СИЛАБУС ДИСЦИПЛІНИ

«Mechanics of materials and constructions»

Ступінь вищої освіти - <u>Bachelor</u> Спеціальність <u>192 - «Building and engineering of the city»</u> Освітня програма - «<u>Bachelor</u>» Рік навчання – 2, семестр – 3, <u>4</u> Форма навчання – <u>daily learning</u> Кількість кредитів ЄКТС – 6 Мова викладання – <u>english</u>

A. Kutsenko

Лектор курсу Контактна інформація лектора (e-mail) Сторінка курсу в eLearn

<u>kutsenko@nubip.edu.ua</u> https://elearn.nubip.edu.ua/course/view.php?id=3934

опис дисципліни

(до 1000 друкованих знаків)

Mechanics of materials and construction is a basic engineering subject that must be understood by anyone concerned with the strength and physical performance of structures, whether those structures are man-made or natural. The subject matter includes such fundamental concepts as stresses and strains, deformations and displacements, elasticity and inelasticity, strain energy, and load-carrying capacity. These concepts underlie the design and analysis of a huge variety of mechanical and structural systems.

The teacher main aims to help students taking courses taught in English at National University of life and environmental sciences of Ukraine, Faculty of Design and Engineering, in their studies of one of the most important and most difficult engineering topic.

THE STRUCTURE OF DISCIPLINE				
Title of thematic modules and themes	Hours (Lectures / Laboratory lessons/ Independent study)	Training facts	Tasks	Estimation, units
		3 semester		
The thematic 1	module 1. TEN	ISION AND COMPRES	SION	20
Theme 1. Purpose and objectives of the course. The basic hypotheses and the definitions of the mechanics of materials and constructions Theme 2. The relation among internal forces and tensions in case of tension or compression of the bar.	2/2/2	Student should be know: the basic hypotheses and the definitions of the mechanics of materials and constructions Student should be able to: built the diagrams of internal forces and tensions in case of tension or compression of the	Delivery of practicaly works. Execution of independent works.	2 3
Theme 3. The method of calculating the bar on strength	2/2/2			5
Theme 4. The method of calculating the bar on rigidity	2/2/2	bar.		5

THE STRUCTURE OF DISCIPLINE

Thoma 5 The geometric				
Theme 5. The geometric characterizations of the	2/2/2			5
				5
plane cross sections.	a thomatic ma	dule 2. TORSION		30
	e mematic mo	Student should be		
Theme 1. The geometric	2/2/2			10
characterizations of the		know: the main		10
plane cross sections.		geometric		
Theme 2. Analysis of	2/2/2	characterizations of		2
Stress and Strain		the plane cross		
Theme 3. The direct	2/2/2	sections;	Delivery of	5
shear stresses.		the relation among	practicaly	_
Theme 4. The definition	2/2/2	internal forces and	works.	5
of torsion.	2, 2, 2	tensions in cases of	Execution of	
Theme 5. The method		direct shear and	independent	
of calculating the bar on		torsion.	works.	
strength and rigidity by		Student should be		
torsion	2/2/2	able to: built the		8
		diagrams of internal		0
		forces and tensions in		
		case of torsion of the		
		bar.		
	ematic module	e 3. BEAM BENDING	1	20
Theme 1. The equation				
of Shearing force for the	2/2/2			2
cantilever and simple				2
beams				
Theme 2. The equation				
of Bending moment for	2/2/2	Student should be		2
the cantilever and simple	2/2/2	know: the equations		2
beams.		of bending moment	Delivery of	
Theme 3. The		and shearing force for	practicaly	
calculation method		the cantilever and	works.	
cantilever beam on the	2/2/2	simple beams.	Execution of	8
strength by the normal	_, _, _	Student should be	independent	Ŭ
stresses		able to: built the	works.	
Theme 4. The		diagrams of internal	,, OIRD.	
calculation method		forces and tensions in		
simple beam on the	2/2/2	case of bending of the		4
strength by the normal		beam		
strength by the normal stresses.				
Theme 5. Double –		4		
	2/2/2			4
integration method.	20/20/20			70
Total for 3 semester	<u>30/30/30</u>		-	70 30
Test Total for 3 semester				
1 otal for 5 semester				100
4 semester				
The thematic module 4. METHODS OF DEFINDING OF BEAM DEFORMATION				34
Theme 1 Verescagin's Delivery of				
rule.	2/2/2	Student should be	practicaly	4
Theme 2. The method		know: the basis	works.	
of initial parameters.	2/2/2	methods for definition	Execution of	4
Theme 3. Castigliano's	2/2/2	the deformations of	independent	4
	1.1.1.1.1.	T = G = G = G = G = G = G = G = G = G =		1

theorem.		beam and frame.	works.	
Theme 4. The		Student should be		
construction method of		able to: define the		
the diagram of shear-		deformations of beam		_
force and bending-	2/2/2	and frame by		4
moment for the		different methods.		
cantilever frame				
Theme 5. The				
construction method of				
the diagram of shear-				
force and bending-	2/2/2			4
moment for the simple				
frame.				
Theme 6. The curveted				
beam.	2/2/2			4
Theme 7. The		Student should be		
definitions of the		know: The		_
statically indeterminate	2/2/2	definitions of the		5
constructions.		statically		
Theme 8. The		indeterminate		
application of the		constructions;	Delivery of	
Castigliano's theorem to		the three moment's	practicaly	
the statically		theorem.	works.	
indeterminate		Student should be		
constructions.	.	able to: applicate	independent	
- 51151 40110115.	2/2/2	methods of	works.	5
		definitions of the		
		deformations for		
		statically		
		indeterminate beam		
		and frame.		
The thematic m	odule 5. THE	COMPLEX DEFORMA	TIONS	36
Theme 1. The three	2/2/2			5
moment's theorem.				5
Theme 2. The				
application of the				
Verescagin's rule to the	2/2/2			5
statically indeterminate		Studant ab lel la		
constructions.		Student should be know: Stress and		
Theme 3. Analysis of		Strain in the case of		
Stress and Strain in the		the action of complex	Delivery of	
case of the action of	2/2/2	deformations of	practicaly	4
compression and		construction.	works.	
bending at one time			Execution of	
Theme 4. Analysis of		Student should be	independent	
Stress and Strain in the		able to: calculate	works.	
case of the action of	2/2/2			4
tension and bending at		beam and frame by		
one time		acting of complex Stress and Strain.		
Theme 5. Analysis of		Sucss and Sualli.		
Stress and Strain in the				
case of the action of two	2/2/2			4
bending moments at one				
1 contains moments at one			1	
time, which acting in				

perpendicular planes				
Theme 6. The				
calculation method of	2/2/2			
column.		-		-
Theme 7. Analysis of				
Stress and Strain in the				
case of the action of	2/2/2			
bending and torsion at				
one time.				
Total for 4 semester	30/30/30	-	-	
	Ex	am		
Total for course				

EVALUATION POLICY

	The student must submit the work within the time specified by the teacher.
Deadline and	Works that are submitted in violation of deadlines without good reason are
retake policy:	evaluated at a lower grade. Rearrangement of modules takes place with the
	permission of the lecturer if there are good reasons (for example, hospital).
Academic	Write-offs during tests and exams are prohibited (including the use of mobile
Integrity	devices). Course papers, abstracts must have correct text references to the
Policy:	literature used
	The student is obliged to attend classes of all kinds every day in accordance
Visiting	with the established schedule, not to be late, to have the appropriate
policy:	appearance. For objective reasons (for example, illness, international
r	internship) training can take place individually (in online form in consultation
	with the dean of the faculty)

STUDENT EVALUATION SCALE

Student rating,	Evaluation results on national exam tests		
points	Exams	Tests	
90-100	Excellent	Accepted	
74-89	Great		
60-73	Satisfactory		
0-59	Unsatisfactorily	Not accepted	