NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of Descriptive Geometry, Computer Graphics and Design

APPROVED Faculty of Engineering and Design June 16, 2025

WORK PROGRAM DISCIPLINE

MATHEMATICAL MODELING AND COMPUTER TECHNOLOGY

Field of Knowledge: G "Engineering, Production and Construction" Specialty: G 19 "Construction and Civil Engineering" Educational and professional program: "Construction and Civil Engineering" Faculty of Engineering and Design Developer: Professor of the Department of Descriptive Geometry,

Computer Graphics and Design Doctor of Technical Sciences, Professor Viktor NESVIDOMIN

1. Description of the discipline "Mathematical Modeling and Computer Technologies"

Mathematical modeling and computer technologies is a scientific discipline that studies the principles of construction and functioning of computers, the organization of computing processes on personal computers, their algorithmization, PC software, as well as the effective use of modern information and communication technologies in construction activities. The main focus is on gaining skills in working with CAD technologies in computer graphics and CAS technologies in computer mathematics.

Field of knowledge, field of training,	specialty, educational	and qualification level	
Educational degree	Bachelor		
Speciality	G19 - Construction and Civil Engineering		
Educational program	educational and	nd professional	
Characteristics o	f the academic disciplin	e	
View	Man	datory	
Total Hours	2	10	
Number of ECTS credits	7		
Number of content modules	4		
Course project (work)		-	
Form of control	Test / Exam		
Indicators of the academic disciplin	e for full-time and part-	time forms of study	
	Full-time form	part-time form	
Year of preparation (course)	1	1	
Semester	1, 2	1, 2	
Lectures, hours.	30 / 30	2	
Practical classes, hours.	30 / 0 4		
Independent work, hours.	120	192	
Individual tasks			
Number of Weekly Hours	4 / 2		

2. Purpose, objectives, competencies and program results of the discipline

The purpose of the discipline is to provide students with theoretical knowledge of the basics of computer technologies, to acquire practical skills in working on personal computers using existing CAS and CAD technologies on PCs in solving engineering problems in construction.

Task:

- to teach students the skills of developing graphic documentation using modern CAD environments;
- develop software packages in CAS environments for engineering calculations. As a result of studying the discipline, a specialist should be able to:
- decompose the problem and implement program codes for their recording on the PC, implement numerical methods;
- to use the capabilities of computer graphics systems in the formation of 2D and 3D models of building structures.

Acquisition of competencies:

• Integral competence (IC):

IR - Ability to solve complex specialized problems of construction and civil engineering in the process of training, which involves the use of a set of theories and methods for determining strength, stability, deformability, modeling, strengthening of building structures; further safe operation, reconstruction, erection and installation of buildings and engineering structures; application of computer-aided design systems in the field of construction.

• General competencies (GC):

ZK01 – Ability to abstract thinking, analysis and synthesis.

ZK02 – Knowledge and understanding of the subject area and professional activities. ZK04 – Ability to communicate in a foreign language.

ZK05 – Ability to use information and communication technologies.

ZK06 – Ability to search, process and analyze information from various sources. ZK07 – Interpersonal Skills.

• Professional (special) competencies (FC):

SK04-Ability to select and use appropriate equipment, materials, tools and methods for the design and implementation of technological processes of construction production.

SK05 – Ability to apply computerized design systems and specialized application software to solve engineering problems of construction and civil engineering.

SK06 – Ability to engineering activities in the field of construction, preparation and use of technical documentation.

SK07 – Ability to be responsible for making and making decisions in the field of architecture and construction in unpredictable work contexts.

SK11 – To master the methods of design, modeling and construction using systems of computer-aided design and calculation of building structures of buildings and engineering structures of industrial, agro-industrial, transport and civil facilities.

Program Learning Outcomes (PW):

PRN01 – Apply the basic theories, methods and principles of mathematical, natural, social and humanitarian and economic sciences, modern models, methods and software tools for decision support to solve complex problems of construction and civil engineering.

PRN03 – Present the results of their own work and argue their position on professional issues, to specialists and non-specialists, fluent in the state and foreign languages.

PRN06 – Apply modern information technologies to solve engineering and management problems of construction and civil engineering.

 $\ensuremath{\mathsf{PRN07}}\xspace -$ To collect, interpret and apply data, including by searching, processing and analyzing information from various sources.

3. Program and structure of the discipline

- full-time (part-time) form of study;
- shortened term of full-time (part-time) form of study.

 Names of content
 Number of hours

modules and themes	Full-time form Correspondence form		orm									
	Just	Just including		Just			inclu	ıding				
		1.	Pr	Lab	Indus	S.R.		1.	Pr	Lab	Indus	S.R.
1	2	3	4	5	6	7	8	9	10	11	12	13
	1st	ser	nes	ter								
Content module 1. Engineering	grapl	nics	s in	the A	AutoĽ	Desk 1	Inve	nto	r ei	nvirc	nmen	t
Topic 1. Types of graphs	6	2	2			4		2	2	2		2
Topic 2. Systems comp. Graphics	6		2			4		2	2	2		2
Topic 3. Three-dimensional	6	2	2			4		2	2	2		2
graphics.												
Topic 4. Parts Elements	6		2			4						
Topic 5. Standard Parts	6	2	2			4		2	2	2		2
Topic 6. Assembly products.	6		2			4						
Specification												
Topic 7. Paperwork	9	2	2			4						
Total for content module 1	45	8	14			28		8	8	8		8
Content module 2. Constructi	on G	irap	ohic	s in	the So	olidW	orks	s E	nvi	ronn	nent	
Topic 8. Detailing	6	2	2			4						
Topic 9. 3D modeling in SW	6		2			4		2	2	2		2
Topic 10. Kinematic connections	6	2	2			4		2	2	2		2
Topic 11. Associative drawings	6		2			4						
Topic 12. Assembly drawings	6	2	2			4						
Topic 13. Presentation of products	6		2			4						
Topic 14. Kinematic Charge	6	2	2			4						
Topic 15. Exam	6	1	1			2						
Total for content module 2	45	8	14			4		4	4	4		4
	2nd	se	me	ster								
Content module 1. Fundame	ental	s of	f A	lgori	thmiz	ing a	nd P	rog	grai	nmiı	ng	
Topic 1. Hardware	6	2	2			4		2	2			2
Topic 2. Software	6	2	2			4		2	2			2
Topic 3. Fundamentals of	6	2	2			4		2	2			2
algorithmizing												
Topic 4. Programming elements	6	2	2			4						
Topic 5. Operators	6	2	2			4		2	2			2
Topic 6. Functions and procedures	6	2	2			4						
Topic 7. Graphics programming	6	2	2			4						
Total for content module 1	42	14	14			28		8	8			8
Content module 2. Engineerin	ig ca	lcu	lati	ons i	n the	Mapl	eSot	ft e	nvi	ronn	nent	
Topic 8. Vectors in Maple	6	2	2			4						
Topic 9. Matrices in Maple	6	2	2			4		2	2			2
Topic 10. Interpolation	6	2	2			4		2	2			2
Topic 11. Approximation	6	2	2			4						

Topic 12. Solutions of equations	6	2	2		4				
Topic 13. Diff. and integration	6	2	2		4				
Topic 14. Optimization	6	2	2		4				
Topic 13. Credit work	6	2	2		4				
Total for content module 2	48	16	16		32	4	4		4
Total hours	90	30	30		60	12	12		12

4. Lecture topics (1st semester)

N⁰	Name	H.			
	1st semester				
1.	Types of graphs. Vector and pixel graphics	2			
2.	Vector graphics systems. AutoDesk Schedule Packages	2			
3.	Installing AutoDesk Inventor. Interface	2			
4.	Creating part models	2			
5.	Creating Pipe Connection Models	2			
6.	Associative drawings of parts	2			
7.	Associative drawings of assembly units	2			
8.	Detailing. Computer Graphics in the SolidWorks Environment	2			
9.	Operations for modeling elements of parts. Rifling	2			
10.	Operations for modeling complex parts.	2			
11.	Assembly operations. Types of connections	2			
12.	Creation of design documentation	2			
13.	Creating presentations. Working with color, scene	2			
14.	Kinematic analysis	2			
15.	Preparation for the test	2			
Total	hours	30			

5. Topics of practical classes

N⁰	Name	H.			
	1st semester				
1.	Engineering graphics. Sketching	2			
2.	Installing Autodesk Inventor	2			
3.	Inventor Interface	2			
4.	Creating models of rotation parts	2			
5.	Creating a coupling model	2			
6.	Execution of a drawing of a part	2			
7.	Execution of the drawing of the assembly unit	2			
8.	Detailing. Computer Graphics in the SolidWorks Environment	2			
9.	Modeling of parts elements. Rifling	2			
10.	Modeling of complex parts.	2			
11.	Carrying out assembly operations	2			
12.	Creation of design documentation	2			

13.	Making presentations	2			
14.	Performing dynamic and kinematic analysis	2			
15.	Passed	2			
Tota	hours	30			
	2nd semester				
16.	Information Technology	2			
17.	Hard & Soft Ware. CAS environments	2			
18.	Maple Soft, Mathcad, Mathematica interface	2			
19.	Programming Arithmetic Calculations	2			
20.	Programming linear algorithms in the Maple environment	2			
21.	Programming branched and cyclic algorithms	2			
22.	Construction of curved lines and surfaces. Animation	2			
23.	Vector operations	2			
24.	Matrix operations. Systems of linear equations	2			
25.	Data processing. Interpolation	2			
26.	Approximation. Extrapolation.	2			
27.	Nonlinear equations with one variable	2			
28.	Differentiation and integration. Approximate methods	2			
29.	Optimization methods	2			
30.	Credit work	2			
Tota	l hours	30			

6. Topics of independent work

N⁰	Name	H.
1st semester		
1.	Creation of design documentation for a pipe connection	30
2.	Detailing drawings of construction machines	30
Total	hours	60
2nd semester		
1.	Linear, branched, and cyclic algorithms	15
2.	Curved lines and surfaces. Animation	15
3.	Systems of linear equations. Interpolation and approximation	15
4.	Approximate methods for solving equations, diff. and integration,	15
	optimization	
Total hours		
Total	hours	120

7. Tools for diagnosing learning outcomes

- Passed;
- Exam;
- unit tests;
- calculation and calculation and graphic works;

- defense of practical work;
- protection of independent work.

8. Teaching methods

- lectures and discussions;
- practical classes;
- visual methods (illustrations, demonstrations);
- work with educational and methodological literature (annotation, review, execution of design documentation, calculations);
- distance learning;
- performing independent work.

9. Assessment of learning outcomes

The knowledge of the applicant for higher education is assessed on a 100-point scale, which is converted into a national assessment in accordance with the current "Regulations on Exams and Tests in the NUBiP of Ukraine"

Type of educational activity	Learning outcomes	Evaluation
Module 1. Engineering graphics	in the Autodesk Inventor environ	ment
Practice. 1. Sketching.	PRN 01, 03, 06, 07.	5
Practice. 2. Inventor Installation	Performing sketches, you need to know the rules for drawing drawings, projection methods. Autodesk Inventor CAD environment, know the interface, tools for creating solid state models and drawings	5
Practice. 3. Configuring Inventor Settings		5
Practice. 4 Creating a Rotation Part Model		5
Practice. 5. Creating a model of a part of the "coupling" type		5
Practice. 6. Creation of an assembly unit of a pipe connection.		5
Practice. 7. Creating blueprints		5
Independent work 1. Creation of project documentation "pipe connection"		30
Modular test work 1	Checking the acquired skills in	25
Unit Test 1	the discipline in the first module.	10
Total for module 1		100
Module 2. Detailing in	a SolidWorks environment	
Practice. 8. Detailing		5

9.1. Distribution of points by types of educational activities (1st semester)

Practice. 9. Construction of simple	PRN 01, 03, 06, 07. Ability to	5
sections of parts. Installing	read assembly drawings	
SolidWorks	(detailing). CAD environment	
Practice. 10. Setting parameters	SolidWorks, know the tools	5
according to DSTU	for creating solid state models	
Practice. 11. The sequence of building	and drawings, create	5
a model of the rotation part	presentations, perform	
Practice. 12. The sequence of building	engineering analysis of the	5
a sheet part	project	
Practice. 13. Sequence of assembly		5
operations		
Practice. 14. Kinematic analysis of the		5
assembly		
Independent work 2 Building working		30
drawings of parts according to the		
assembly drawing.		
Modular test work 2	Checking the acquired skills in	25
Unit Test 2	the discipline in the second	10
	module.	
Total by module 2		100
Educational work	(M1 + M2)/2*0.7 ≤ 7	70
Passed	30	
Total for the course	(Academic work + credit	$) \leq \overline{100}$

9.2. Distribution of points by types of educational activities (2nd semester)

Type of educational activity	Learning outcomes	Evaluation
Module 1. Engineering graphics	in the Autodesk Inventor environ	ment
Practice. 1. Operating with units of	PRN 01, 03, 06, 07.	5
measurement of information	Understanding of the operation	
Practice. 2. Installation of CAS. Maple	of a PC, its hardware and	5
interface	software. Be able to develop	
Practice. 3. Programming basic	mathematical models of	5
mathematical operations	engineering problems. Know	
Practice. 4. Programming linear	the algorithmizing of problem	5
algorithms	solving and their software	
Practice. 5. Programming logical	implementation in CAS	5
problems	environments, in particular, in	
Practice. 6. Programming cyclic	MapleSoft	5
algorithms		
Practice. 7. Programming the		5
construction of curved lines and		
surfaces		

Independent 1. Linear, branched, and		15
cyclic algorithms		
Independent 2. Curved lines and		15
surfaces		
Modular test work 1	Checking the acquired skills in	15
Unit Test 1	the discipline in the first	10
Unit Test 2	module.	10
Total for module 1		100
Module 2. Cor	nputer Mathematics	
Practice. 8. Vector Operations	PRN 01, 03, 06, 07Ability to	5
Programming	create software for solving	
Practice. 9. Programming matrix	engineering problems in	5
operations	vector and matrix forms.	
Practice. 10. Programming Parabolic	Understand the processing of	5
and Spline Interpolation	discrete data, their	
Practice. 11. Programming	representation by	5
approximation using the method of	interpolations and	
least squares	approximation polynomials.	
Practice. 12. Programming approximate	Understanding Approximate	5
methods for solving equations	Methods for Solving	
Practice. 13. Programming of	Mathematical Models	5
approximate methods of diff. and		
integration		
Practice. 14. Programming		5
optimization methods		
Independent 3. Systems of linear		15
equations. Interpolation and		
approximation		
Independent 4. Approximate methods		15
for solving equations, diff. and		
integration, optimization		
Modular test work 2	Checking the acquired skills in	15
Unit Test 3	the discipline in the second	10
Unit Test 4	module.	10
Total by module 2		100
Educational work	$(M1 + M2)/2*0.7 \le 7$	'0
Exam	30	
Total for the course	(Academic work + credit)) ≤ 100

9.2. Scale of assessment of higher education applicant's knowledge

Rating of the applicant for higher education, Points	Assessment according to the national system (exams/tests)
90-100	Perfectly

74-89	well
60-73	Satisfactory
0-59	Disappointing

9.3. Assessment Policy

	Works that are submitted in violation of deadlines without
Deadline and	a valid reason are evaluated for a lower grade. Retaking modules
retake policy:	takes place with the permission of the lecturer in the presence of
	valid reasons (for example, sick leave).
Academic Integrity Policy:	Cheating during tests and exams is prohibited (including
	using mobile devices). Term papers, abstracts must have correct
	text references to the literature used
Attendance Policy:	Attendance at classes is mandatory. For objective reasons
	(for example, illness, international internship), training can take
	place individually (in online form in agreement with the dean of
	the faculty)

10. Educational and methodological support

Training is carried out by means of information and communication technologies in education. A certified electronic training course on the ELearn platform "Mathematical Modeling and Computer Technologies" is used.

https://elearn.nubip.edu.ua/course/view.php?id=2464 https://elearn.nubip.edu.ua/course/view.php?id=2882 Classes are held in the following sequence:

- presentation of new material (lecture, classroom lesson);
- consolidation of new material (independent work outside the classroom, using literature and electronic resources);
- consolidation of acquired skills and abilities (classroom lesson);
- improvement of skills acquired in previous classes (work in extracurricular hours with the study of lecture material, use of literature, Internet resource).

11. Recommended sources of information

Based

- 1. <u>https://www.maplesoft.com</u>
- 2. <u>https://www.autodesk.com/</u>
- 3. https://www.solidworks.com/
- 4. Computer Science and Computer Engineering. / Tkach T.B. Odesa, 2019. -100 p. (in Russian).
- Numerical Methods: Textbook. / Volontyr L.O., Zelinska O.V., Potapova N.A., Chikov I.A. – Vinnytsia: VNAU, 2020 – 322 p.
- Algorithms and methods of calculations [Electronic resource]: nauch. Manual. / M.A. Novotarsky. -- Kyiv: KPI. Igor Sikorsky, 2019. - 407 p. (in Russian).

- 7. Numerical methods: teaching. manual / O.I. Yaroshenko, M.V. Hryhorkiv. Chernivtsi: Chernivtsi Nats. University of Pennsylvania, 2018. 172 p. (in Russian).
- 8. Information Technologies: Teaching. Manual. / R.O. Tarasenko, S.M. Garina, T.P. Rabocha; Kyiv: LLC "Alef", 2011. 332 p. (in Russian).
- 9. Gindis, E. J., Kaebisch, R. C. (2020). Up and Running with AutoCAD 2021: 2D and 3D Drawing, Design and Modeling. Netherlands: Elsevier Science.

Secondary

- 10. Sytnyk V.F. Osnovy informatsionnykh sistem: Navch. Manual.- Ed. 2nd, reworked. And additional. / Ed. V.F. Sitnika/-K.:KNEU, 2001. 420 p. (in Russian).
- 11. Information Systems and Technologies: Teaching. Manual. for students / O.V. Gritsunov; Khark. National. Acad. city. economy. Kh.: KNAMG Publ., 2010. 222 p. (in Russian).
- Nelyubov V. O., Kurutsa O. S. Fundamentals of Informatics. Microsoft Excel 2016: Tutorial. Uzhhorod: State Higher Educational Institution "UzhNU", 2018. - 58 p. (in Russian).
- Computer Graphics: Textbook: Book 1. for students of specialty 151 "Automation and computer-integrated technologies" / Compilers: Totosko O.V., Mykytyshyn A.G., Stukhlyak P.D. – Ternopil: Ternopil National Technical University named after Ivan Pulyuy, 2017 – 304 p.
- Lyashenko B.M., Kryvonos O.M., Vakalyuk T.A. Methods of Calculations: Educational and Methodological Manual for Students of the Faculty of Physics and Mathematics. – Zhytomyr: ZhDU Publ., 2014. – 228 c.

Recommended regulatory documents

- 15. Standard of Higher Education in the specialty 122 "Computer Science" for the first (bachelor's) level of higher education. URL: https://mon.gov.ua/ storage/app/media/vishcha-osvita/zatverdzeni%20standarty/2019/07/12/122-kompyut. nauk.bakalavr-1.pdf.
- 16. New Information Technologies, Electronic Manual, Access Mode http://www.eduforme.org/mod/page/view.php?id=13
- 17. Gnidenko I.G., Sokolovska S.A. Informatics. Google Books Site / 10.06.2007. http://www.books.google.com.ua/books?isbn=5765429521