

Lecturer of the discipline Lecturer's contact information (e-mail) URL of the e-learning course on the NULES elearning portal

SYLLABUS OF AN ACADEMIC DISCIPLINE «Experimental Radiobiology»

Academic degree - Master Specialty – 101 «Ecology» Academic programme « Ecology and Environmental Protection» Year of study - 1-st, semester 2-nd Form of study - full-time education Number of ECTS credits - 4 Language(s) of instruction - English

Ph.D., senior lecturer Volodymyr Illienko illienkovv@gmail.com

https://elearn.nubip.edu.ua/course/view.php?id=2682

ACADEMIC DISCIPLINE DESCRIPTION

The purpose of teaching the discipline "Experimental Radiobiology" is to study the sources of ionizing radiation in the environment, migration of radioactive substances in different ecosystems, features of physicochemical forms of radionuclides and assessment of environmental impact and risks associated with radioactive contamination. Formation of abilities and skills of carrying out radioecological researches with use of radioactive isotopes, methods of radiochemical separation and modern methods of measurement.

The task is to provide opportunities to use the acquired knowledge and skills to describe, analyze and predict the accumulation of radioactive isotopes and their migration in the environment under conditions of limited information, as well as to perform a master's thesis.

The student should know the characteristics of ionizing radiation and the physico-chemical basis of the interaction of ionizing radiation with substances, methods of radiometry and spectrometry of The student should know the characteristics of ionizing radiation and the physico-chemical basis of the interaction of ionizing radiation with substances, methods of radiometry and spectrometry of ionizing radiation, physical and chemical properties of natural and artificial radioactive isotopes of chemical elements, the basis of statistical processing of experimental data.

Acquisition of competencies:

integral competence (IC): the ability to solve complex tasks and problems in the field of ecology, environmental protection and sustainable use of natural resources in the course of professional activity or in the process of study that involves research and/or innovation, and is characterised by complexity and uncertainty of conditions and requirements;

general competences (GC):

2. Ability to make informed decisions.

6. Ability to search, process and analyse information from various sources. professional

(special) competences (PC)::

12. Ability to apply new approaches to the analysis and forecasting of complex phenomena, critical thinking of problems in professional activities.

15. Ability to organise work related to environmental assessment, environmental protection and optimisation of environmental management in conditions of incomplete information and conflicting requirements.

Expected Learning Outcomes (ELO):

4. To know the legal and ethical standards for assessing professional activities, developing and implementing socially significant environmental projects in the face of conflicting requirements.

7. To be able to communicate in a foreign language in scientific, industrial, social and public spheres of activity.

ACADEMIC DISCIPLINE STRUCTURE				
Торіс	Hours (lectures/ practical works)	Results of study	Task	Evaluation
		Radionuclides in the environme		I
Topic 1. Consequences of the largest radiation accidents and prospects for the use of contaminated areas for research	4/-	Know foliar uptake of radionuclides into plants. Receipt of soluble radionuclides in plants from the air. Influence of physico- chemical properties of radionuclides on their transition from soil to plants through the roots. Influence of biological characteristics of plants, phases of their development and physiological state on the transition of radionuclides from the soil to plants. Understand features of migration of radionuclides in forest biogeocoenoses. Ways of radionuclides uptake into the body of animals. Quantitative indices of accumulation of radionuclides in the animal body: concentration factor (CF), absorption coefficient (C _a), biological elimination half-life of radionuclides (T _{biol}). The main ways of radionuclides withdrawal		10 point
Topic 2. Biological effects of ionizing radiation Assessing impacts of ionizing radiation to man and the environment (principles, mechanisms, biomarkers)	4/-	from the body of animals. Know interaction of microorganisms with elements of nuclear fuel. Extremely radio-resistant microorganisms. Understand mechanisms of various interactions of bacteria and uranium: bioreduction,		10

ACADEMIC DISCIPLINE STRUCTURE

		biosorption and bioaccumulation.		
Topic 3. Speciation of radionuclides in the environment	4/2	 Know metabolism of strontium in natural contaminated ecosystems. Biogeochemistry of cesium and its interaction with soil microorganisms. Understand accumulation of ¹³⁷Cs by bacteria and their effect on the biological availability of radionuclides. 	Delivery of practical work №1.	10
Total module 1		availability of fadiofidences.		30
N	Iodule 2. E	xperiment in radioecological res	earch	
Topic 4. Field sampling and statistics in radioecology	2/3	Soil sampling methods for radiation control.Requirements for sampling devices and equipment.General requirements for the selection of test sites.Gamma survey of the surveyed area. Sampling.Soil sampling in rural settlements, on agricultural lands and in natural landscapes. Sampling in case of local emergency radioactive contamination of the territory. Marking, transportation, storage and disposal of samples.Requirements for sampling devices and equipment.Determination of homogeneity of radioactive contamination. Sampling of plant products in storage places or during its transportation, in the field.	Delivery of practical work №2.	10
Topic 5. Particularities of radionuclide contamination measurements	2/2	Requirements for error in determining the density of radioactive soil contamination. Determination of the number of soil samples to estimate the median density of radioactive contamination of the soil at the elementary site. Requirements for soil sampling and preparation and measurement of radionuclide activity in them.	Delivery of practical work №3.	10

Topic 6. Radioactive particles and solid state speciation	2/2	Know labeled atoms. Radioactive and stable isotopes. Labeled compounds. Indicative dose. Basic ways of using isotopic indicators in research with plants. Investigation of transport and distribution of separate elements in plant. Understand features of the use of radioactive isotopes in vegetative and field studies. Radioautography. Features of the use of stable isotopes.	Delivery of practical work №4.	10
Topic 7. Modeling within radioecology	4/2		Delivery of practical work	10
within fudioceology			Nº5.	
Total module 2				40
		e state of radioactive isotopes u		
Topic 8. Distribution, main fluxes and deposits of biologically active radionuclides (¹³⁷ Cs and ⁹⁰ Sr) in forest ecosystems.	2/2	Know extremely radioresistant bacterium <i>Deinococcus radiodurans,</i> <i>Arthrobacter radiotolerans.</i> Isolation of strains of radiosensitive bacteria in an environment with extreme conditions of existence. Understand radiosensitivity of micromycetes.	Delivery of practical work №6.	10
Topic 9. Freshwater radioecology	2/2	Know assessment of microbial cenosis of territories contaminated by radioactive isotopes after the Chernobyl accident. Level of radioactivity of soil and biodiversity of soil microflora. Determination of soil cellulosic activity. Understand dynamics of ecological and trophic groups of soil microorganisms on contaminated radionuclide territories.	Delivery of practical work №7.	10
Topic 10. Terrestrial radioecology, transfer and countermeasures	4/-	Know Metagenomics as a complex branch of knowledge. Metageno data analysis. Sequencing metagenoids. Bioinformatics analysis of 16s rRNA metagenome data. Metadata in metagenome analysis and their integration.		10

Total for the course		100
Exam		30
Total for the semester (30+30+40)*0,7		
Additional points		
Total module 3		30
	in QIIME.	
	Clustering metagenome data	
	QIIME software package.	
	data preprocessing in the	
	Understand MetaGenom	
	FastQC program.	
	sequencing data by the	
	Check the quality of the	
	metrics of biodiversity.	
	Determination of the main	

ASSESSMENT POLICY

Deadline and	Works that are submitted in violation of the deadlines for more	
recompilation policy:	than a week without good reason are evaluated at a lower score	
	(maximum - 20% of the maximum). Rearrangement of modules	
	takes place with the permission of the lecturer if there are good	
	reasons (for example, hospital or family problems).	
Academic Integrity	Writing while writing modular test papers and the final exam is	
Policy:	prohibited. The use of mobile devices during these periods is also	
	prohibited.	
Visiting policy:	Attendance is mandatory. For objective reasons (for example,	
	illness, international internship) training can take place individually	
	(in online form in consultation with the dean of the faculty). In case	
	of violations and abuses (non-attendance more than 50% of the	
	time - non-admission to the exam)	

SCALE FOR ASSESSING STUDENTS 'KNOWLEDGE AND SKILLS

Rating of the	The assessment is national for the results of examinations		
applicant of higher	exams	offsets	
education, points			
90-100	perfectly	credited	
74-89	good		
60-73	satisfactorily		
0-59	unsatisfactorily	not credited	

RECOMMENDED SOURCES OF INFORMATION

- Gudkov I. M. Radiobiology and Radioecology (in English): Textbook for students of higher educational institutions. Вид. 2-е, переробл. та допов. К.: НУБіП України, Житомирська політехніка, 2019. 384 с.
- 2. Choppin G. R., Liljenzin J.-O., Rydberg J. Radiochemistry and nuclear chemistry. 4th ed., Academic Press, 2013, 858 p.
- 3. Radiation biology: a handbook for teachers and students. International Atomic Energy Agency, VIENNA, 2010, 150 p.
- 4. Chernobyl: 30 Years of Radioactive Contamination Legacy. Report. Lead writer and coordination of report: Prof. Valerii Kashparov, Kyiv, 2016, 59 p.
- 5. Climate change and nuclear power. International Atomic Energy Agency, VIENNA, 2005, 112 p.

- 6. Natural and induced radioactivity in food. International Atomic Energy Agency, VIENNA, 2002, 136 p.
- Gleyzes, C., Tellier, S. & Astruc, M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trac-Trends in Analytical Chemistry, 21 (6-7), 2002, p. 451-467.
- 8. International Atomic Energy Agency Safety Standards Series No. RS-G-1.8, Environmental and Source Monitoring for Purposes of Radiation Protection for protecting people and the environment, Safety Guide, IAEA, VIENNA, 2005, p.119.
- He, Z. L. L., Yang, X. E. & Stoffella, P. J. Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19 (2-3), 2005, p. 125-140.
- Lind, O.C., Salbu, B., Janssens, K., Proost, K., García-León, M., García-Tenorio, R. Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. Science of the Total Environment, 376, 2007, p. 294–305.
- 11. Salbu, B. Fractionation of radionuclide species in the environment. Journal of Environmental Radioactivity, 100 (4), 2009, p. 283-289.
- 12. https://www.iaea.org/publications
- 13. <u>https://web.archive.org/web/20110515164252/http://www-pub.iaea.org/MTCD/publications/PDF/INES-2009_web.pdf</u>
- 14. https://www.who.int/news/item/05-09-2005-chernobyl-the-true-scale-of-the-accident
- 15. <u>https://www.iaea.org/newscenter/news/fukushima-nuclear-accident-update-log-15</u>
- 16. http://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_C.pdf
- 17. <u>https://www.wright.edu/sites/www.wright.edu/files/page/attachments/radiation-safety-biological-effects-of-ionizing-radiation.pdf</u>
- 18. <u>https://doi.org/10.1016/j.jenvrad.2008.12.013</u>
- 19.<u>https://doi.org/10.1007/978-3-319-22171-7</u>