NATIONAL UNIVERSITY OF BIORESOURCES AND ENVOROMENTAL SCIENCES OF UKRAINE

Department of Physiology of Vertebrates and Pharmacology

APPROVED

Faculty of Veterinary Medicine

" "_____2025

CURRICULUM OF ACADEMIC DISCIPLINE

Animal physiology

Field of knowledge <u>"Veterinary medicine"</u>

Speciality 211 "Veterinary medicine"

Academic programme «Veterinary Medicine»

Faculty of Veterinary Medicine

Authors: **Zhurenko O.V.,** Head of the Department of Physiology of Vertebrate and Pharmacology, Doctor of Veterinary Science, Professor; **Ishchenko L.M.,** Associate Professor of the Department of Physiology of Vertebrate and Pharmacology, Doctor of Veterinary Science, Senior Researcher

Description of the discipline «Animal Physiology»

The discipline "Animal Physiology" aims to provide students with theoretical and practical knowledge of the functioning of individual organs and their systems and the organism as a whole, basic physiological principles and laboratory techniques, emphasizing the intricate interaction between structure and function, and key processes such as adaptation, homeostasis, and self-regulation. Students will explore the course of physiological processes in various animal species and learn methods for managing physiological functions to maintain health, improve animal welfare, enhance productivity, and optimize the quality of livestock products.

Throughout this course, students will become familiar with the complex processes occurring within animal organisms, including their interrelationships and regulatory mechanisms. The discipline fosters a holistic understanding of the physiological mechanisms that maintain the constancy of the internal environment (homeostasis) and enable the organism's adequate response to changes in the external environment, as well as the mechanisms that ensure overall organismal functioning.

Academic degree, speciality, academic programme

	1
Academic degree	Master
Speciality	211 "Veterinary medicine"
Academic programme	"Veterinary Medicine"

Characteristics of the discipline		
Туре	mandatory	
Total number of hours	210	
Number of ECTS credits	7	
Number of modules	6	
Course project (work)	-	
(if included in the working		
curriculum)		
Form of assessment	Exam	

Indicators of the discipline for full-time and part-time university study

	Full-time	Part-time
Year of study	2	
Semester	3, 4	
Lectures	60 hours.	
Laboratory classes	90 hours.	
Self-study	60 hours.	
Number of hours per week for full-time students	5 hours.	

1. Aim, competences and expected learning outcomes of the disciplin

The aim and objectives of this discipline are to equip students with theoretical and practical knowledge concerning the course of physiological processes in various animal species. It aims to teach them methods for managing physiological functions to maintain health, enhance productivity, and improve the quality of livestock products.

The uniqueness of this discipline lies in its integration of contemporary national and international knowledge in animal physiology. The foundation of this training is a comprehensive approach that combines theoretical, practical, and innovative learning orientations. For studying this academic discipline, students will utilize educational and methodological materials authored by the scientific and pedagogical staff of the Department of Vertebrate Physiology and Pharmacology at the Faculty of Veterinary Medicine, NUBiP of Ukraine. Certified electronic learning courses are used for processing educational materials..

Acquired Competencies:

Integral Competence (IC): The ability to solve complex problems and challenges in the field of veterinary medicine, which involves conducting research and/or implementing innovations, and is characterized by uncertainty in conditions and requirements.

General competences (GC):

GC1. Ability for abstract thinking, analysis, and synthesis.

GC 2. Ability to apply knowledge in practical situations.

GC 11. Ability to evaluate and ensure the quality of work performed.

Special (professional) competences (SC):

SC1. 1. Ability to identify the peculiarities of the structure and functioning of cells and tissues in various classes and species of animals – mammals, birds, insects (bees), fish, and other vertebrates.

SC2. Ability to use instruments, specialized devices, equipment, laboratory apparatus, and other technical means for performing necessary manipulations during professional activities.

SC3. Ability to adhere to occupational safety, aseptic, and antiseptic rules during professional activities.

Programme learning outcomes (PLOs):

PLO1. Know and accurately utilize veterinary medical terminology.

PLO3. Determine the essence of physicochemical and biological processes occurring in animal organisms under normal and pathological conditions.

PLO5. Establish the correlation between clinical manifestations of the disease and the results of laboratory tests.

Day One Competencies

1. Demonstrate understanding of the ethical and legal frameworks governing veterinary practice, including professional conduct, animal welfare, owner relations,

public health, and the societal and environmental impacts of professional activities.

2. Understand scientific research methodologies, the contribution of fundamental and applied research to science, and the implementation of the 3Rs principle (Replacement, Reduction, Refinement) in animal research and care.

4. Promote and monitor the health and safety of themselves, patients, animal owners, colleagues, and the environment during professional activities. This includes demonstrating knowledge of quality assurance principles and applying risk management principles in practice.

8. Work effectively as part of a multidisciplinary team in providing veterinary services and recognize the contributions of all team members.

9. Exhibit critical thinking skills, including the ability to review and evaluate scientific literature and presentations.

12. Utilize professional capabilities to advance veterinary knowledge and implement the "One Health" concept to promote the health, safety, and well-being of animals, humans, and the environment, thereby contributing to the achievement of the UN Sustainable Development Goals.

15. Regularly engage in self-reflection and peer assessment processes to enhance personal performance and the effectiveness of the entire team..

19. Develop appropriate patient treatment plans and administer treatment in the best interest of each animal under care, utilising available resources. This includes providing sound professional judgment regarding animal and human health, and environmental considerations.

20. Provide emergency and first aid care to common animal species. Prioritize and allocate resources effectively according to each specific situation.

24. Utilise basic diagnostic equipment and effectively conduct animal examinations according to the specific case, adhering to proper health and biosecurity practices and current regulatory documents. This also involves understanding the contribution of digital tools and artificial intelligence to the theory and practice of veterinary medicine.

2. Program and structure of the discipline:

- full-time study;

Modules and topics	N	lumbe	r of ho	ours
		full-tin	ne	
	total		includ	ing
		1	lab	s.st.
1	2	3	4	5
Module 1: Introduction. Physiology of excit	able ti	ssues.		
Topic 1: Introduction to animal physiology. History of the	8	2	2	4
development of physiological science, subject, methods,				
research techniques, the organism and its properties.				
Topic 2. General properties of excitable tissues.	14	2	4	8
Topic 3. Muscle physiology	6	2	4	
Topic 4. Physiology of the nerve fibre.	6	2	4	
Module test	2		2	
Total for module 1	36	8	16	12
Module 2. Physiology of digestive system	and bl	ood		
Topic 5. General characteristics of digestion.	12	2	2	8
Digestion in the oral cavity.				
Topic 6: Digestion in the one-chambered stomach	4	2	2	
Topic 7. Digestion in the ruminant forestomach and	4	2	2	
abomasum.				
Topic 8: Digestion in the small and large intestine.	6	2	2	
Absorption. Defecation. Peculiarities of digestion in				
different animal species.				
Topic 9. Blood – he internal environment	16	2	8	8
of the body.				
Topic 10. Formed elements of the blood. Blood types	10	2	8	
Module test	2		2	
Total for module 2	54	12	26	16
Module 3: Physiology of the cardiovascular system and	respi	ration	•	
Topic 11. Physiology of blood circulation. Physiological	-	2	4	4
properties of the heart muscle.				
Topic 12. Electrocardiography. Regulation of the heart.		2	4	
Topic 13. Physiology of the vascular system. Features of		2	4	
blood circulation in different organs. Lymph and lymph				
circulation				
Topic 14: Respiratory physiology.		2	6	4
Module test			2	
Total for module 3	33	8	20	8
Module 4. Physiology of metabolism, energy, excretion	and la	ctatio	n.	

Tonia 15 Dhysiology of matchelism Matchelism of		2		4
Topic 15. Physiology of metabolism. Metabolism of proteins.		2		7
Topic 16. Metabolism of fats and carbohydrates.		2		
		2		
Topic 17. Mineral metabolism. Water metabolism.		Z		
Regulation of water metabolism.		2		
Topic 18. Vitamins.		2	2	
Topic 19: Energy metabolism. Thermoregulation			2	1
Topic 20: Physiology of excretion. Physiology of the skin		2	2	4
Topic 21: Physiology of lactation.		2	2	
Module test			2	
Total for module 4	30	14	8	8
Module 5. Physiology of the endocrine system, central i	nervou	is syst	em an	d
reproduction.				
Topic 22. General physiology of the endocrine system		2		4
Topic 23. Endocrine function of endocrine glands and		2	2	
their regulation.				
Topic 24. Physiology of the central nervous system		2	2	
systems				
Topic 25. Physiology of the spinal cord and brain		2	2	4
Topic 26. Physiology of reproduction.		2		
Module test			2	
Total for module 5	26	10	8	8
Module 6. Central nervous system. Higher nervous act	ivity. A	Analys	sers.	
Topic 27: Physiology of higher nervous activity		2	2	8
Topic 28: Types of higher nervous activity		2	2	
Topic 29. General properties of analysers		2	4	
Physiology of visual and skin analysers				
Topic 30. Physiology of the auditory and olfactory senses,		2	2	
vestibular, taste analysers				
Module test			2	
Total for module 6	29	8	12	8

3. Topic of lectures

No	Торіс	Hours
	Module 1: Introduction. Physiology of excitable tissues	
1.	Lecture 1: Introduction to animal physiology. History of the development of physiological science, subject, methods, research techniques, the organism and its properties.	2
2.	Lecture 2. General properties of excitable tissues. Excitation, excitability, and irritability. Stimuli and their classification. Signs of excitation. Generation of excitation. The relationship between stimulus strength and duration. Phases of excitability. Functional lability. Optimum and pessimism of frequency and strength of irritation. Parabiosis and its phases. Brief history of the study of biocurrents. Types (categories of biocurrents). Mechanism of excitation (Theories of bio currents).	2
3.	Lecture 3. Muscle physiology. Structural features of muscles. Properties of skeletal muscles. Mechanism of muscle contraction. Types of muscle contractions. Muscle force and work. Muscle fatigue. Properties of smooth muscles	2
4.	Lecture 4. Physiology of the nerve fibre. The concept of nerve fibres and features of their structure. Properties of nerve fibres. Synapses.	2
	Module 2. Physiology of digestion and blood	
5.	Lecture 5. General characteristics of digestion. Digestion in the oral cavity. The essence of digestion. Functions of the digestive system. Digestion in the oral cavity. Features of salivation in different animals. Swallowing	2
6.	Lecture 6: Digestion in the one-chambered stomach General patterns of gastric digestion. Composition and properties of gastric juice. Regulation of gastric juice secretion. Gastric secretion in response to different types of feed. Motor function of the stomach and its regulation. Mechanism of gastric content transfer into the small intestine. Vomiting: mechanism and physiological significance.	2
7.	Lecture 7. Digestion in the forestomachs and abomasum of ruminants. General information about digestion in the forestomachs of ruminants. Reflex of the esophageal groove. Functions of the forestomachs. Microorganisms of the forestomachs and their role in digestion. Carbohydrate digestion in the forestomachs. Nitrogenous compound digestion in the forestomachs. Lipid digestion in the rumen. Gas formation in the rumen. Rumination period. Motility of the forestomachs. Digestion in the abomasum.	2
8.	Lecture 8: Digestion in the small and large intestine. Absorption. Defecation. Features of digestion in different species of animals. Digestion in the small intestine. Luminal and membranous (contact) digestion. Intestinal motility. Digestion in the large intestine. Absorption. Faeces formation and defecation. Features of digestion in farm animals of different species, including horses, pigs and birds	2
9.	Lecture 9. Blood is the internal environment of the body. Blood functions. The amount of blood. Composition and physical and chemical properties of blood. Composition of blood plasma. Buffer systems of blood. Blood proteins and their importance. Hemoglobin. Blood cells and their functions.	2
10.	Lecture 10. Blood types. Blood coagulation. Haematopoietic system. Blood groups. Blood compatibility. Blood transfusion. Phases of blood coagulation. Haematopoiesis and its regulation.	2

	Module 3: Physiology of the cardiovascular system and respiration.	
11.	Lecture 11. Physiology of blood circulation. Physiological properties of the heart muscle. The concept of the circulatory system and its development in phylogeny. The heart is the central organ of the circulatory system. Cardiac cycle. Periods and phases of heart activity. Mechanical and sound phenomena during heart contraction. Physiological features of the heart muscle. Automation of the heart. Conducting system. Electrical phenomena in the heart.	2
12.	Lecture 12: Electrocardiography. Regulation of the heart. Electrocardiography. Biocurrents of the heart. Echocardiography. Regulation of heart function. Intracardiac mechanisms of regulation. Extracardiac regulation. Reflex regulation. Humoral regulation.	2
13.	Lecture 13. Physiology of the vascular system Features of blood circulation in different organs. Lymph and lymph circulation. The vascular system. Circles of blood circulation. The concept of haemodynamics. Blood flow velocity. Functional groups of vessels. Arterial blood pressure. Arterial pulse. Venous blood flow. Regulation of vascular blood flow. The vascular system. Circles of blood circulation	2
14.	Lecture 14: Respiratory physiology. The concept of respiration. Stages of respiration. The mechanism of respiration. The respiration rate. Vital capacity of the lungs. Regulation of respiration. Respiratore features under changes in atmospheric air pressure. Respiration in birds.	2
	Module 4. Physiology of metabolism, energy, excretion and lactation	
15.	Lecture 15: Physiology of metabolism. Protein metabolism. Metabolism as a fundamental condition of life. The essence of metabolism. Types of metabolism. Methods of studying metabolism. General regulation of metabolism. Protein metabolism and its regulation	2
16.	Lecture 16. Metabolism of lipids and carbohydrates. Key stages of lipid metabolism. Regulation of lipid metabolism. Stages of carbohydrate metabolism and its regulation.	2
17.	Lecture 17. Mineral metabolism. Water exchange. Regulation of water balance. Physiological significance of macro- and microelements. Water metabolism and its regulation.	2
18.	Lecture 18: Vitamins. Vitamins. Water-soluble, fat-soluble vitamins. Antivitamins.	2
19.	Lecture 19: Energy metabolism. Thermoregulation Energy metabolism in animals and its regulation. Body temperature and its regulation	2
20.	Lecture 20: Physiology of excretion. Physiology of the skin. The essence of the excretory process. Excretory organs. Structural features of the urinary system. Mechanism of urine formation. Regulation of kidney function. The role of kidneys in maintaining water-salt homeostasis and acid- base balance. Quantity, properties, and composition of urine. Urine excretion and its regulation. Peculiarities of urine composition and urination in domestic poultry	2
21.	Lecture 21: Physiology of lactation. Growth and development of the mammary glands (mammogenesis). The structure of the mammary gland. Lactation. Milk production (characteristics of the secretory process). Species-specific features of mammary gland secretory function in female animals. Characteristics of the milk ejection reflex.	2

	Physiological basis for increasing milk production of animals	
	Module 5: Physiology of the endocrine system, central nervous system	
	and reproduction.	
22.	Lecture 22. General physiology of the endocrine system Concept and general characteristics of endocrine glands. General characteristics of hormones. General properties of hormones. Physiological action of hormones. Mechanisms of action of hormones	2
23.	Lecture 23. Endocrine function of endocrine glands and their regulation. Pituitary gland, thyroid gland. Parathyroid glands. Endocrine function of the pancreas. Adrenal glands. Gonads. Thymus. Pineal gland.	2
24.	Lecture 24. Physiology of the central nervous system Evolution of the nervous system. Structure and functions of neurons. Structure and function of neuroglia. Reflex activity of the nervous system. Classification of reflexes. Afferent feedback. Nerve centres and their properties.	2
25.	Lecture 25. Physiology of the spinal cord and brain Structure and functions of the spinal cord. Methods of studying the functions of the spinal cord. Reflex function of the spinal cord. Conductive function of the spinal cord. General characteristics of the autonomic nervous system. Centres of regulation of autonomic functions. Effects of excitation of the autonomic nervous system.	2
26.	Lecture 26. Physiology of reproduction. Reproduction – one of the fundamental characteristics of living organisms ensuring species preservation. Reproductive organs of males and females and their functions. Sexual reflexes. The sexual cycle. Mating and fertilisation in animals. Pregnancy. Labor/Birth. Reproduction of birds.	2
	Module 6: Central nervous system. Higher nervous activity. Analysers.	
27.	Lecture 27: Physiology of higher nervous activity. Cerebral Cortex: Structure, functions, and research methods. Reflexes: Classification and rules for the formation of conditioned reflexes. Types of inhibition in the cerebral cortex. Insight. Dynamic stereotype. Instinct. Signal systems of reality. Sleep and hypnosis	2
28.	Lecture 28: Types of higher nervous activity. Types of higher nervous activity. Biological significance of conditioned reflexes. Dynamic stereotype. Practical application of the doctrine of higher nervous activity in animal husbandry. Animal training.	2
29.	Lecture 29. General properties of analysers Physiology of visual and skin analysers. Evolution of analysers. General structure of analysers. Classifications and methods of studying analysers. General properties of analysers. Visual analyser. Skin analyser.	2
30.	Lecture 30. Physiology of the auditory, olfactory, vestibular, gustatory analysers Auditory analyzer. Equilibrium (Vestibular) analyzer. Olfactory analyzer. Gustatory (Taste) analyzer. Motor analyzer. Interoceptive analyzer. Interaction of analyzers.	2

4. Topic of laboratory classes

No	Class topic.	Hours
	Module 1: Introduction. Physiology of excitable tissues.	
1.	Laboratory class 1: Introductory lesson. Laboratory safety regulations.	2
2.	Laboratory class 2. Analysis of the reflex arc of conditioned and unconditioned	2
	reflexes. Preparation of a neuromuscular preparation.	Z
3.	Laboratory class 3. Effect of different stimuli on neuromuscular Specimen.	2
	Determination of the threshold of excitability. Types of muscle contraction.	Z
4.	Laboratory class 4. Bioelectrical phenomena in tissues. Experiments of Galvani.	2
	Currents of rest, damage, action. Currents of human hands.	2
5.	Laboratory class 5. Effect of load on muscle function. Dynamometry.	2
6.	Laboratory class 6. Phases of parabiosis.	2
7.	Laboratory class 7. The effect of direct current on the nerve. The polar law.	2
	Physiological electrotonus.	2
8.	Laboratory class 8: Module test	2
	Total for module 1	16
	Module 2. Physiology of digestion system and blood	
9.	Laboratory class 9: Observation of feed and water intake by animals.	2
	Determination of the quantity and viscosity of saliva obtained from animals	
	under the influence of various stimuli (rusks, milk, hydrochloric acid). The role	
	of saliva in the act of swallowing.	
10.	Laboratory class 10. Phases of gastric juice secretion. Investigation of the effect	2
	of gastric juice on protein. Study of the action of chymosin.	
11.	Laboratory class 11. Observation of infusoria of the rumen contents. Observation	2
	of the rumination process. Study of the motor function of the rumen.	
12.	Laboratory class 12: Digestion in the intestine. Bile. Evacuation function of the	2
	stomach.	
13.	Laboratory class 13. Red blood cell count.	2
14.	Laboratory class 14: White blood cell count. Observation of phagocytosis.	2
15.	Laboratory class 15: Preparation of blood smears from different species of	2
	animals. Leukocyte formula of animals of different species	
16.	Laboratory class 16. Determination of hemoglobin concentration in the blood of	2
	different animal species. Calculation of the color index.	
17.	Laboratory class 17. Hemolysis. Determination of the erythrocyte osmotic	2
	fragility	
18.	Laboratory class 18: Preparation of heme crystals. Spectral analysis of blood.	2
19.	Laboratory class 19: Red blood cell sedimentation rate. Determination of the rate	2
	of blood clotting.	
20.	Laboratory class 20. Blood types. Determination of blood compatibility in	2
	animals. Rh factor.	
21.	Laboratory class 21: Module test	2
	Total for module 2	26
	Module 3: Physiology of the cardiovascular system and respiratio	n.
22.	Laboratory class 22. Registration of cardiac activity in a frog. Analysis of the	2
	mechanocardiogram. Extrasystole.	
23.	Laboratory class 23: Cardiac automaticity. Stannius ligatures.	2
24.	Laboratory class 24. Effect of temperature on heart function. The effect of	2
	potassium, calcium ions and the hormone adrenaline on the isolated frog heart.	
	The effect of the vagus nerve on the work of the frog heart.	
25.	Laboratory class 25. Reflex cardiac arrest of the frog. Trigeminal reflex.	2
26.	Laboratory class 26. Electrocardiography. Blood pressure measurement.	2
	Comparative assessment of blood pressure in arteries and veins.	
27.	Laboratory class 27: Auscultation and percussion of the heart muscle.	2

Examination of the heartbeat, pulse.28.Laboratory class 28.Demonstration of frog lung movements in the Donders	2
	_
apparatus. Function of the intercostal muscles. Observation of of ciliary	
epithelium movements. Analysis of inhaled and exhaled air.	
29. Laboratory class 29: Determination of vital capacity of the lungs. Determination	2
of minute lung volume. Pneumography	_
30. Laboratory class 30. Auscultation and percussion of the lungs. Counting the	2
number of respiratory movements in animals of different species. Determination	
of the type of respiration in animals.	
31. Topic 31. Module test	2
Total for Module 3	20
Module 4. Physiology of metabolism, energy, excretion, lactation.	
32. Laboratory class 32. Determination of the energy metabolism rate in farm	2
animals. Measurement of body temperature.	
33. Laboratory class 33. Examination of urine of animals of different species.	2
Macroscopic examination of urine. Microscopic examination of urine. Organised	
and unorganised urine sediments.	
34. Laboratory class 34 Determination of intramammary pressure in the mammary	2
gland. Milk examination. Observation of milk fat globules under the microscope.	
35. Laboratory class 35. Module test	2
Total for Module 4	8
Module 5: Physiology of the endocrine system and central nervous system	m.
36. Laboratory class 36. The effect of adrenaline on the pupil of the eye.	2
Hypophysectomy in frogs. The effect of adrenaline and pituitrin on	_
chromatophores. The effect of insulin on blood glucose levels. Induction of	
molting in chickens using thyroid gland preparations.	
37. Laboratory class 37. Spinal reflexes. Determination of reflex latency. Receptive	2
field. Effect of stimulus intensity on reflex latency	-
38. Laboratory class 38. Irradiation and summation of excitation in the spinal cord.	2
Reflex muscle tone. Dominant excitation. Sechenov's inhibition. Inhibition of	
spinal reflexes in frogs	
39. Laboratory class 39. Module test	2
Total for module 5	8
Module 6: Physiology of higher nervous activity and analysers.	
40. Laboratory class 40. Methods of conditioning reflex formation. Formation of	2
salivary-food, motor-defensive, and motor-food conditioned reflexes	
41. Laboratory class 41. Inhibition of conditioned reflexes.	2
42. Laboratory class 42. Visual analyzer. Fundus examination in animals	2
(ophthalmoscopy). Pupillary light reflex. Reflexes induced by corneal	-
stimulation. Determination of the near point of vision. Diagnosis of color vision	
deficiencies (color blindness). Blind spot in the eye (Mariotte's experiment).	
Visual illusions	
43. Laboratory class 43. Auditory analyzer. Determination of auditory acuity.	2
Localization of the sound source. Bone and air conduction.	-
44. Laboratory class 44. Cutaneous analyzer. Clinically significant reflexes.	2
Determination of the spatial threshold of tactile sensitivity (esthesiometry).	
Vestibular analyzer. Examination of the otolith apparatus. Gustatory analyzer.	
Determination of the taste sensitivity threshold.	
45. Topic 45. Module test	2
Total for module 6	12
Total	90

5. Topics of self-study topic

No	Topics of sen-study topic Topic	Hours
	Introduction to animal physiology.	4
	History of the development of physiological science. Subject matter, methods,	
	and research techniques. The organism and its properties.	
	General properties of excitable tissues.	8
	Excitation, excitability, and irritability. Stimuli and their classification. Signs of	0
	excitation. Conditions necessary for the development of excitation.	
	Relationship between the intensity and duration of a stimulus. Phases of	
	excitability. Functional mobility (lability). Optimum and pessimum of stimulus	
	frequency and intensity. Parabiosis and its phases. Brief history of bioelectricity	
	research. Types (categories) of bioelectric currents. Mechanism of excitation.	
	General characteristics of digestion.	8
	Digestion in the oral cavity.	0
	The essence of digestion. Functions of the digestive system. Digestion in the	
	oral cavity. Features of salivation in different animals. Swallowing	
	Blood is the internal environment of the body.	8
	Functions of blood. Blood volume. Composition and physicochemical	0
	properties of blood. Composition of blood plasma. Blood buffer systems. Blood	
	proteins and their significance. Hemoglobin. Blood cells and their functions.	
	Physiology of blood circulation.	4
	Physiological properties of cardiac muscle. Concept of the circulatory system	4
	and its phylogenetic development. The heart as the central organ of the	
	circulatory system. Cardiac cycle. Periods and phases of cardiac activity.	
	Mechanical and acoustic phenomena during cardiac contraction. Physiological	
	characteristics of cardiac muscle. Cardiac automatism. Conducting system.	
	Electrical activity of the heart.	
	Physiology of respiration.	4
	Concept of respiration. Stages of respiration. Mechanism of breathing.	
	Respiratory rate. Vital capacity of the lungs. Regulation of respiration.	
	Respiratory characteristics under altered atmospheric pressure. Respiration in	
	birds.	
	Physiology of metabolism.	4
	Protein metabolism. Metabolism as the fundamental condition of life. Essence	
/	of metabolism. Types of metabolism. General regulation of metabolism. Protein	
	metabolism and its regulation.	
	Physiology of excretion.	4
	Physiology of the skin. Essence of excretion. Excretory organs. Structural	-
	characteristics of the urinary system. Mechanism of urine formation. Regulation	
	of renal function. Role of kidneys in maintaining water-salt homeostasis and	
	acid-base balance. Quantity, properties, and composition of urine. Urine	
	excretion and its regulation. Specifics of urine composition and excretion in	
	domestic birds.	
	General physiology of the endocrine system.	4
	The concept and general characteristics of endocrine glands. General	
	characteristics of hormones. Physiological effects of hormones. Mechanisms of	
	hormonal action	
	Central nervous system physiology.	4
	Evolution of the nervous system. Structure and function of neurons. Structure	
	and function of neuroglia. Reflex activity of the nervous system. Classification	
	of reflexes. Reverse afferentation. Nerve centres and their properties.	
	Physiology of higher nervous activity.	8

the cerebral cortex. Insight. Dynamic stereotype. Instinct. Signal systems of reality. Sleep and hypnosis. Total	60
The cerebral cortex. Structure, functions and research methods. Reflexes, their classification, rules for developing conditioned reflexes. Types of inhibition in	

6. Methods of assessing expected learning outcomes:

- oral or written survey;
- interview;
- test;
- defending laboratory/practical, design/graphical works, projects;
- peer-to-peer assessment, self-assessment.

7. Teaching methods:

- problem-based method;
- practice oriented studying method;
- case method;
- project education method;
- research-based method;
- learning discussions and debates method;
- team work, brainstorm method
- -

8. Result assessment.

The knowledge of the higher education applicant is assessed using a 100-point grading scale, which is then converted into a national grade in accordance with the current "Regulations on Examinations and Credits at NUBiP of Ukraine.".

8.1. Distribution of points by types of educational activities

Educational activity	Results	Assesment
Module 1: Introduction. Physiology of excitable tissues		
Laboratory class 1: Introductory	Understand the subject and	5
lesson. Laboratory safety	objectives of physiology. Be	
	familiar with safety regulations	
	for laboratory work	
Laboratory class 2. Analysis of the	PLO1, 3, 5. Know the	10
reflex arc of conditioned and	fundamental concepts of	
unconditioned reflexes. Preparation	physiology that describe the	
of a neuromuscular preparation.	functions occurring in the	
Laboratory class 3. Effect of different	animal body: excitability,	10
stimuli on neuromuscular	irritability, conductivity,	10
specimen.Determination of the	contractility, excitation,	
threshold of excitability. Types of	stimulus, reflex arc, rheobase,	
muscle contraction	useful time, chronaxie, and	
Laboratory class 4. Bioelectrical	threshold stimulus strength.	10
phenomena in tissues. Experiments of		

	D 11 4 1 4 1 4	
Galvani. Currents of rest, damage, action. Currents of human hands.	Be able to determine tissue	
	excitability, threshold stimulus	5
Laboratory class 5. Effect of load on	strength, and lability. Be proficient in using	5
muscle function. Dynamometry.	centrifuges, pH meters,	5
Laboratory class 6. Phases of	photoelectric colorimeters, and	5
parabiosis.	other modern laboratory	
Laboratory class 7. The effect of	•	
direct current on the nerve. The polar	equipment for conducting	
law. Physiological electrotonus	physiological studies of the animal organism.	
	annnaí organism.	
Self-Study 1.	Use the knowledge gained to	5
, ,	complete tasks	
Self-Study 2.	Use the knowledge gained to	10
	complete tasks	
Module test 1	•	30
Total for module 1		100
	Digestive and blood physiology	
Laboratory class 8: Observation of	PLO1, 3, 5. To know the	5
feed and water intake by animals.	physiological principles of	
Determination of the quantity and	digestion in various sections of	
viscosity of saliva obtained from	the gastrointestinal tract; the	
animals under the influence of	composition of digestive juices	
various stimuli (rusks, milk,	and their functional	
hydrochloric acid). The role of saliva	significance; the motor	
in the act of swallowing.	function of different parts of	
Laboratory class 9. Phases of gastric	the gastrointestinal tract; the	5
juice secretion. Investigation of the	role of bile; the processes of	
effect of gastric juice on protein.	nutrient absorption; the	
Study of the action of chymosin.	mechanism of vomiting; the	
Laboratory class 10. Observation of	process of defecation; the	5
infusoria of the rumen contents.	regulation of functions of	
Observation of the rumination	different segments of the	
process. Study of the motor function	gastrointestinal tract; the	
of the rumen.	functional importance and	
Laboratory class 11: Digestion in the	properties of the components	5
intestine. Bile. Evacuation function of	of blood; and the processes of	
the stomach.	hematopoiesis.	
Laboratory class 12. Red blood cell	To understand the functions of	5
count.	the digestive system in the	
Laboratory class 13: White blood cell	animal body; the functions of	5
count. Observation of phagocytosis.	blood in the animal organism.	
Laboratory class 14: Preparation of	To be able to investigate the	5
blood smears from different species	motor function of the rumen;	
of animals. Leukocyte formula of	determine the number of	
animals of different species	erythrocytes, leukocytes, and	
Laboratory class 15. Determination of	thrombocytes; perform a	5
hemoglobin concentration in the blood	leukocyte differential count;	
of different animal species.	measure hemoglobin	
Calculation of the color index.	concentration, erythrocyte	
Laboratory class 16. Hemolysis.	sedimentation rate (ESR), and	5
Determination of the erythrocyte	color index; and determine	
osmotic fragility		

	4 4 4 4 4 4 4 4	_
Laboratory class 17: Preparation of	blood compatibility between	5
heme crystals. Spectral analysis of	donor and recipient.	
blood.	To use laboratory equipment,	
Laboratory class 18: Red blood cell	reagents, and modern devices	5
sedimentation rate. Determination of	for the analysis of blood	
the rate of blood clotting.	parameters.	
Laboratory class 19. Blood types.		5
Determination of blood compatibility		
in animals.		
Self-Study 1.	Use the knowledge gained to	5
5	complete tasks	
Self-Study 2.	Use the knowledge gained to	5
	complete tasks	C
Module test 2.		30
Total for module 2		100
Educational work		$(M1 + M2)/2*0.7 \le 70$
Semester credit		30
	vascular and respiratory physio	
Laboratory class 20. Registration of	PLO1, 3, 5. To know the	10
cardiac activity in a frog. Analysis of	functional significance of the	
the mechanocardiogram.	heart and the circulatory	
Extrasystole.	system in animal organisms;	
Laboratory class 21: Cardiac	the functional role of the	5
automaticity. Stannius ligatures.	components of the cardiac	
Laboratory class 22. Effect of	conduction system; the	5
temperature on heart function. The	interrelationship between	C C
effect of potassium, calcium ions and	cardiac function and the	
the hormone adrenaline on the	activity of other systems and	
isolated frog heart. The effect of the	organs; the regulation of	
vagus nerve on the work of the frog	cardiac activity; the	
heart.	trigeminovagal reflex; the	
Laboratory class 23. Reflex cardiac	physiological basis of	5
		5
arrest of the frog. Trigeminovagal	respiration. To understand the roles of	
reflex.		10
Laboratory class 24.	minerals, vitamins, enzymes,	10
Electrocardiography. Blood pressure	and hormones in animal	
measurement. Comparative	physiology and their influence	
assessment of blood pressure in	on the biochemical processes	
arteries and veins.	within the animal body.	
Laboratory class 25: Auscultation and	To be able to assess the	5
percussion of the heart muscle.	functional state of the	
Examination of the heartbeat, pulse.	myocardium and the	
Laboratory class 26. Demonstration	circulatory system; perform	5
of frog lung movements in the	electrocardiography; conduct	
Donders apparatus. Function of the	auscultation and percussion of	
intercostal muscles. Observation of of	the heart; examine the pulse	
ciliary epithelium movements	and the apex beat; assess the	
Analysis of inhaled and exhaled air	functional status of the	
Laboratory class 27. Determination of	respiratory system; perform	5
vital capacity of the lungs.	auscultation and percussion of	5
Determination of minute lung	the lungs; determine vital lung	
•	capacity.	
volume. Pneumography	capacity.	

Laboratory along 28 Augoultation and	To you laborate my any income	10
Laboratory class 28. Auscultation and	To use laboratory equipment,	10
percussion of the lungs. Counting the	reagents, and modern devices	
number of respiratory movements in	for investigating the functional condition of the cardiovascular	
animals of different species.		
Determination of the type of respiration in animals	and respiratory systems.	
Self-Study 1.	Use the knowledge gained to	5
Self-Study 1.	complete tasks	5
Self-Study 2.	Use the knowledge gained to	5
Sen-Study 2.	complete tasks	5
Module test 3		30
Total for module 3		100
	f metabolism, energy, excretion	
Laboratory class 29. Determination of	PLO1, 3, 5. To know: the	15
the energy metabolism rate in farm	concept of basal metabolic rate	15
animals. Measurement of body	and the factors that influence	
	its value; the functions of the	
temperature.		15
Laboratory class 30. Examination of	thermoregulatory center; the functions of the kidneys and	15
urine of animals of different species. Macroscopic examination of urine.	their role in maintaining	
-	homeostasis; the functional	
Microscopic examination of urine.	features of the nephron; the	
Organised and unorganised urine	structure and functional	
sediments.	characteristics of the	15
Laboratory class 31. Determination of		15
intramammary pressure in the	mammary gland; the processes	
mammary gland. Milk examination.	of lactopoiesis. To understand: the	
Observation of milk fat globules		
under the microscope.	physiological processes of metabolism and energy	
	exchange occurring in the	
	animal body; the mechanisms	
	of physical and chemical	
	thermoregulation; the	
	mechanism of urine formation;	
	the stages of milk synthesis and its components; the	
	mechanisms of regulation of	
	milk secretion and milk	
	ejection.	
	To be able to: measure body	
	temperature in animals of	
	different species; conduct	
	studies of organoleptic,	
	physicochemical parameters,	
	and perform microscopy of	
	urinary sediments in animals	
	of different species; conduct	
	studies of the organoleptic and	
	physicochemical	
	characteristics of milk.	
	To use modern laboratory	
	instruments, reagents, and	
	equipment to determine the	
	equipment to determine the	

[
	level of energy metabolism, as	
	well as the organoleptic and	
	physicochemical parameters of	
	animal urine and milk.	10
Self-Study 1.	Use the knowledge gained to	10
	complete tasks	15
Self-Study 2.	Use the knowledge gained to	15
	complete tasks	20
Module test 4		30
Total for module 4		100
	e endocrine system and central n	
Laboratory class 32. The effect of	PLO1, 3, 5. To know the	15
adrenaline on the pupil of the eye.	functional characteristics of	
Hypophysectomy in frogs. The effect	the endocrine glands, their	
of adrenaline and pituitrin on	hormones, and their	
chromatophores. The effect of insulin	physiological significance. To	
on blood glucose levels. Induction of	understand the regulation of	
molting in chickens using thyroid	the activity of the endocrine	
gland preparations.	(ductless) glands.	
Laboratory class 33. Spinal reflexes.	The basic mechanisms of	15
Determination of reflex latency.	hormone action. The role of	
Receptive field. Effect of stimulus	hormones in regulating	
intensity on reflex latency	homeostasis and the adaptive	
Laboratory class 34. Irradiation and	responses of the organism.	15
summation of excitation in the spinal	To know the physiology of the	
cord. Reflex muscle tone. Dominant	neuron and the mechanisms of	
excitation. Sechenov's inhibition.	interneuronal communication.	
Inhibition of spinal reflexes in frogs	The ascending and descending	
	pathways of the central	
	nervous system. The properties	
	of neural centers. The reflex	
	centers of the medulla	
	oblongata and the midbrain.	
	The types of inhibition in the	
	central nervous system (CNS).	
	The functions of the	
	cerebellum and its role in the	
	regulation of motor activity.	
	The structure and functions of	
	the cerebral cortex	
Self-Study 1.	Use the knowledge gained to	10
	complete tasks	
Self-Study 2.	Use the knowledge gained to	15
	complete tasks	
Module test 5		30
Total for module 5		100
	of higher nervous activity and a	
Laboratory class 35. Methods of	PLO1, 3, 5. To know the	10
conditioning reflex formation.	physiological significance of	
Formation of salivary-food, motor-	the limbic system and basal	
defensive, and motor-food	ganglia in the coordination of	
conditioned reflexes	movements and behavioral	

Total for the course	(Acad	lemic work + exam) \leq 100
Exam		30
Educational work	(M1 + M2 + M3 + M)	$M4 + M5 + M6)/6*0.7 \le 70$
Total for Module 6		100
Module test 6	complete tasks	30
Self-Study 1.	esthesiometry, and determine temperature and tactile sensitivity. To apply modern techniques for studying sensory systems. Use the knowledge gained to	20
	of sensory systems; and the interaction between analyzers. To be able to assess visual and auditory acuity, perform ophthalmoscopy,	
Examination of the otolith apparatus. Gustatory analyzer. Determination of the taste sensitivity threshold.	the mechanisms of pain, tactile, and thermal sensitivity; the mechanisms of regulation	
threshold of tactile sensitivity (esthesiometry). Vestibular analyzer.	comprehend theories of hearing, vision, and olfaction;	
analyser. Clinically significant reflexes. Determination of the spatial	auditory, vestibular, and cutaneous analyzers. To	10
acuity. Localization of the sound source. Bone and air conduction. Laboratory class 39. Cutaneous	fundamentals of the theory of sensory systems. To describe the functions of the visual,	10
experiment). Visual illusions Laboratory class 38. Auditory analyzer. Determination of auditory	of analyzers (sensory systems), and the mechanisms of their functioning. To understand the	10
vision deficiencies (color blindness). Blind spot in the eye (Mariotte's	species. To know the classification, main properties of analyzers (sensory systems)	
stimulation. Determination of the near point of vision. Diagnosis of color	the types of higher nervous activity in animals of different	
Fundus examination in animals (ophthalmoscopy). Pupillary light reflex. Reflexes induced by corneal	and system functions. To be able to examine clinically relevant reflexes. To determine	
Laboratory class 37. Visual analyzer.	cortical regulation of organ	10
Laboratory class 36. Inhibition of conditioned reflexes	responses of the organism. To understand the mechanisms of	10

8.2. Scale for assessing student's knowledge

Student's rating, points	National grading (exam/credits)	
90-100	excellent	
74-89	good	
60-73	satisfactory	
0-59	unsatisfactory	

8.3. Ass	essment	policy
----------	---------	--------

Deadlines and exam	Assignments submitted past the deadline without valid	
retaking rules	reasons will be graded lower. Retaking module	
	assessments is allowed only with the instructor's	
	permission and upon presentation of valid justification	
	(e.g. sick leave).	
Academic integrity	Cheating during tests, credits, or exams is strictly	
rules	prohibited, including the use of mobile devices	
Attendance rules	Class attendance is compulsory. In case of valid reasons	
	(e.g., illness, international internship), individual study	
	may be arranged in an online format with the approval of	
	the faculty dean. Students with unexcused absences from	
	laboratory sessions are not allowed to take module	
	assessments. Students with unexcused absences from	
	lectures are not permitted to take the final module or the	
	exam	

9. Teaching and learning aids

- e-learning course of the discipline (<u>https://elearn.nubip.edu.ua</u>) MANDATORY;
- Links to digital educational resources;
- Lecture notes and their presentations (in electronic format);
- Textbooks, study guides, practical manuals;

10. Recommended sources of information

Main

1. Mazurkevych A.I., Karpovsky V.I., Trokoz V.O., Kladnytska L.V., Zhurenko O.V., Krivoruchko D.I., et al. Physiology of farm animals. Textbook. K.: Publishing centre of NULES of Ukraine. 2020. 456 c.

2. Karpovskyi V.I., Trokoz V.O., Zhurenko O.V., Kladnytska L.V., Kryvoruchko D.I. Comparative animal physiology. Study guide. Kyiv: NUBiP of Ukraine, 2023. 262 c.

3. Mazurkevych A.I., Trokoz V.O., Karpovsky V.I. et al. Physiology of farm animals. Workshop. K.: Publishing Centre of NULES of Ukraine. 2021. 240 c.

4. Mazurkevych A.Y., Karpovskyi V.I., Trokoz V.O., Kladnytska L.V., Zhurenko O.V., Kryvoruchko D.I., and others. Physiology of farm animals Textbook. K.: Publishing centre of NULES of Ukraine. 2012. 456 c.

5. Karpovskyi V.I., Tomchuk V.A., Kladnytska L.V., Zhurenko O.V., Trokoz V.O., Kryvoruchko D.I., Zhurenko V.V. Workbook for laboratory work in the discipline "Animal Physiology" in 2 parts. K.: Editorial and publishing department of NUBiP of Ukraine, 2024. 174 c.

Auxiliary

1. Shuranova, L., **Zhurenko, O.,** Kryvoruchko, D., Zhurenko, V., & Kulbako, O. Vegetative regulation of glucose, calcium, phosphorus, and haemoglobin levels in the blood of laying hens. Ukrainian Journal of Veterinary Sciences, 2024. 15(4), 112-127. doi: 10.31548/veterinary4.2024.112.

2. **Zhurenko, O.,** Hryshchuk, I., Kryvoruchko, D., Zhurenko, V. Changes in unsaturated fatty acids in milk under vegetative regulation in dairy cattle. Scientific Journal 'Animal Science & Food Technologies', 2024, v. 15, n. 4, p. 49, doi. 10.31548/animal.4.2024.49

3. **Zhurenko, O.**, Kryvoruchko, D., Zhurenko, V., & Hryshchuk, I. Autonomic nervous system tone in poultry protein metabolism. Animal Science and Food Technology, 2024. 15(3), 30-44. doi: 10.31548/animal.3.2024.30.

4. Króliczewska, B., Hryshchuk, I., Karpovskyi, V., **Zhurenko, O.,** & Todoryuk, V. Influence of autonomic nervous system tone on the content of cholesterol and lipoproteins of different density in the blood of cows. Ukrainian Journal of Veterinary Sciences, 2023. 14(3), 85-99. doi: 10.31548/veterinary3.2023.85.

5. Role of the autonomic nervous system in the regulation of phosphorus and calcium metabolism in cows. Ukrainian Journal of Veterinary Sciences, 2021. 12(2): 38-45, h ps://doi.org/10.31548/ujvs2021.02.004

6. Wang, Shanshan MBBS; Hicks, Madelyn Hsiao-Rei MD; Barrett, Emily PhD; Martsenkovskyi, Dmytro MD, PhD; Holovanova, Irina MD; Marchak, Olga MS; **Ishchenko, Liudmyla** PhD; Fiedler, Nancy PhD; Haque, Ubydul PhD. Sleep Duration, Insomnia, and Associated Factors Among Ukrainians 1 Year After Russia's Full-Scale Invasion. Psychosomatic Medicine 86(8):p 690-699, October 2024. | DOI: 10.1097/PSY.000000000001337

7. Ganong W.F. Review of Medical Physiology. New York: Lange Medical Books McGraw-Hill, 2001. 732 p.

8. Loefiler K. Anatomie und Physiologie der Haustiere. Stuttgart, 2002. 614 p.

9. Cunningham J.G. Textbook of Veterinary Physiology. 4th ed. St. Louis: Saunders Elsevier, 2007. 592 p.

10. Sherwood L., Klandorf H., Yancey P.H. Animal Physiology: From Genes to Organisms. 2nd ed. Belmont, CA: Brooks/Cole Cengage Learning, 2013. 896 p.

11. Moyes C.D., Schulte P.M. Principles of Animal Physiology. 3rd ed. San Francisco: Pearson Benjamin Cummings, 2015. 792 p.

Information resources

http://biph.kiev.ua/en/Main_Page http://www.nbuv.gov.ua/ http://dglib.nubip.edu.ua:8080/jspui/