3	COURSE SYLLABUS			
	<u>« Mathematics and physics (physics) »</u>			
TRADERS PROGRED	Degree of higher education - Bachelor			
	Specialization 101 « Ecology»			
	Educational programme « <u>Ecology</u> »			
	Academic year _2023/2024, semester1			
	Form of studyfull-time(full-time, part-time)			
	Number of ECTS credits2,0			
	Language of instruction English (Ukrainian, English,			
	German)			
Lecturer of the course	_candidate of physical and mathematical sciences, associate pro-			
	fessor Oksana Godlevska			
Contact information of the lecturer (e-mail)	godlevok@gmail.com			
Course page on eLearn	https://elearn.nubip.edu.ua/course/view.php?id=2805			

COURSE DESCRIPTION

(up to 1000 printed characters)

The discipline "Mathematics and Physics" is one of the main parts of the theoretical training of bachelors in the specialty 101 "Ecology, Environmental Protection and Balanced Nature Management", that is, the basis without which a full study of the disciplines of the cycle of professional and practical training of such specialists is impossible.

The Purpose of studying the discipline "Physics" is the consistent study by students of the basic laws and provisions of physics in order to understand the general regularities of natural phenomena; the use of these laws in the prompt resolution of problems; illumination of possible applications of physical methods and devices in practical activities.

The tasks of the academic discipline "Physics" are as follows:

Providing students with sufficiently broad training in the field of physics, mastery of fundamental concepts and theories of classical and modern physics, which provides them with effective mastery of special subjects and the further possibility of using physical principles. This also includes teaching students methods and skills for solving specific problems and familiarizing them with measuring equipment.

Formation of students' scientific outlook and modern physical thinking. This task should also be considered as an essential part of the humanitarian training of the future specialist, since most issues of the history of science and philosophy can be demonstrated during the teaching of a physics course. As a result of studying the academic discipline "Mathematics and Physics", the student should

know:

basic physical quantities, units of their measurements, basics of error theory and rules for processing measurement results, modern means of measuring physical quantities

- fundamental concepts and theories of classical and modern physics in order to effectively master special educational disciplines and use knowledge of physical laws in future work;

- methods of solving practical physical problems and problems;

- principles of operation of devices;

be able to: - use measuring tools, perform mathematical and statistical processing of measurement results;

- using physical conditions, laws and theories, apply the acquired theoretical and practical knowledge after studying special disciplines in the future work in the specialty;

- explain physical processes and phenomena that occur in the natural environment, as well as during the operation of various types of equipment.

Acquisition of competencies

The study of the academic discipline "Mathematics and Physics" contributes to the fact that, according to this standard, the student is able to acquire:

general competencies:

GC8 Ability to conduct research at the appropriate level.

professional (special) competences:

SC2. Ability to critically understand basic theories, methods and principles of natural sciences

SC3. Understanding the main theoretical provisions, concepts and principles of mathematical and socio-economic sciences.

Program learning outcomes (PLO):

PLO3. Understand the main concepts, theoretical and practical problems in the field of natural sciences, which are necessary for analysis and decision-making in the field of ecology, environmental protection and balanced nature management PLO19. To raise the professional level through continuing education and self-education.

	II			
	nours			
	(lectures/			Accocc-
Names of content		.		A32632-
modules and tonics	practical/	Learning outcomes	Tasks	ment
modules and topies	Self			
	exercises			
	CACICISCS			
		2 semester		
		Madula 1		
	4/0/4	Niodule 1		[
Topic 1.	1/0/1	Know and understand the	Study of theoretical ma-	
Mathematical data pro-		basics of mathematical	terial based on lecture	
cessing		analysis, elements of dif-	notes and literary	
		ferential and integral calcu-	sources.	
		lations		
	1/0/1			
Topic 2. Kinematics of a		Know and understand the	Study of theoretical ma-	
material point.		basic concepts and formu-	terial based on lecture	
		las of kinematics.	notes and literary	
			sources.	

COURSE STRUCTURE

	1/2/3			
Topic .3. Dynamics of a		Know and understand the	Study of theoretical ma-	
material point.		basic concepts and laws	terial based on lecture	
		from the "Dynamics" sec-	notes and literary	
		tion; be able to measure,	sources.	20
		calculate experimental er-	Practical exercise "De-	
		rors; to be able to record	termining the accelera-	
		the results of measurements	tion of free fall using a	
		according to current stand-	mathematical pendulum"	
		ards using the SI system of		
		units.		
Topic 4. Work and ener-	1/2/3	Know and understand the	Study of theoretical ma-	
gy		definition and use of physi-	terial based on lecture	
		cal quantities of work,	notes and literary	
		power, kinetic and potential	sources.	
		energy, gravity, elasticity,		
		friction.		
	1/2/3			
Topic 5. Dynamics of		Know and understand the	Study of theoretical ma-	
rotary motion.		definition and use of dy-	terial based on lecture	
		namic characteristics of	notes and literary	
		solid bodies during rota-	sources.	20
		tional motion.	Practical exercise "De-	
			termining the moment of	
			inertia by the method of	
			torsional oscillations"	
Topic 6. Basics of hy-	1/0/1	Know and understand the	Study of theoretical ma-	
drodynamics and aero-		laws of motion of an ideal	terial based on lecture	
dynamics		and viscous fluid. Distin-	notes and literary	20

		guish laminar and turbulent	sources.	
			Self exercise 1.	
		flow. The phenomenon of		
		surface tension.		
Topic 7. Molecular-	1/0/1	To know and understand	Study of theoretical ma-	
kinetic theory of ideal		the laws of an ideal gas, the	terial based on lecture	
gases.		relationship between tem-	notes and literary	
		perature and the kinetic en-	sources. Practical exercise	20
		ergy of particles, the physi-	«Determination of liquid	
		cal meaning of the concept	coefficient by the method of drop separation».	
	1/2/2	of internal body energy.		
Topic 8. Basics of ther-	1/2/2	Know and understand the	Study of theoretical ma-	
modynamics		first law of thermodynam-	terial based on lecture	
		ics, its notation for various	notes and literary	
		isoprocesses, the concept of	sources. Colloquium on	20
		heat capacity and its use, an	practical exercises. Con-	
		adiabatic process and the	trol exercise from Mod-	
		equation that describes it in	ule 1	
		an ideal gas.		
Total for Module 1	8/8/15			100
		Module 2		
	1/2/3			
Topic 9. Electrostatics		To know and understand	Study of theoretical ma-	
		the main properties of elec-	terial based on lecture	
		tric charges, Coulomb's	notes and literary	20
		law, force and energy char-	sources.	20
		acteristics of an electric	«Determination of electromotive force of	
		field, methods of graphic	the current source by	
		representation of the field,		

		electric capacity of a con-	compensation».	
		ductor and a capacitor.		
Topic 10 Direct electric	1/0/1	Know and understand the	Study of theoretical ma-	
current.		definition of electric cur-	terial based on lecture	
		rent, its strength and densi-	notes and literary	
		ty, the definition of elec-	sources.	
		tromotive force, current		
		sources; Ohm's law, de-		
		pendence of resistance on		
		temperature; definition of		
		work and power of electric		
	. / . / .	current, Joule-Lenz law.		
Topic 11 Magnetic field.	1/2/3	Know and understand: the	Study of theoretical ma-	
		main properties and charac-	terial based on lecture	
		teristics of the magnetic	notes and literary	
		field; formulas that de-	sources.	20
		scribe the forces acting on	Practical exercise "De-	
		bodies from the side of the	termination of the hori-	
		magnetic field; Biot-	zontal component of the	
		Savard-Laplace law and its	induction of the Earth's	
		application. Magnetic fields	magnetic field.".	
		of a ring conductor and a		
		solenoid		
Topic 12 The phenome-	1/0/1	Know and understand: the	Study of theoretical ma-	
non of electromagnetic		main properties of the phe-	terial based on lecture	
induction.		nomenon of electromagnet-	notes and literary	
		ic induction, Faraday's law,	sources.	
		Lenz's rule, the phenome-		

		non of self-induction.		
Тема 13 Гармонічні	1/0/1		~	
коливання.		Know and understand:	Study of theoretical ma-	
		equations and characteris-	terial based on lecture	
		tics of harmonic oscilla-	notes and literary	20
		tions; harmonic oscillations	sources.	
		of a mathematical pendu-	Self exercise 2.	
		lum; dynamics of mechani-		
		cal harmonic oscillations		
TOPIC 14. Waves. Ge-	1/2/3	Know and understand:	Study of theoretical ma-	
ometric optics		wave characteristics and	terial based on lecture	
		equations; properties of	notes and literary	
		electromagnetic waves;	sources.	20
		laws of reflection and re-	Practical exercise "De-	
		fraction of light, absolute	termining the index of	
		and relative indices of re-	refraction using a micro-	
		fraction. The phenomenon	scope."	
		of total internal reflection.		
TOPIC 15. Physics of	1/1/3	Know and understand:	Study of theoretical ma-	
the atom and atomic nu-		Rutherford's model of the	terial based on lecture	
cleus.		atom, Bohr's postulates, the	notes and literary	
		composition of the nucleus,	sources.	20
		nuclear forces, the phe-	Colloquium on practical	
		nomenon of radioactivity,	exercises. Control exer-	
		the law of radioactive de-	cise from Module 2.	
		cay, nuclear fission and nu-		
		clear fusion as a source of		

		energy.	
	7/7/15		100
Total 2 modules	////15		100
	15/15/30		70
Total for 1 semester			
			30
Exam			
Total hours			100

ASSESSMENT POLICY

Policy regarding	Assignments submitted after the deadline without valid reasons	
deadlines and resits:	will be graded lower. Resitting of modules will be allowed with the permission from the lecturer and in the presence of valid reasons	
	(e.g. medical reasons).	
Academic honesty	Cheating during tests and exams is strictly prohibited (including	
policy:	the use of mobile devices). Coursework and research papers must	
	contain correct citations for all sources used.	
Attendance policy:	Class attendance is mandatory. In case of objective reasons (such as illness or international internships), individual learning may be allowed (in online format by the approval of the dean of the faculty).	

SCALE OF ASSESSMENT OF STUDENT KNOWLEDGE

Student rating,	National grade based on exam results		
points	exams	credits	
90-100	excellent	passed	
74-89	good		
60-73	satisfactory		
0-59	unsatisfactory	not passed	

Recommended sources of information

1.Фізика : підручник для вищих навчальних закладів / Бойко В.В., Булах Г.І.; Гуменюк Я.О., Ільїн, П.П. Національний університет біоресурсів і природокористування України. – К.: "Ліра-К", 2019. – 468 с.

2.Бойко В.В., Булах Г.І., Гуменюк Я.О., Ільїн П.П.; Сукач Г.О. Фізика : Частина ІІ. Електромагнетизм. Електромагнітні коливання та хвилі. Оптика. Елементи квантової фізики, фізики твердого тіла, атома та ядра. навчальний посібник для студентів нефізичних спеціальностей ВНЗ / за ред. В. В. Бойка ; Національний університет біоресурсів і природокористування України. – К. : ВЦ "АЗБУКА", 2020. – 319 с.

3.Біофізика : підручник для студентів вищих навчальних закладів III-IV рівнів акредитації / Посудін Ю.І.; Бойко В.В.; Годлевська О.О.; Залоїло І.А. Національний університет біоресурсів і природокористування України. - К. : Ліра-К, 2020. - 704 с.

4.Навчальний посібник «Практикум з біофізики. Ч.1» (Бойко В.В., Залоїло І.А., Годлевська О.О., Посудін Ю.І.), Національний університет біоресурсів і природокористування України. - К. : Ліра-К, 2021. - 570 с.

5.Годлевська О.О. Методичні вказівки до виконання лабораторно-практичних робіт «Основи біофізики» для студентів вищих аграрних навчальних закладів III-IV рівнів акредитації з напрямів «Екологія та охорона навколишнього середовища», «Екобіотехнологія», «Захист рослин» 2020,-160 стор.

- 6.V. Boyko, O. Godlevska, P. Iliin, M. Malyuta."Physics". Methodical recommendations for the students, who attend the English-speaking lectures.-2022, printed NULE of Ukraine, Kyiv, p.52.
- 7. V.Boyko, P.Iliin, O.Godlevska Навчально-методичні рекомендації: Methodical recommendations for performing laboratory work remotely who attend the English-speaking lectures, 2023, printed NULE of Ukraine, Kyiv ,p. 247.

Internet sources

1. Канал Youtube «КАФЕДРА ФІЗИКИ НУБІП УКРАЇНИ»

https://www.youtube.com/channel/UCUQ-x3dx5Lw2SL6w9a6DNDg.

Дата звернення: 20.01.2024

2. Portal: Physics – Wikipedia URL: <u>https://en.wikipedia.org/wiki/Portal:Physics</u> дата звернення: 20.01.2024