NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of machine and equipment design

"APPROVED"

"APPROVED"

at the meeting of the department construction of machines and equipment Minutes No. 10 of May 16th, 2024 Head of the Department Vyacheslav LOVEIKIN

"REVIEWED"

Guarantor of the AP "Machines and equipment agricultural production" Mykola KOROBKO

CURRICULUM OF ACADEMIC DISCIPLINE MECHATRONICS

Specialty: <u>133 – Mechanical engineering</u> Educational program: <u>Machines and equipment of agricultural production</u> Faculty <u>of Construction and Design</u> Developers: <u>Doctor of Technical Sciences</u>, <u>Prof. Yu.O. Romasevich</u>, <u>doctor of technical</u> <u>sciences</u>, <u>prof. V. S. Loveykin</u>, <u>Ph.D. Krushelnytskyi V.V.</u>

Kyiv - 2024

Description of the academic discipline <u>Mechatronics</u>

Field of kno	wledge, specialty, educational	program, educational degree				
Educational degree	master					
Specialty	133 – Mechanical engineering					
Educational program	Machines and equipment of agricultural production					
Characteristics of the academic discipline						
View	View Compulsory					
Total hours	180					
Number of ECTS	6					
credits						
Number of content		6				
modules						
Course project (work)	-					
(if available)						
Form of control	Form of control Exam, assessment					
Indicators of acader ec	nic discipline for full-time lucation	correspondence form of study				
Course (year of training)	1	1				
Semester	<i>1 and 2</i>	2				
Lecture classes	60 hours	8 hours				
Practical, seminar	-					
classes						
Laboratory classes	60 hours	8 hours				
Independent work	60 hours	134 hours				
Individual tasks	-					
Number of classrooms	6 hours - 1 semester					
per week	2 hours - 2nd semester					
hours for full-time						
education						

1. Aim, objectives, competencies and program results of the educational discipline

The aim of studying the discipline "Mechatronics" within the "Industrial Mechanical Engineering" specialty is to provide students with theoretical knowledge and practical skills in the integration of mechanical, electronic and software components to create complex and functional mechatronic systems. The main **tasks** of studying the discipline "Mechatronics" within the "Industrial Mechanical Engineering" specialty include:

1. Understanding the basic principles and concepts of mechatronics: students get acquainted with the principles of functioning of mechatronic systems, study the basics of mechanics, electronics, control and programming;

- 2. Acquisition of theoretical knowledge and skills in the development of mechatronic systems: students study methods of analysis, design and modeling of mechatronic systems, including the selection and integration of components, development of control algorithms and software;
- 3. Study of modern technologies and trends in mechatronics: students explore modern advances in the field of mechatronics, such as robotics, autonomous systems, artificial intelligence, the Internet of Things and other innovative developments;
- 4. Development of practical skills and ability to implement mechatronic systems: students gain practical experience in the design, assembly, debugging and testing of mechatronic devices and systems. They study the processes of production and optimization of mechatronic systems, as well as learn the methods of maintenance and repair;
- 5. Fostering creative thinking and engineering thinking: students learn to analyze problems, find innovative solutions, and use a creative approach to designing mechatronic systems.

After successfully studying the discipline "Mechatronics", students of the specialty "Industrial Mechanical Engineering" will have the necessary knowledge and skills for the design, production and operation of complex mechatronic systems in various fields, such as production automation, robotics and many others.

Competence acquisition:

integral competence (IC): with the ability to solve complex tasks and problems of industrial engineering, which involve research and/or innovation and are characterized by uncertainty of conditions and requirements.

general competences (CG):

GC1. Ability to use information and communication technologies.

GC2. Ability to learn and master modern knowledge.

- GC3. Ability to search, process and analyse information from various sources.
- GC6. Ability to generate new ideas (creativity).
- GC7. Ability to identify, formulate and solve problems.

GC8. Ability to make informed decisions.

GC9. Ability to work in a team.

professional (special) competences (SC):

SC1. Ability to create, improve and apply quantitative mathematical, scientific and technical competencies (SC) methods and computer software, apply a systematic approach to solving engineering problems of industrial engineering, in particular, in conditions of technical uncertainty.

SC3. Ability to create new equipment and technologies in the field of mechanical engineering.

SC4. Awareness of the prospective tasks of modern production aimed at meeting the needs of consumers, knowledge of trends in innovative development of industry technologies.

SC6. Ability to evaluate, control and manage the processes of design, manufacture, testing, repair of agricultural machinery and equipment. production.

Program learning outcomes (PLO):

PLO1. Knowledge and understanding of the principles of technological, fundamental and engineering sciences that underlie industrial engineering and, in particular, agricultural engineering.

PLO2. Knowledge and understanding of mechanics and mechanical engineering and prospects for their development.

PLO3. To know and understand the processes of industrial engineering, to have the skills of their practical use.

PLO4. Perform engineering calculations to solve complex problems of practical problems in industrial engineering.

PLO6. Find the necessary scientific and technical information in available sources, including in a foreign language, analyse and evaluate it.

2. The program and structure of the academic discipline for:

- full-time full-time education;

- reduced term of full-time education.

Names of content modules and topics	Number of hours									
	weeks	total	including			co	correspondence form			
			1	р	lab	ind	s.r.	1	lab	sr
S	emester	1								
Content module 1 . Microcontrollers in mechatronic systems										
Topic 1. Microcontroller structure	1	5	2	I	3	-	-	1	1	22
Topic 2. I/O ports of microcontrollers	1-2	5	2	-	3	-	-			
Topic 3. Sensor- microcontroller interfaces (SPI, UART, I^2C)	2-3	16	3	-	3	-	10			
Together according to content module 1		26	7	-	9	-	10			22
Content module 2. DAC and ADC in mechatronic systems										
Topic 1. Discrete and analog forms of data representation. Advantages of digital systems	3-4	5	2	-	3	-	-	1	1	22
Topic2.GeneralcharacteristicsandschemesofADC	4-5	5	2	I	3	-	-			
Topic3.Generalcharacteristicsandschemesof TsAP	5-6	5	2	I	3	-	-			
Topic 4. Counting theoremanditspracticalconsequences	6	12	2	-	-	-	10			
Together according to content module 2		27	8	-	9	-	10	2	2	22

Content module 3. Sensors of mechatronic systems										
Topic 1. Sensors of mechanical quantities	6-7	18	5	-	3	-	10	1	1	22
Topic 2. Sensors of electromagnetic quantities	7-9	8	5	-	3	-	-			
Topic 3. Sensors for measuring hydraulic and thermal quantities	9-10	6	3	-	3	-	-	1	1	
Topic 4. Operational amplifier	10	5	2	-	3	-	-			
Together according to content module 3		37	15	-	12	-	10	2	2	22
Content module 4 Drives of mechatronic systems										
Topic 1. Requirements for drives, quality indicators of	11	5	2	-	3	-	-	2	2	22
Topic 2. Controlled DC	11-12	7	4	_	3	-	-			
Topia 2 Stopper motors	12 14	17	1		2		10			
Topic 5. Stepper motors	15-14	1/	4	-	3	-	10			
electric drive with frequency control	14-15	11	5	-	6	-	-			
Together according to content module 4		40	15	-	15	-	10	2	2	22
Together for 1 semester	-	130	45	-	45	-	40	6	6	88
S	emester	2						-	-	
Content module 5. PID controllers in traffic control systems cars										
Content module 5. PID cont	rollers iı	ı traffi	с сот	ntro	l svst	ems c	ars			
<i>Content module 5. PID cont</i> Topic 1. Classical PID	rollers in	ı traffi	ic cor	ntro	l syst	ems c	ars	1	1	23
<i>Content module 5. PID cont</i> Topic 1. Classical PID controller and its partial cases	rollers in 1	<i>traffi</i> 12	2	itro		<u>ems c</u> -	<i>ars</i> 10	1	1	23
<i>Content module 5. PID cont</i> Topic 1. Classical PID controller and its partial cases Topic 2. About the ability of real PID-regulators	rollers in 1 2	<u>12</u> 12	2 2 2	<i>itro</i> - -		ems c - -	10	1	1	23
Content module 5. PID cont Topic 1. Classical PID controller and its partial cases Topic 2. About the ability of real PID-regulators Topic 3. The most common modifications of PID regulators	<i>rollers in</i> 1 2 3	12 12 2 2	2 2 2 2	<i>itro</i> - -	<i>l syst</i> - - -	<u>ems c</u> - -	<i>ars</i> 10 -	1	1	23
Content module 5. PID cont Topic 1. Classical PID controller and its partial cases Topic 2. About the ability of real PID-regulators Topic 3. The most common modifications of PID regulators Topic 4. Methods of setting PID regulators	<i>rollers in</i> 1 2 3 4-8	12 12 2 2 9	2 2 2 2 2 2	<i>itro</i>	<i>l syst</i> - - 7	<u>ems c</u> - - -	10 - -	1	1	23
Content module 5. PID cont Topic 1. Classical PID controller and its partial cases Topic 2. About the ability of real PID-regulators Topic 3. The most common modifications of PID regulators Topic 4. Methods of setting PID regulators Together according to content module 5	<i>rollers in</i> 1 2 3 4-8 -	12 12 2 2 9 25	2 2 2 2 2 8	<i>itro</i> - - -	<i>l syst</i> - - 7 7	<u>-</u> - - -	10 - - 10	1	1	23
Content module 5. PID cont Topic 1. Classical PID controller and its partial cases Topic 2. About the ability of real PID-regulators Topic 3. The most common modifications of PID regulators Topic 4. Methods of setting PID regulators Together according to content module 5 Content module 6 . About	rollers in 1 2 3 4-8 - out dream	<u>i traffi</u> 12 2 2 9 25 ms of i	c cor 2 2 2 2 2 8 intell	1tro - - - - -	<i>l syst</i> - - 7 7 <i>nt tra</i>	ems c - - - - ffic	10 - - 10	1	1	23
Content module 5. PID contTopic 1. Classical PIDcontroller and its partialcasesTopic 2. About the ability ofreal PID-regulatorsTopic 3. The most commonmodifications of PIDregulatorsTopic 4. Methods of settingPID regulatorsTogether according tocontent module 5Content module 6 . Ability of	1 2 3 4-8 - out dreament syst	n traffi 12 2 2 9 25 ms of i ems co	2 2 2 2 2 8 <i>intell</i> <i>urs</i>	ntro - - - iger	l syst - - 7 7 7 7 7	ems c - - - ffic	10 - - 10	1	1	23
Content module 5. PID contTopic 1. Classical PIDcontroller and its partialcasesTopic 2. About the ability ofreal PID-regulatorsTopic 3. The most commonmodifications of PIDregulatorsTopic 4. Methods of settingPID regulatorsTogether according tocontent module 5Content module 6 . AbmanagenTopic 1. Fundamentals of	1 2 3 4-8 - out dreat nent syst	12 12 2 2 9 25 ms of i ems cc	2 2 2 2 2 8 <i>intell</i> <i>urs</i>	ntro - - - iger	<i>l syst</i> 7 7 <i>nt traj</i>	ems c - - - ffic	10 - - 10	1	1	23 23 23 23
Content module 5. PID contTopic 1. Classical PIDcontroller and its partialcasesTopic 2. About the ability ofreal PID-regulatorsTopic 3. The most commonmodifications of PIDregulatorsTopic 4. Methods of settingPID regulatorsTogether according tocontent module 5Content module 6 . AboutmanagenTopic 1. Fundamentals offuzzy traffic control systemsTopic 2. Fundamentals of	rollers in 1 2 3 4-8 - out dreat nent syst 8-12	12 12 2 2 9 25 ms of i ems cc 7	c cor222228intellurs3	ntro - - - iger -	<i>l syst</i> 7 7 <i>t traj</i> 4	ems c _ _ _ ffic _	10 - - 10 -	1	1 1 1 1	23 23 23
Content module 5. PID contTopic 1. Classical PIDcontroller and its partialcasesTopic 2. About the ability ofreal PID-regulatorsTopic 3. The most commonmodifications of PIDregulatorsTopic 4. Methods of settingPID regulatorsTogether according tocontent module 5Content module 6 . About the ability ofregulatorsTopic 1. Fundamentals offuzzy traffic control systemsTopic 2. Fundamentals ofmotion control systemsbased on artificial neuralnetworks	rollers in 1 2 3 4-8 - out dreat nent syst 8-12 12-15	12 12 2 2 9 25 ms of i ems cc 7 13	c con 2 2 2 2 2 8 intell urs 3 4	ntro - - - iger -	<i>l syst</i> 7 7 7 4 4	ems c - - - ffic - -	<i>ars</i> 10 - 10 - 10 - 10 10	1	1	23 23 23
Content module 5. PID contTopic 1. Classical PIDcontroller and its partialcasesTopic 2. About the ability ofreal PID-regulatorsTopic 3. The most commonmodifications of PIDregulatorsTopic 4. Methods of settingPID regulatorsTogether according tocontent module 5Content module 6 . AbilityTopic 1. Fundamentals offuzzy traffic control systemsTopic 2. Fundamentals ofmotion control systemsbased on artificial neuralnetworksTogether according tocontent module 6	1 2 3 4-8 - out dreat nent syst 8-12 12-15 25	12 12 2 2 9 25 ms of i ems cc 7 13	2 2 2 2 2 3	ntro - - - - - - - - - - - - -	<i>l syst</i> 7 7 7 <i>t traj</i> 4 8	ems c _ _ _ _ ffic _ _ _ _ _	<i>ars</i> 10 10 - 10 10 10	1 1 1 1 1 1	1 1 1 1 1 1	23 23 23 23
Content module 5. PID contTopic 1. Classical PIDcontroller and its partialcasesTopic 2. About the ability ofreal PID-regulatorsTopic 3. The most commonmodifications of PIDregulatorsTopic 4. Methods of settingPID regulatorsTogether according tocontent module 5Content module 6 . AboutmanagenTopic 1. Fundamentals offuzzy traffic control systemsTopic 2. Fundamentals ofmotion control systemsbased on artificial neuralnetworksTogether according tocontent module 6	1 2 3 4-8 - out dreat nent syst 8-12 12-15 25 50	12 12 2 2 9 25 ms of i ems cc 7 13	2 2 2 2 2 3 4 15	ntro - - - - igen - - - - -	<i>l syst</i> 7 7 7 4 4 8 15	ems c - - - ffic - - - - - - - - - - - - - -	<i>ars</i> 10 10 - 10 10 10 20	1 1 1 1 2	1 1 1 1 1 2	23 23 23 23 23 46

No	Tonia nomo	Number
s/p	Topic name	hours
1.	Analog comparator	3
2.	Microcontroller input/output ports	3
3.	SPI interface	3
4.	Tensometric sensors	3
5.	Magnetic encoders	3
6.	Temperature sensors	3
7.	Operational amplifiers	3
8.	Analog-digital converter	3
9.	Software implementation of ADC bit rate change	3
10.	Digital-analog converters	3
11.	Electric servo drive	3
12.	Direct current collector motor control	3
13.	Stepper motor control	3
14.	Asynchronous electric drive with frequency control	6
15.	Setting the coefficients of the PID controller using the PID	3
	Tuner Controller web application	
16.	Setting the coefficients of the PID regulator using the	4
	Wolfram Cloud web application	
17.	Study of the fuzzy speed controller machinery	4
18.	The development of a neuroregulator of movement of the s.g.	2
	machinery	
19.	Learning an artificial neural network using the Wolfram	2
	Cloud web application	

3. Topics of laboratory (practical, seminar) classes

4. Topics of independent work

No	Tonia nama	Number
s/p	Topic name	hours
1	Types of optical encoders, and schemes of their connection and signal processing	10
2	Practical consequences of the Kotelnikov-Nyquist-Shannon theorem	10
3	Drivers for rock engines	10
4	UART sensor-microcontroller interfaces	10
5	And the analysis of applied areas of application of fuzzy control in the field of science and technology. cars	10
6	Application of control systems in agricultural machines based on artificial neural networks	10

5. Means of diagnosis of learning outcomes:

When teaching this discipline, diagnostic tools are used: exam; test; module tests; abstracts; protection of laboratory works.

6. Teaching methods.

When teaching this discipline, the following are used: verbal method (lecture, discussion, interview, etc.); practical method (laboratory classes); visual method (illustration method, demonstration method); work with educational and methodical literature (noting, summarizing, annotating, reviewing, writing an essay); video method (remote, multimedia, web-oriented, etc.); independent work (task performance); individual research work of students of higher education.

7. Assessment forms.

When teaching this discipline, the following are used: exam; test; oral or written survey; unit testing; abstracts; protection of laboratory works; presentations and speeches at scientific events .

8. Distribution of points received by higher education applicants.

The assessment of the knowledge of a higher education student takes place on a 100point scale and is translated into national assessments according to the table. 1 of the current "Exam and Credit Regulations at NULES of Ukraine".

The rating of the	The assessment is national and the results of the				
applicant of higher	assembly				
education, points	exams	credits			
90-100	perfectly				
74-89	good	counted			
60-73	satisfactorily				
0-59	unsatisfactorily not counted				

To determine the rating of the applicant of higher education from mastering the discipline **R** _{DIS} (up to 100 points) the received rating from the certification (up to 30 points) is added to the rating of the applicant of higher education from the educational work **R** _{HII} (up to 70 points): **R** _{duc} = **R** _{HII} + **R** _{AT}.

9. Educational and methodological support

- 1. Mechatronics: a textbook / V.S. Loveykin, Yu.O. Romasevich, V.V. Krushelnytskyi. K.: CP "Comprint", 2020. 404 p .;
- 2. abstracts of lectures and their presentations (in electronic form);
- 3. methodical materials on the study of the academic discipline for students of higher education full-time and part-time forms of higher education.

10.Recommended sources of information

- 1. Mechatronics [Electronic resource] Resource access mode: https :// uk . Wikipedia . org / wiki / Mechatronics.
- Fundamentals of mechatronics: teaching. manual / O.M. Artyukh, O.V. Dudarenko, V.V. Kuzmin et al. Zaporizhzhia: NU "Zaporizhia Polytechnic", 2021. - 372 p.
- 3. THE MECHATRONICS HANDBOOK. Editor-in-Chief Robert H. Bishop. CRC PRESS. 2002. 1229 p. http://www.sze.hu/~szenasy/Szenzorok%20%E9s%20aktu%E1torok/Szenzakt%2 Onyedekedek/Mechatronics_handbook%5B1%5D.pdf
- 4. Basics of mechatronics: study guide / S.M. Peresada, M.V. Pushkar Electronic text data. Kyiv: KPI named after Igor Sikorskyi, 2020. 137 p.
- Modern electromechatronic complexes and systems: training. manual / T.P. Pavlenko, V.M. Shavkun, O.S. Kozlova, N.P. Lukashov; Kharkiv. national city university farm named after O. M. Beketova. – Kharkiv: XNUMX named after O. M. Beketova, 2019. - 116 p.