NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

"APPROVED"

at the meeting of the Department of Economic Cybernetics Protocol № 10 dated 18.05. 2023 Head of Department

D.Zherlitsyn

"REVIEWED" Program Coordinator of the educational program "Marketing" Program Coordinator

V.Geraimovych

PROGRAM OF THE COURSE

"Probability Theory and Statistics": Probability Theory and Mathematical Statistics

Specialty: 075 "Marketing " Educational program "Marketing" The Faculty of agrarian management Developer: Galaieva L.V. Associate Professor, Ph.D.

Kyiv - 2023

1.Description of the course"Probability Theory and Statistics":Probability Theory and Mathematical Statistics

Educational program, Specialty, Educational level					
Educational degree	"Bachelor"				
Specialty	075 "Marketing				
Educational program	« Marketing »				
Char	acteristics of the course				
Туре	Norm	native			
Total number of hours	150	(60)			
Number of ECTS credits	5 ((2)			
Number of content modules]	1			
Form of assessment	Ex	am			
Indicators of the course for full-time and part-time forms of study					
	Full-time form of study	Part-time form of study			
Course (year of study)	1	-			
Semester	2	-			
Lecture classes	15 h.	-			
Practical, seminar classes		-			
Laboratory classes	15 h.	-			
Self-study	30 h				
Individual assignments					
Number of weekly classroom hours	2 h.	-			
for the full-time form of study					

2. Purpose, objectives, and competencies of the course "Probability Theory and Statistics": Probability Theory and Mathematical Statistics

Purpose of discipline – to acquaint students with basic knowledge of the Probability Theory and Mathematical Statistics to solve the theoretical and practical economic problems.

Objectives

- to acquaint students with knowledge of basic definitions, theorems, rules, theorem proving;
- to develop practical skills for fulfill qualitative and quantitative mathematical analysis of random events, random variables and systems of values.
- to provide the prospective specialist in agricultural management with theoretical knowledge and practical skills in applying Probability Theory in economic-mathematical modeling. The final aim is to enable them to make analysis of results of farming industry and agrarian business.

The primary goals of the course are (tasks):

- To learn of main concepts of the Probability Theory and their data characteristics;
- To develop of logical thought and skills to solve a practical tasks;
- To define the special probability distributions, to analyze and to make decision.

Learning Outcomes:

The student should be competent in:

- the modern probability theory;
- theorems, methods and models;

The student should be able to:

• apply the probability to make a prognosis in economics.

Form of control: Exam.

Acquisition of competencies:

Integrated competency (IC): ability to solve complex specialized and practical tasks problems in the field of marketing activity or in the process training involving the application of relevant theories and methods and is characterized by complexity and uncertainty conditions.

General Competencies (GC):

GC 4. Ability to learn and master modern knowledge.

GC 5. Determination and persistence in relation to assigned tasks and assumed responsibilities.

GC 6. Knowledge and understanding of the subject area and understanding of professional activity.

GC 10. Ability to communicate in a foreign language.**Professional (special)** competencies (**PC**):

PC 3. The ability to determine the prospects for the organization's development

Program Learning Outcomes (PLO):

PLO 5. Identify and analyze the key characteristics of marketing systems of various levels, as well as the peculiarities of the behavior of their subjects.

PLO 9. Assess the risks of conducting marketing activities, establish the level of uncertainty of the marketing environment when making management decisions.

PLO 10. Explain information, ideas, problems and alternative options for making managerial decisions to specialists and non-specialists in the field of marketing, representatives of various structural units of the market entity.

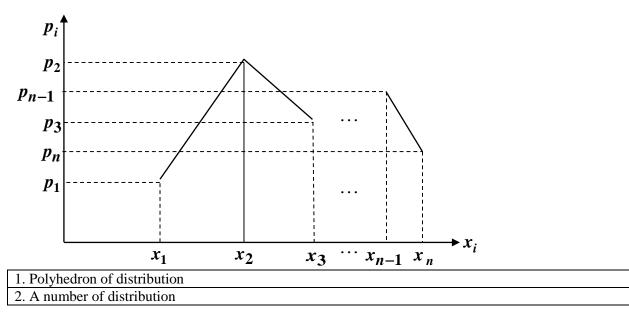
3. Program and structure of the course For Full-time education form of study

	Number of					f hours						
Names of content modules and tonics	Full-time form					Part-time form						
Names of content modules and topics	total including					total		including				
		1	S	lab	ind	SS		1	S	lab	ind	SS
1	2	3	4	5	6	7	8	9	10	11	12	13
	Conter	nt Module 1	. «Probabili	ty Theory	and Ma	athematic	al Statistics >	»				-
Topic 1. Concepts of Probability	10	3	3		4							
Research.												
Topic 2. Conditional Probability; the	4	1	1		2							
Law of Total Probability and Bayes'												
Theorem.												
Topic 3. Rules of Probability	6	2	2		2							
Distributions.												
Topic 4. Discrete Random Variables	10	3	3		4							
(DRV) and Continuous Random												
Variables (CRV)												
Topic 5. Probability Distributions	10	3	3		4							
Law of large numbers and central												
limit theorem.												
Topic 6. Systems of independent	8	Self		Self	8							
random variables.		study.		study.	0							
Topic 7. Elements of Mathematical	12	3	3		6							
Statistics												
Total Hours	60	15	15		30							

4. Laboratory class topics

N₂	Name	Hours		
1	Topic 1. Introduction to Probability. Concepts of Probability Research.	3		
2	Topic 2. Conditional Probability; the Law of Total Probability and Bayes' Theorem.	2		
3	Topic 3. Rules of Probability Distributions.	2		
4	Topic 4. Discrete Random Variables (DRV).	2		
5	Topic 5. Continuous Random Variables (CRV).	2		
6	Topic 6. Probability Distributions.	3		
7	Topic 7. Systems of independent random variables.	-		
8	Topic 8. Law of large numbers and central limit theorem.	1		
Total	Total Hours 15			

5. Self-study topics


N⁰	Name	Hours		
1	Topic 1. Introduction to Probability. Concepts of Probability Research.	5		
2	Topic 2. Conditional Probability; the Law of Total Probability and Bayes' Theorem.	5		
3	Topic 3. Rules of Probability Distributions.	10		
4	Topic 4. Discrete Random Variables (DRV).	10		
5	Topic 5. Continuous Random Variables (CRV).	10		
6	Topic 6. Probability Distributions.	5		
7	Topic 7. Systems of independent random variables.	10		
8	Topic 8. Law of large numbers and central limit theorem.	5		
Total	Total Hours			

6.The example of exam tasks

UNIVERSITY	OF LIFE AND	ENVIRONMEN	NTAL SC	CIENCES OF UKRAINE		
Department				Approved		
		m variant .No	1	Head of the Department of		
				Statistics and Economic		
		From the discipline		Analysis		
-				•		
				(I.D.Lazaryshyna)		
		Statistics"		(signature)		
•						
-				Head of the Department of Economy Cybernetics		
				(D.M. Zherlitsyn)		
educational y	/ear			(signature)		
				2023		
10 1 1 1 4		· · · · ·				
l Probability. In	dependence of	Events. (10b)				
value $(\mathbf{M}(\mathbf{v}))$;f	the probability	distribution of m	narke at t	he exam for some students is		
	the probability		iai kā at t	ne exam for some students is		
	2	4		5		
				5		
0,1	0,5	0,3	0	,1		
sample of the	employment s	status of the resid	dents in	a certain town is given in the		
	Employed		Un	employed		
)		
with a transferred to the second s		hann a	100)		
•	•	true.				
	male.					
c. A male is unemployed.						
memproyee.						
s employed.						
	Test	(max 10 b)				
s employed.		1 /	$\overline{f}_{on}F(x)$.)		
s employed. (x) has all the		(max 10 b) listribution functi	$\overline{\mathbf{O}_{On}} F(\mathbf{x})$	·).		
s employed. (x) has all the True		1 /	\overline{f} on $F(x)$	·)		
s employed. f(x) has all the True False	properties of d	listribution functi		·)		
(x) has all the True False True graph of rel	properties of d	1 /		·).		
s employed. f(x) has all the True False	properties of d	listribution functi		·)		
(x) has all the True False True graph of rel	properties of d	listribution functi		·)		
(x) has all the True False ame graph of rep Ogive	properties of d lative frequency	listribution functi		·)		
(x) has all the True False ame graph of rep Ogive	properties of d lative frequency on on distribution	listribution functi		·)		
s employed. (x) has all the True False ame graph of rel Polygo Ogive Polygo Cumul	properties of d lative frequency on on distribution	listribution functi		·)		
s employed. (x) has all the True False ame graph of rel Polygo Ogive Polygo Cumul he function.	properties of d lative frequency on on distribution ate	selective	options?			
s employed. f(x) has all the True False ame graph of rel Polygo Ogive Polygo Cumul he function. $n - \overline{X}_{g}$. For no	e properties of d lative frequency on on distribution ate on grouped data	selective	options?			
s employed. (x) has all the True False ame graph of rel Polygo Ogive Polygo Cumul he function.	e properties of d lative frequency on on distribution ate on grouped data	selective	options?			
s employed. f(x) has all the True False ame graph of rel Polygo Ogive Polygo Cumul he function. $n - \overline{X}_{g}$. For no	e properties of d lative frequency on on distribution ate on grouped data	selective a)	options? $\overline{X}_{6} = \sum_{i=1}^{k}$	$\sum_{i=1}^{n} x_i n_i$		
s employed. (x) has all the True False ame graph of ref Polygo Ogive Polygo Cumul he function. $n - \overline{X}_{G}$. For no sing the formula	e properties of d lative frequency on on distribution ate on grouped data	selective a)	options? $\overline{X}_{6} = \sum_{i=1}^{k}$	$\sum_{i=1}^{n} x_i n_i$		
s employed. (x) has all the True False True False ame graph of rel Polygo Ogive Polygo Cumul he function. $n - \overline{X}_{6}$. For no sing the formula $-S^{2}$. For non s	properties of d lative frequency on on distribution ate on grouped data :: grouped data ra	selective a)	options? $\overline{X}_{6} = \sum_{i=1}^{k}$	$\sum_{i=1}^{n} x_i n_i$		
s employed. (x) has all the True False ame graph of ref Polygo Ogive Polygo Cumul he function. $n - \overline{X}_{G}$. For no sing the formula	properties of d lative frequency on on distribution ate on grouped data :: grouped data ra	selective a)	options? $\overline{X}_{6} = \sum_{i=1}^{k}$	$\sum_{i=1}^{n} x_i n_i$		
s employed. (x) has all the True False True False ame graph of rel Polygo Ogive Polygo Cumul he function. $n - \overline{X}_{6}$. For no sing the formula $-S^{2}$. For non s	properties of d lative frequency on on distribution ate on grouped data :: grouped data ra	selective a)	options? $\overline{X}_{6} = \sum_{i=1}^{k}$	$\sum_{i=1}^{n} x_i n_i$		
s employed. (x) has all the True False True False ame graph of rel Polygo Ogive Polygo Cumul he function. $n - \overline{X}_{6}$. For no sing the formula $-S^{2}$. For non s	properties of d lative frequency on on distribution ate on grouped data :: grouped data ra	selective a)	$\overline{X}_{\theta} = \frac{\sum_{i=1}^{k}}{D_{\theta} = \frac{\sum_{i=1}^{n}}{\sum_{i=1}^{n}}}$	$\frac{\sum_{i=1}^{n} x_{i}n_{i}}{n}$ $\sum_{i=1}^{n} (x_{i} - \overline{X}_{e})^{2}n_{i}$ n		
s employed. (x) has all the True False ame graph of red Polygo Ogive Polygo Cumul he function. $m - \overline{X}_{G}$. For no sing the formula	e properties of d lative frequency on on distribution ate on grouped data :: grouped data ra ila:	selective a)	$\overline{X}_{\theta} = \frac{\sum_{i=1}^{k}}{D_{\theta} = \frac{\sum_{i=1}^{n}}{\sum_{i=1}^{n}}}$	$\frac{\sum_{i=1}^{n} x_{i}n_{i}}{n}$ $\sum_{i=1}^{n} (x_{i} - \overline{X}_{e})^{2}n_{i}$ n		
s employed. (x) has all the True False True False ame graph of rel Polygo Ogive Polygo Cumul he function. $n - \overline{X}_{6}$. For no sing the formula $-S^{2}$. For non s	e properties of d lative frequency on on distribution ate on grouped data :: grouped data ra ila:	selective a)	$\overline{X}_{\theta} = \frac{\sum_{i=1}^{k}}{D_{\theta} = \frac{\sum_{i=1}^{n}}{\sum_{i=1}^{n}}}$	$\frac{\sum_{i=1}^{n} x_{i}n_{i}}{n}$ $\sum_{i=1}^{n} (x_{i} - \overline{X}_{e})^{2}n_{i}$ n		
s employed. (x) has all the True False ame graph of red Polygo Ogive Polygo Cumul he function. $m - \overline{X}_{G}$. For no sing the formula	e properties of d lative frequency on on distribution ate on grouped data :: grouped data ra ila:	selective a)	options? $\overline{X}_{6} = \sum_{i=1}^{k}$	$\frac{\sum_{i=1}^{n} x_{i}n_{i}}{n}$ $\sum_{i=1}^{n} (x_{i} - \overline{X}_{e})^{2}n_{i}$ n		
	Statistics at Economic Analysis & Department Economy Cybernetic 2022-2022 educational y 1 Probability. In value (M(x)) if ble: 2 0,1 A sample of the y that each of th oyed person is a oyed person is a	Statistics and EconomicExa Exa MalysisAnalysisFi $&$ "ProAnalysisFi $&$ "ProDepartment of Economy Cybernetics2022-2023 educational year2022-2023 educational yearQuest1 Probability. Independence of value (M(x)) if the probability ble: 23 0,123 0,10,5A sample of the employment s 800 y that each of the following is to oyed person is female. oyed person is male.	Statistics and Economic Analysis & Department of Economy CyberneticsExam variant № From the discipline "Probability Theory a Statistics"2022-2023 educational year2022-2023 educational yearQuestions (Tasks)1 Probability. Independence of Events. (10b)10001000value (M(x)) if the probability distribution of n ble: 2342340,10,10,50,30,3A sample of the employment status of the reside 8008001000y that each of the following is true. oyed person is female. oyed person is male.51000	Statistics and Economic AnalysisExam variant N_{2} _ 1 From the discipline "Probability Theory and Statistics"Department of Economy CyberneticsStatistics"2022-2023 educational yearQuestions (Tasks)1 Probability. Independence of Events. (10b)value (M(x)) if the probability distribution of marks at t ble: 2 3 4 2 $0,1$ 0,5 0,3 023420,10,50,23420,10,50,23420,10,50,30A sample of the employment status of the residents inEmployed 1000Un 40 800y that each of the following is true. oyed person is female. oyed person is male.		

4. Sample	variance - S^2 . For the grouped data: d) $S^2 = \frac{n}{n-1}D_6$,					
4. Random	n variable is					
1.	The quantitative characteristic of researches.					
2.	Size which is a result of researches can be that or another numerical value.					
3.	Root quadratic from a dispersion					
5. What is	designation of expected value?					
	(In the form of answers to give in a word)					
6. What fo	rmula is used for expected value of random variable:					
1.	$M(X) = m_x = x_1 \cdot p_1 + x_2 \cdot p_2 + \dots + x_n \cdot p_n = \sum_{i=1}^n x_i \cdot p_i$					
2.	$D(X) = M \left[(X - m_x)^2 \right] = \sum_{i=1}^n (x_i - m_x)^2 \cdot p_i$ $D(X) = M (X^2) - (M (X))^2$					
3.	$D(X) = M(X^{2}) - (M(X))^{2}$					
4.	$\sigma(X) = \sigma_x = \sqrt{D(X)}$					
7. Qualitat	ive - Categorical or Nominal: Examples are-					
1.	Temperatures, Salaries					
2.	Color, Gender, Nationality					
3.	Number of points scored on a 100 point exam, Scales of Measurement					
4.	Temperatures, Salaries, Nationality					
8. A	_ is a subset of the measurements selected from the population.					
1	sample					
2	census					
3	simple random sample					
4	random sample					
9. Randor	n Variables includes:					
1.	Discrete random variable					
2.	Continuous random variable					
3.	Discrete and continuous random variable					

. 10.What is this?

(

7. Samples of control questions, tests for assessing the level of knowledge acquisition by students Module 1

1.Basic Definitions: Events, Sample Space, and Probabilities.

2. Types of Probability. Objective or Classical Probability. Subjective Probability.

3. The Random Events. Definition.

4.Basic Definitions.

5. Combinatorial Concepts. Factorial. Permutations. Combinations.

6. The basic theorem: Intersection. Union. Definition.

7. Mutually exclusive sets. Definition.

8. Partition. Definition.

9.Sets: Diagrams.

10.Experiment. Definition.

11.Events: Definition.

12. Equally-likely Probabilities (Hypothetical or Ideal Experiments).

13.Basic Rules for Probability. Conditional Probability. Independence of Events.

14. The Law of Total Probability and Bayes' Theorem.

15. Random Variables. Definition.

16.Discrete and Continuous Random Variables.

17.Probability Density Function and Cumulative Distribution Function of Discrete Random Variables.

18. The numerical characteristics of Discrete Random Variables (Expected Values, Variance and Standard Deviation of a Random Variable).

19. Rules of Discrete Probability Distributions.

20. The Binomial Probability Distribution.

21.Mean (Expected Values – E(x)), Variance, and Standard Deviation of the Binomial Distribution.

22.Discrete Probability Distributions.

23.Continuous Random Variables.

24.Probability Density Function and Cumulative Distribution Function of Continuous Random Variables.

25.The numerical characteristics of Continuous Random Variables (Expected Values, Variance and Standard Deviation of a Random Variable).

26.Uniform Distribution.

27.Exponential Distribution.

28.The normal distribution.

29. Basic Definitions of Math Statistics

8. Teaching methods

- Lectures and Seminars (the use of modern information technology).
- Individual-study and module work (the use of modern information technology).

9. Forms of assessment

- Individual tasks.
- Module test.
- Exam

10.Rating grades according to modules

Distribution of grades received by students. The student's assessment is carried out in accordance with the Regulation "On Examinations and Credits at NULES of Ukraine" dated 26.04.2023, Protocol No. 8 from the Table.

National grade based on exam results	Student rating, points
"Excellent"	90 - 100
"Good"	74 - 89
"Satisfactory"	60 - 73
"Unsatisfactory"	0 - 59

Correlation between national and rating of the discipline

To determine the rating of the student (listener) for mastering the discipline R_{DIS} (up to 100 points) the obtained rating for certification R_{AT} (up to 30 points) is added to the rating of the student (listener) for academic work R_{AW} (up to 70 points): $R_{DIS} = R_{AW} + R_{AT}$

STUDENT ASSESSMENT CRITERIA

The "Excellent" grade is to be awarded to a student who has completely acquired the educational material and is able to present it logically and thoroughly. The theory would be related to practice. The student provides a background to correct answers, possesses different methodological skills and is able to solve additional tasks.

The "Good" grade is given to a student who has acquired the educational material, provides mostly correct answers, being able to use theoretical approaches at solving practical cases.

The grade "Satisfactory" is to be conferred to a student who has learned only educational material, but not in details; there are some mistakes made, not thorough implementation in doing tasks, being non-consecutive in responses.

To be evaluated with the grade "Unsatisfactory", a student should fail to have learnt a most of educational material, makes fatal errors, being slow in solving practical tasks.

11.Methodological Support

1. Galaieva L. Mathematics for economists, section "The Theory of Probability and Mathematical Statistics". Methodical textbook. K.: NULESU, 2022. 91p.

2. Галаєва Л.В., Глаголєва І.І., Шульга Н.Г. Теорія ймовірностей та математична статистика. Методичний посібник. К: НУБіП України, 2009. 56 с. http://elibrary.nubip.edu.ua/16959/

3. Скрипник А.В., Галаєва Л.В., Коваль Т.В., Шульга Н.Г. «Теорія ймовірностей ймовірнісні процеси та математична статистика». К.: ТОВ»Аграр Медіа Груп», 2017. 265 с.

http://elibrary.nubip.edu.ua/16947/

4. Скрипник А.В., Галаєва Л.В., Кравченко К.Я. «Вища та прикладна математика» Розділ «Теорія ймовірностей та математична статистика» Методичний посібник. К: «Аграр Медіа Груп». 2012. 144 с. <u>http://elibrary.nubip.edu.ua/16947/</u>

12. Educational and methodological support

Basic literature

1. Cox Dennis, Cox Michael. The Mathematics of Banking and Finance. The Atrium, Southern Gate, Chichester, John Wiley & Sons Ltd, 2016. 332 p.

2. John E. Freund's. Mathematical Statistic, USA, 2014

3. Devore Jay L., Berk Kenneth N. Modern mathematical statistics with applications. Belmont, Calif.: Thomson Brooks/Cole, 2007. 810p.

4. Drury C. Management and cost accounting. C&C Offset, China, 2016. 775p.

5. Keller, Gerald. Essentials of business statistics / Gerald Keller, Brian Warrack. Wadsworth, Inc., 2014. 593p.

6. Kennedy Peter. A guide to econometrics. Massachusetts: The MIT Press, 2015. 468p.

7. Morris R. Studies in mathematics education: The teaching of statistics. Unesko, 2016. 258 p.

8. Simon Carl P., Blume Lawrence. Mathematics for economists. New York, London: W.W.Norton & Company, 2017. 930p.

9. Ruric E. Wheeler, W.D.Peeples, Jr. Modern Mathematics. Brooks: Cole Publishing Company, 2016. 707p.

10. Studies in mathematics education. The teaching of statistics / R.Morris. Unesco, 2015. 258p.

Additional literature

- 11. Carl P. Simon, Lawrence Blume. Mathematics for economists. New York, London: W.W.Norton & Company, 1994. 930p.
- 12. Peter Kennedy. A guide to econometrics. Massachusetts: The MIT Press, 1998. 468.
- 13. Барковський В.В., Барковська Н.В., Лопатін О.К. Теорія ймовірностей та математична статистика. К.: ЦУЛ, 2012. 448 с.

14. Бугір М.К. Теорія ймовірностей та математична статистика. Тернопіль: Підручники та посібники, 1998. 176 с.

13. Recommended sources of information

Electronic Resources

- MOODLE: https://elearn.nubip.edu.ua/course/view.php?id=1827
- _Food and Agriculture Organization Corporate Statistical Database <u>http://faostat.fao.org</u>
- _Державна служба статистики України <u>http://www.ukrstat.gov.ua/</u>
- Market outlook report: <u>http://www.agr.gc.ca/pol/mad-dam/index_e.php?s1</u>

14.Non formal education

You can earn additional points in Probability Theory and Mathematical Statistics by completing the special courses. Completion of each course (if it has been certified) is assessed at 10 points and added to the points for educational work. Points added cannot exceed 20!

Probability and Statistics: To p or not to p? <u>https://www.coursera.org/learn/probability-statistics</u> Linear Regression for Business Statistics: <u>https://www.coursera.org/learn/linear-regression-business-statistics#syllabus</u> Introduction to Probability and Data: <u>https://www.coursera.org/learn/probability-intro#syllabus</u> Basic Statistics: <u>https://www.coursera.org/learn/basic-statistics#syllabus</u> Business Applications of Hypothesis Testing and Confidence Interval Estimation: <u>https://www.coursera.org/learn/hypothesis-testing-confidence-intervals</u>