					

In order to determine the rating of a student (listener) in the discipline \mathbf{R}_{dis} (up to 100 points), the rating from the exam \mathbf{R}_{ex} (up to 30 points) is added to the rating of a student's academic work \mathbf{R}_{aw} (up to 70 points): $\mathbf{R}_{dis} = \mathbf{R}_{aw} + \mathbf{R}_{ex}$

9. Educational and methodological support

- electronic educational course of the educational discipline https://elearn.nubip.edu.ua/course/view.php?id=3693

- abstracts of lectures and their presentations (in electronic form);

- textbooks, manuals, workshops;

- methodical materials on the study of the academic discipline for students of higher education full-time and part-time forms of higher education;

- the program of educational practice of the academic discipline.

10. Recommended sources of information

1. Біотехнологія: Підручник / В.Г. Герасименко, М.О. Герасименко, М.І. Цвіліховський та ін.; Під ред. В.Г. Герасименка. - К.: Фірма «ІНКОС», 2006. - 647 с.

2. Промислові біотехнології. Курс лекцій. Курта С.А. Прикарпатський національний університет імені Василя Стефаника. - Івано-Франківськ, 2018. - 197с.

3. Екологічна біотехнологія: Конспект лекцій з дисципліни для студ. спец. 6.070800 "Екологія та охорона навколишнього середовища" напряму 0708 "Екологія" ден. форми навч. / Уклад. Н.О.Бублієнко. – К.: НУХТ, 2005. – ... с. 46.

4. Сільськогосподарська біотехнологія : курс лекцій з дисципліни для здобувачів вищої освіти ступеня «бакалавр» спеціальності 162 «Біотехнологія та біоінженерія» денної форми навчання / О. Ю. Сметана. – Миколаїв : МНАУ, 2017. – 132 с.