NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of General, Organic and Physical Chemistry

"APPROVED"

Dean of the faculty of Construction and design _____(Ruzhylo Z.V.) "____"____2020.

REVIEWED AND APPROVED

at the meeting of the department of General, Organic and Physical chemistry Protocol № 10 from 22. 05. 2020 Head of the Department _____(Kovshun L.O.)

SYLLABUS Academic Course "CHEMISTRY"

Speciality

Educational and professional program Faculty Developer <u>192 – Construction and Civil</u> <u>Engineering</u> <u>Construction and Civil</u> <u>Engineering</u> <u>Construction and design</u> <u>Senior Assistant Professor, PhD</u> Kravchenko Olha

Kyiv - 2020

1.Description of the course

Chemistry is a fundamental discipline, which provides engineering students with a background in important concepts and principles of chemistry. Some of the most important objectives, though, are more —globall in nature. Emphasis will be placed on those areas considered most relevant in a civil engineering context, and practical applications in construction and civil engineeringwill be examined. These goals deal with the overall relationship between chemistry (or science in general) and civil engineering rather than with the details of any particular chemical principle.

Education and qualification level	Bachelor					
Specialty	192 – Construction a	nd Civil Engineering				
Educational and	Construction and	Civil Engineering				
professional program						
Characteris	stics of training programme	}				
Туре	Obli	gatory				
The total number of academic hours		90				
Number of ECTS credits		3				
Number of modules		3				
Forms of control	Ez	Exam				
Indicators of academic discipline f	or full-time and part-time f	orms of training course				
	Full-time	Part-time				
Year (course)	2020-2021	2020-2021				
Semester	1	1				
Lectures	15 hours	4				
Laboratory sessions (activities)	30 hours	10				
Self-study	45 hours	76				
Independent study						
Number of hours a week						
Full-time leaning:						
auditorium	3 hours	1				
own training –	3 hours	4				

Field of knowledge, direction, specialty, education and qualification level

2. Goal, objectives and competencies of academic discipline

<u>The main goals</u> – to provide a solid foundation in the study of matter and its changes and to understand and apply basic chemistry concepts in construction and civil engineering.

Learning outcomes of course is the student's ability as a future specialist:

- outlines the historical development of major principles, concepts and ideas in chemistry;
- describes applications of chemistry which affect society or the environment;
- explains trends and relationships between elements in terms of atomic structure, the periodic table and bonding;
- describes chemical changes in terms of energy inputs and outputs;
- compiles the different chemical reaction, describes factors that influence the type and rate of chemical reactions;
- relates the uses of carbon to the unique nature of carbon chemistry;
- applies simple electrochemical processes;

Upon completion of this course:

Students will know:

- the nature and practice of chemistry,
- the implications of chemistry for society and environment,
- atomic structure, the periodic table and bonding,
- chemical reactions, including acid/base reactions and chemical equilibrium,
- carbon chemistry,
- electrochemical applications.

Student will be able to:

- planning investigations,
- conducting simple analysis,
- working with laboratory equipment,
- working with different chemical compound.

Acquisition of competencies:

General competencies (GC):

- Ability to evaluate, interpret and synthesize theoretical information and practical data in the field of chemistry;
- Ability to perform basic experimental work, summarize and systematize the results;
- Ability to determine the composition, structure and chemical properties of organic and inorganic compounds;

Professional (special) competencies (PC):

- Ability to applicate of construction materials, alloys, lubricants, taking into account their chemical properties.
- Ability to control chemical processes occurring during construction and civil engineering

3. Program and structure of the course

Module 1. The basics atomic-molecular theory of the matter structure.

Lecture 1. The main concepts and laws of chemistry.

The place of chemistry among the natural science subjects. The subject and tasks of general chemistry. The historical stages of chemistry development. contribution of Ukrainian scientists in the development of chemical science. The role of chemistry in branch engineering. The main direction of chemicalization of mechanical engineering. Agroecological problem of chemicalization in Ukraine. Chemistry and environmental protection. The basic concepts of atomic-molecular theory: a molecule, atom, chemical element, simple and complex matter, relative atomic and molecular masses, mole, molar mass. The basic laws of chemistry: the law of conservation of mass and energy, the law of equivalents, the law of the constancy of the chemical compounds, Avogadro's law, their application in branch engineering. The modern principles of classification and nomenclature of inorganic compounds. The genetic link between the main classes of inorganic compounds.

Lecture 2. The atomic structure.

The main role of atomic structure in prediction of the physical and chemical properties of elements and their compounds. Modern ideas about the structure of the atom. The structure and dimensions of the nucleus, the electron. The wave nature of the electron. Quantum numbers. The concept of orbital, energy of levels, sublevels and their value. The principles of filling orbitals by electrons. Electron and graphic formulas.

Lecture 3. The periodic law and Mendeleev's periodic table of chemical elements.

The modern formulation of periodic law. Mendeleev's periodic system of elements. The concept of group, sub-group, period., s-, p-, d-elements. The main patterns of the periodic system: metal and non-metal, acid-basic, redox properties of elements. The concept of atom radius, ionization energy, electron affinity, electronegativity and their changes in periods and groups of the periodic system.

Lecture 4. The chemical bond and the structure of molecules.

The modern concepts about the nature of the chemical bond. The main types and features of chemical bonds. Covalent bond. Exchange and donor-acceptor mechanism of formation of a covalent bond. Method of valence bonds. Properties of covalent bond: saturation, frequency, orientation in space, polarity. Ionic bond. The nature of ionic bond, it's degree. The distinguish be-tween ionic and covalent bonds. Hydrogen bond. The mechanism of its formation, characteristics and role in the life processes of mechanical engineering.

The structure of molecules. The intermolecular interactions. The chemical bond and features of compounds.

Module 2. The main patterns of chemical reactions.

Lecture 1. Thermodynamic laws of chemical transformations.

The basic concepts of chemical kinetics. The rate of chemical reaction. The factors affecting to the rate of a chemical reaction. Law of mass action - basic law of chemical kinetics. The rate constant of a chemical reaction. The concept of activation energy, heat of reaction. Effect of tem-perature on the rate of reaction. Van't Hoff Rule. The concept of catalysis and its nature. Enzymes as catalysts of biochemical processes.

Lecture 2. The chemical equilibrium and conditions of its shift.

Reversible and irreversible reactions. The concept of chemical equilibrium. Constant of chemical equilibrium. The shift of chemical equilibrium. The influence of external factors on chemical equilibrium. Le Chatelier's principle. The concepts of chemical kinetics and chemical equilibrium within the meaning of chemical processes for production and processing of branch engineering.

Lecture 3. The solutions of electrolytes

The general idea about dispersion systems. The concept of the solutions and their role in the nutrition of plants and animals. The physical and chemical nature of the solutions. Hydrates. The concept of the crystalline. The solubility. Ways of expressing concentration of solutions.

The concept of electrolytes and non-electrolytes solutions and their properties. The main posi-tions of electrolytic dissociation theory.

The mechanism of electrolytic dissociation. The quantitative characteristics of the dissociation. Strong and weak electrolytes. The dissociation constant of weak electrolytes, it's connection with the degree of dissociation. Amphoteric electrolytes. Reactions in solutions of electrolytes. Ionic reactions.

Lecture 4. The solution of non-electrolytes.

The concept of heterogeneous systems. Colligative properties of solutions of non-electrolytes and their application in engineering. The disperse state of matter. The general idea of heterogeneous solutions (disperse systems, colloid solutions) and features of their properties. Surface phenomena at the interface. Sorption processes. Disperse systems in nature.

Lecture 5. The redox processes and their conditions.

The general concept of redox processes. The most important redox processes in living organisms, nature and technological processes. Degree of oxidation of the elements in the compounds. Typical oxidizing and reducing agents.. The compilation of redox equations. The classification of redox reactions. The influence of medium on redox reactions. The concept of re-dox potentials. The motion of redox reactions and determination of its direction. The redox processes in engineering and environment.

Lecture 6. Bases of electrochemistry.

The object and purpose of electrochemistry. The conversion of chemical energy into electrical energy. The mechanism of electrode potentials of metals. Standard electrode potentials. Several voltages metals. Nernst equation. Oxidative - reductive processes in electrolytic cells. Chemical current sources. Batteries. Fuel cells. The value of chemical power sources in engineering.

Lecture 7. Electrolysis of melts and solutions of electrolytes as oxidation - reduction process.

The conversion of electrical energy into chemical. Laws of of electrolysis of melts. Features electrolysis of aqueous solutions. The quantitative characteristics of the process of electrolysis Faraday laws. Directions practical use electrolysis: Electroplating, electrometallurgy, electrosynthesis. Value electrolysis to obtain some structural materials, their decoration and protection against corrosion.

Lecture 8. Corrosion processes and materials protection against corrosion.

Overview of corrosion processes. The types and mechanisms of corrosion. Corrosion of metals and alloys as oxidative – restorative process. Incompatibility metals in metal structures Methods for determining the rate of corrosion. Methods of protection of metals, alloys and other construction materials from corrosion. The concept of corrosion inhibitors.

Module 3. Chemical elements and compounds of elements as the basis of inorganic and organic structural materials

Lecture 1. Properties of non-metals and their compounds in materials and excipients engineering.

General characteristics of non-metals and their position in the Periodic System D.I.Mendelyeyeva. The dependence of the properties of the electronic structure of atoms of non-metals. The use of non-metal compounds for the production of polymers, CFCs and preservatives, wood, glass, fire-resistant paint, fiberglass, chemical power sources, corrosion inhibitors, detergents, and in welding work in lighting technology, the vulcanization of rubber, and others.

Lecture 2. Chemistry of metals.

Regulation metals in the Periodic System D.I.Mendelyeyeva, general characteristics of metals. Features of the electronic structure of atoms. The physical properties of metals, electrical conductivity, thermal conductivity, ductility. Methods of obtaining metals and alloys, special alloys properties, heat resistance, lightness, corrosion resistance, hardness etc. Properties metals side subgroups ability to form complexes. Water hardness. Application of metals and their compounds in batteries, for the manufacture of mirrors, white, glass, glaze, decoration, electrical wires, tubes, semiconductors. Environmental problems of heavy metals.

Lecture 3. Bases of organic chemical compounds.

Features compounds wildlife. The theory of chemical structure of organic compounds A. Butlerova. Classification, nomenclature and isomerism of organic compounds. Structure and properties of hydrocarbons. Natural sources of hydrocarbons. And functional-element compound. The physiologically active substances. The use of organic substances for the manufacture of detergents, varnishes, mastics, waxes, dyes, explosives, polymers, fuels, etc.

Lecture 4. Polymeric materials and their applications in engineering.

General characteristics of Macromolecular Compounds. Natural and synthetic polymers. The reactions of polymers: polymerization and polycondensation. Physical state and properties of polymers. Plastics and modified polymers. The destruction and curing polymers. Rubber and rubber. Polymeric construction materials, adhesives, synthetic fiber, plexiglass, Phenoplast, Latinas, paints, foam, skloplasty, poroplast and others. Advantages and disadvantages of plastic construction materials in comparison with others.

Fuel - lubricants. Oil and oil products. Distillation and cracking of petroleum. Detonation stability fuels. Availability of Ukraine energy. The search for alternative sources of fuel. Biodiesel and shale gas..

Structure of the course "Chemistry"

			E-	11 4		He	ours		D			
	1	Г	Fu	ll time			1	r –	Par	t time	1 1	
Modules and topics	total	Ŧ	D	inclu		G 10	total		D	incluc		0.10
		L	Р	Lab	Ind	Self		L	P	Lab	Ind	Self
1	2	2	4	~	6	work	0	0	10	11	10	work
1	2	3	4	5	6	7	8	9	10	11	12	13
Module 1. Th		1	mic		cular	· · · · ·			er st	ructu	re	~
Topic 1. The main concepts and laws of chemistry	6	2		2		2	5,5	0,5				5
Topic 2. Atomic structure	6	2		2		2	6,5	0.5		1		5
Topic 3. The periodic law and Mendeleev's periodic table of chemical elements	5	1		2		2	5					5
Topic 4. The chemical bond and the structure of molecules.	6	1		2		3	6,5	0.5		1		5
Total	23	6		8		9	23,5	1.5		2		20
Мо	dule 2.	The	mai	in pat	terns	of chen	nical re	eactio	ons			
Topic 1. Thermodynamic laws of chemical transformations	6	-		2		4	5					5
Topic 2. The chemical equilibrium and conditions of its shift.	6	-		2		4	5					5
Topic 3. The solutions of electrolytes.	6	1		2		2	6,5	0.5		1		5
Topic 4. The solution of non-electrolytes	6	1		2		3	5					5
Topic 5. The redox processes and their conditions	6	1		2		3	5			1		4
Topic 6. Bases of electrochemistry.	6	1		2		3	5,5	0.5		1		4
Topic 7. Electrolysis of melts and solutions of electrolytes as oxidation - reduction process	6	1		2		3	5,5	0.5		1		4
Topic 8. Corrosion processes and materials protection against corrosion.	5	1		2		2	5			1		4
Total	47	6		16		24	42,5	1,5		5		36

	Module 3. Chemical elements and compounds of elements as the basis of inorganic and										
organic structural mat	terials				-	-		-			
Topic 1. Properties of	6	-		2		4	6			1	5
non-metals and their											
compounds in											
materials and											
excipients engineering											
Topic 2. Chemistry of	6	1		2		4	6,5	0,5		1	5
metals.											
Topic 3. Bases of	4	1		1		2	5				5
organic chemical											
compounds.											
Topic 4. Polymeric	4	1		1		2	6,5	0,5		1	5
materials and their											
applications in											
engineering											
Total	20	3		6		12	24	1		3	20
Total hours of the	90	15		30		45	90	4		10	76
course											

4. Topics of seminars

N⁰	Торіс	Hours
1		
2		

5. Topics of practical works

N⁰	Торіс	Hours
1		
2		
•••		

6. Topics of laboratory works

N⁰	Торіс	Hours
1.	Introduction. Equipment and safety in chemical laboratory.	1
	Methods of chemical experiments.	
2.	Bases of modern nomenclature and classification of	2(1)
	inorganic compounds.	
3.	The structure of the atom and Mendeleev's periodic law	2
4.	Determination of the types of chemical bonds between atoms	2(1)
	in compounds. The relative electronegativity of atoms.	
5.	Determination of the thermal effect of the neutralization and	2
	dissolution of anhydrous salts.	
6.	Calculation of kinetic parameters of the reaction according to	2
	the experiment.	

7.	Determination of the conductivity of electrolyte solutions.	
	Indicator method of pH solutions calculation.	2(1)
8.	The preparation of solutions given concentration	2
9.	The properties of metals in redox reactions.	2(1)
10.	The dependence of electromotive force from galvanic cells of	2(1)
	metals.	
11.	Investigation of electrolysis of aqueous solutions of	2(1)
	electrolytes. The calculations of the aount of substances using	
	Faraday's law.	
12.	Determination of corrosion mass index rate.	2(1)
13.	The chemical properties of non-metals and their compounds/	2(1)
14.	The chemical properties of metals and their compounds.	2(1)
15.	The genetic link between the classes of organic compounds,	1
	the methods of detection og organic compounds.	
16	The properties of polymers. Introduction to methods of	2(1)
	determining the quality of fuels.	

30hours (10hours)

7. Example of module tests

Module №1

«Atomic structure and chemical bond»

Variant № 1

1. The possible values of main(principal) quantum number are:

A.	integers from 0 to n-1;	B.	$+\frac{1}{2}, -\frac{1}{2};$
C.	integers from 1 to ∞ ;	D.	integers from $+ l$ to $- l$.

2. The total number of orbitals in an s-subshell is?.....:

(write right answer to the answer sheet)

3. Which electron configuration represents an atom Sb in the ground state:

A.	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶	$4d^{10}5s^25p^3;$ B.	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹	⁰ 4s ² 4p ⁶ 5s ² 5p ⁶ 5d ¹⁰ ;
C.	$1s^22s^22p^63s^23p^63d^{10}4s^24p^6$	$4d^85s^25p^5;$ D	$1s^22s^22p^63s^23p^63d^{10}$	$^{0}4s^{2}4p^{6}4d^{10}5s^{1}5p^{4}$

4. To give the characteristics of elements:

№ 17, № 50

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;
- the total number of electrons, the total number of shells, the total number of valence electrons;
- ➢ To compile electronic and graphic structure of atom of elements.
- > To determine the possible valence and oxidation number of element.
- > To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.
- > To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances formed by elements with atomic number 30and 8, specify the type of chemical bond of obtained compound

6.Determine the types of chemical bonds for the following compounds:

manganese; potassium carbonate; phosphate acid; calcium hydroxide; ferrum (III) sulfate

Variant № 2

1. What's formula determine value of secondary(azimunthal) quantum number:

Α.	2l + 1;	В.	$2n^2$;	C.	2(2l+1);	D.	0 ÷ n-1.		
2. Electro	2. Electronic structure of atom Manganese :								

(write right answer to the answer sheet)

3. The total number of shells (levels) of atom is equal to the number of..:

. .	The total number of shens (levels) of atom is equal to the number of										
	A.	Group ;	B.	Element;							
	С	Period;	D	Series.							

4. To give the characteristics of elements:

№ 15, № 40

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;

• the total number of electrons, the total number of shells, the total number of valence electrons;

- > To compile electronic and graphic structure of atom of element.
- > To determine the possible valence and oxidation number of element.
- \succ \Box To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.
- > To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances formed by elements with atomic number 16 and 19, specify the type of chemical bond of obtained compound

6.Determine the types of chemical bonds for the following compounds:

steel;	chrome (III) nitrate;	silicate acid;	carbon (IV) oxide;	chlorine

1. The total number of orbitals in an f-subshell is:

2. The orientation of an orbital inspace is specified by quantum number:

(write only one word to the answer sheet)

3. Which electron configuration represents an atom Zr in the ground state:

 			8 ×
A.	$1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^25p^2;$	B.	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ² 4p ⁶ 5s ² 5p ⁴ ;
Б.	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^25s^2;$	Γ	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^35s^1$

4. To give the characteristics of elements:

№ 7, № 23

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;
- the total number of electrons, the total number of shells, the total number of valence electrons;
- > To compile electronic and graphic structure of atom of element.
- > To determine the possible valence and oxidation number of element.
- \succ \Box To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.
- > To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances formed by elements with atomic number 7 and 8, specify the type of chemical bond of obtained compound

6. Determine the types of chemical bonds for the following compounds:

barium chlorate;	potassium carbonate;	2 molecule of fluoride acid;	zinc hydroxide;	scandium

Variant № 4

1. Which electron configuration reprsents an atom Ga in the ground state:

	······································		
A.	$1s^22s^22p^63s^23p^63d^54s^24p^6;$	B.	$1s^22s^22p^63s^23p^63d^{10}4s^24p^1;$
Б.	$1s^22s^22p^63s^23p^63d^{10}4s^14p^2;$	Γ	$1s^22s^22p^63s^23p^63d^94s^24p^2$

2. The maximum number of electron in a d-subshell is?

(write right answer to the answer sheet)

3. The possible values of spin quantum number are:

A.	. integers from 0 до n-	l; B.	$+\frac{1}{2}, -\frac{1}{2};$
Б.	integers from 0 до ∞	Γ	integers from $+ l \text{дo} - l$.

4. To give the characteristics of elements:

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;
- the total number of electrons, the total number of shells, the total number of valence electrons;
- > To compile electronic and graphic structure of atom of element.
- > To determine the possible valence and oxidation number of element.
- > To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.

№ 9, № 49

> To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances formed by elements with atomic number 19 and 53, specify the type of chemical bond of obtained compound

6.Determine the types of chemical bonds for the following compounds:

plumbum (II) nitrate;	stibium;	2 molecule of ammoniac;	zinc chlorate;	nitrogen (V) oxide
-----------------------	----------	-------------------------	----------------	--------------------

1. The common electronic structures of halogens are:

A. $(n-1)p^5ns^2$; B. $(n-1)dns^2$	S^1 ; C. ns^2np^5 ;	D. $ns^{2}(n-1)d$.
-------------------------------------	-------------------------	---------------------

2. The general rules for electron formulas compilation are :

(write right answer to the answer sheet)

3. Which electron configuration represents an atom Br in the ground state:

A.	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ 4s ² 4p ⁶ ;	B.	$1s^22s^22p^63s^23p^63d^{10}4s^24p^5;$
C.	$1s^22s^22p^63s^23p^64s^24p^54d^{10};$	D	$1s^22s^22p^63s^23p^63d^{10}4s^14p^6;$

To give the characteristics of elements:

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;
- the total number of electrons, the total number of shells, the total number of valence electrons;
- > To compile electronic and graphic structure of atom of element.
- > To determine the possible valence and oxidation number of element.
- \succ \Box To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.

№ 14. № 38

> To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances formed by elements with atomic number 11 and 35, specify the type of chemical bond of obtained compound

6. Determine the types of chemical bonds for the following compounds:

ferrum (III) oxide; silumin; radium phosphate; borate acid; 2 molecule of sulfide acid

Variant № 6

1. The total number of orbitals in an p-subshell is:

A. 6; B. 3;	C. 5;	D.	1.
-------------	-------	----	----

2. The possible values of spin quantum number for electrons in s-subshell are:

(write right answer to the answer sheet)

3. Which electron configuration represents an atom Mn in the ground state:

	8 1 1 1 1 1		8
A.	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 4p ⁵ ;	B.	$1s^22s^22p^63s^23p^63d^54s^2;$
C.	$1s^22s^22p^63s^23p^64s^24d^5;$	D	$1s^22s^22p^63s^23p^63d^64s^1;$

To give the characteristics of elements:

№ 11, № 53

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;
- the total number of electrons, the total number of shells, the total number of valence electrons;
- > To compile electronic and graphic structure of atom of element.
- > To determine the possible valence and oxidation number of element.
- > To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.
- > To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances formed by elements with atomic number 15 and 8, specify the type of chemical bond of obtained compound

6. Determine the types of chemical bonds for the following compounds:

phosphorus(V) oxide; hydrogen; aluminium sulfite; chlorate acid; 3 molecules of water

1. The total number of orbitals in an d-subshell is

A. 1; B. 3;	C. 5;	D. 10
-------------	-------	-------

2. The spin quantum number is specified :

(write right answer to the answer sheet)

3. Which electron configuration represents an atom I in the ground state:

A.	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^95s^25p^6$	B.	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^5$
C.	$1s^22s^22p^63s^23p^64s^24p^64d^{10}5s^25p^55d^{10}$	D	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^15p^6;$

To give the characteristics of elements:

№ 34, № 40

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;
- the total number of electrons, the total number of shells, the total number of valence electrons;
- > To compile electronic and graphic structure of atom of element.
- > To determine the possible valence and oxidation number of element.
- > To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.
- > To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances formed by elements with atomic number 15 and 8, specify the type of chemical bond of obtained compound

6. Determine the types of chemical bonds for the following compounds:

stannum hydroxide; brass; ferrum(III) sulfate;

nitrogen

phosphate acid;

Variant № 8

1. The magnetic quantum number is specified:

Α.	The energy of an electron in shell and the size of	В.	The orientation of an orbital in
	the orbital;		space
C.	The energy of an electron in subshell and the shape	D	The orientation of the spin
	of an orbital		axis

2. What is formula determine maximum quantity of electrons on the energy level :

(write right answer to the answer sheet)

3. Which electron configuration reprsents an atom Mn in the ground state:

A.	$1s^22s^22p^63s^23p^64s^24p^5;$	В.	$1s^22s^22p^63s^23p^63d^54s^2;$
C.	$1s^22s^22p^63s^23p^64s^24d^5;$	Γ	$1s^22s^22p^63s^23p^63d^64s^1;$

To give the characteristics of elements:

№ 15, № 48

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;
- the total number of electrons, the total number of shells, the total number of valence electrons;
- To compile electronic and graphic structure of atom of element.
- > To determine the possible valence and oxidation number of element.
- > To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.
- > To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances obtained by elements with atomic number

7 and 8, specify the type of chemical bond of obtained compound

6. Determine the types of chemical bonds for the following compounds:

barium nitrate iodine; cadmium phosphate; chlorate acid; 2 molecules of flouride acid

1. The possible values of main(principal) quantum number are:

Α	integers from 0 до n-1;	B.	$+\frac{1}{2}, -\frac{1}{2};$
Б.	integers from 1 до ∞ ;	Γ	integers from $+ l$ до $- l$.

2. How many valence electrons are found in an atom Cl..... :

(write right answer to the answer sheet)

3. Which electron configuration represents an atom Sb in the ground state:

		10.10	
A.	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^3;$	B.	$1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^25p^65d^{10};$
Б.	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ⁸ 5s ² 5p ⁵ ;	Γ	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^15p^4$

4. To give the characteristics of elements:

<u>№</u> 8, <u>№</u> 50

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;
- the total number of electrons, the total number of shells, the total number of valence electrons;
- > To compile electronic and graphic structure of atom of element.
- To determine the possible valence and oxidation number of element.
- > To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.
- > To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances obtained by elements with atomic number 16 i 8, specify the type of chemical bond of obtained compound

6.Determine the types of chemical bonds for the following compounds:

molibden;	nitrogen;	phosphate acid;	aluminium sufite;	cobalt (III) nitrate
-----------	-----------	-----------------	-------------------	----------------------

Variant № 10

1. Metallic properties across a period tend to

	A.	decrease;	B.	don't change
ľ	Б.	increase;	D.	first increase and then decrease

2. Electronic structure of atom Sr :

(write right answer to the answer sheet)

3. The total number of shells (levels) of atom is equal to the number of :

A.	Group ;	B.	Element;
С	Period;	D	Series.

4. To give the characteristics of elements:

№ 35, № 49

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;
- the total number of electrons, the total number of shells, the total number of valence electrons;
- > To compile electronic and graphic structure of atom of element.
- > To determine the possible valence and oxidation number of element.
- > To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.
- > To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances obtained by elements with atomic number 16 i 1, specify the type of chemical bond of obtained compound

6.Determine the types of chemical bonds for the following compounds:

silumin;	ferrum (III) nitrate;	sodium phosphate;	sulfur (VI) oxide;	borate acid
----------	-----------------------	-------------------	--------------------	-------------

1. The total number of orbitals in an d-subshell is:

A. 7; I

2. The orientation of an orbital in space is specified byquantum number:

(write only one word to the answer sheet)

3. Which electron configuration represents an atom Ca in the ground state:

	con on comparation reprocess an acom		
A.	$1s^22s^22p^63s^23p^63d^2;$	B.	$1s^22s^22p^63s^23p^63d^14s^1;$
Б.	$1s^22s^22p^63s^23p^43d^24s^2;$	Γ	$1s^22s^22p^63s^23p^64s^2$

4. To give the characteristics of elements:

№ 30, № 33

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;
- the total number of electrons, the total number of shells, the total number of valence electrons;
- > To compile electronic and graphic structure of atom of element.
- > To determine the possible valence and oxidation number of element.
- \succ \Box To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.
- > To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances obtained by elements with atomic number

13 i 16, specify the type of chemical bond of obtained compound

6.Determine the types of chemical bonds for the following compounds:

cobalt chlorate; magnesium phosphate; 2 molecules of ammoniac;

sulfite acid; bromine

Variant № 12

1. Which electron configuration represents an atom Rb in the ground state:

	8 1 1 1		8
A.	$1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^1;$	B.	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^1;$
Б.	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁵ 5s ² ;	Γ	$1s^22s^22p^63s^23p^63d^94s^24p^55s^2$

2. The spin quantum number determines..... :

(write right answer to the answer sheet)

3. The possible values of main(principal) quantum number are

A.	integers from 0 до n-1;	B.	$+\frac{1}{2}, -\frac{1}{2};$
Б.	integers from 1 до ∞ ;	Γ	integers from $+ l \text{дo} - l$.

4. To give the characteristics of elements:

№ 52, № 19

Scheme of answer:

- > To determine (according to the placement of element in the periodic system):
- element properties metal or non-metal;
- the total number of electrons, the total number of shells, the total number of valence electrons;
- To compile electronic and graphic structure of atom of element.
- To determine the possible valence and oxidation number of element.
- \succ \Box To give an examples of compounds (oxides, bases, acids, salts) with all of possible oxidation numbers.
- > To confirm chemical properties with the proper chemical equations.

5. To compile equation between simple substances obtained by elements with atomic number 15 i 8, specify the type of chemical bond of obtained compound

6.Determine the types of chemical bonds for the following compounds:

		Ŭ I		
ferrum (III) sulfate;	stannum hydroxide;	silicate acid;	zinc chlorate;	brass

Module №2

«The bases of electrochemistry»

Variant № 1

- 1. Specify the number of lost or attached electrons according to the scheme HNO₃ \rightarrow NH₃:
 - **A.** +2. **B.** -2, **C.** -3, **D.** +8.
- 2. Balance Redox reactions using method of electron balance. Point out oxidizing and reducing agents.:

 $Ba + H_2SO_{4 \text{ conc}} \rightarrow$ $Cu + HCI \rightarrow$

 $Mn + HNO_{3 dil} \rightarrow$ $Na + H_2O \rightarrow$

- $A1 + NaOH \rightarrow$ $Zn(CH_3COO)_2 + Mg \rightarrow$
- 3. To calculate EMF for the Fe-Cu galvanic cell:
 - A. 1.92 V **B.** -1,92 V C. 2,8 V, **V.** -2,8 V
- 4. Make the circuit electrode processes that occur on. cathode and anode during the electrolysis of aqueous solutions of potassium sulfate and melt sodium chloride?
- 5. Calculate amount of Copper on the cathode during electrolysis of aqueous solution of nickel sulfate for 30 minutes at a current 2A?? **A.** 71,6 g **D.** 1,19 g.

C. 2,38 g, **B.** 4,12 g,

Variant № 2

- 1. Specify the number of lost or attached electrons according to the scheme HNO₃ \rightarrow HNO₂: **A.** +2. **B.** -2. **C.**+1, **D.** +8.
- 2. Balance Redox reactions using method of electron balance. Point out oxidizing and reducing agents.:

	$Ca + H_2SO_4 _{conc.} \rightarrow$	$Cu + HNO_{3 dil.} \rightarrow$	
	Au + HCI→	$Ba + H_2O \rightarrow$	
	$Cr + NaOH \rightarrow$	$Cu(CH_3COO)_2 + Zn \rightarrow$	
3.	To calculate EMF for the Zn-Cu galvanic cell:		

- **B.** -0.78 V. **A.** 0.1 V C. 0,78 V, **D.** 1.1 V.
- 4. Make the circuit electrode processes that occur on. cathode and anode during the electrolysis of aqueous solutions of plumbum nitrate and melt of potassium chloride?
- 5. Calculate amount of Nickel on the cathode during electrolysis of aqueous solution of nickel sulfate for 80 minutes at a current 5A?
 - **A.** 1,83g **B.** 14,7 g, **C.** 7,3 g, **D.** 2,23 g.

Variant № 3

- 1. Specify the number of lost or attached electrons according to the scheme $H_2SO_4 \rightarrow S^0$:
 - **A.** +2. **B.** +6. C -6, **D.** +8.
- 2. Balance Redox reactions using method of electron balance. Point out oxidizing and reducing agents.:
 - $Cu + H_2SO_{4conc.} \rightarrow$ $Fe + HNO_{3 \text{ dil.}} \rightarrow$ $Fe + HCI \rightarrow$ $Li + H_2O \rightarrow$ $Sn + NaOH \rightarrow$ $CaCl_2 + Zn \rightarrow$
- 3. To calculate EMF for the Cd-Mn galvanic cell: A. 1,96 V **B.** -1,96 V, **C.** 1,92 V,
- 4. Make the circuit electrode processes that occur on. cathode and anode during the electrolysis of aqueous solutions of cobalt sulfate and melt of calcium bromide?

D. 2,76 V

5.	. Calculate amount of Mercury on the cathode during electrolysis of aqueous solution of nickel sulfate for 120 minutes at a current 10A?			
	A. 59,7 g	B. 74,6 g,	C. 149,3 g,	D. 29,9 g.
		Va	riant № 4	
1.	Specify the number o $HNO_3 \rightarrow NH_3$:	of lost or attached of	electrons according to	the scheme
	A. +9,	B. -2,	C. -8,	D. +8.
2.		tions using metho	od of electron balan	ce. Point out oxidizing and
	reducing agents.:			
	$K + H_2SO_4 \text{ conc.} \rightarrow$		$Zn + HNO_{3 \text{ dil.}} \rightarrow$	•
	$Ca + H_2SO_{4 \text{ dil.}} \rightarrow$		$Cr + H_2O \rightarrow$	
2	$Al + NaOH \rightarrow$	dha Ea Calaalaan	$Zn(NO_3)_2 + Ag -$	→
3.	To calculate EMF for			D 2.21
4	A. 3,31 V Males the singuit of	. ,	C. $2,43$ v,	
4.				ode and anode during the It of sodium sulfide??
5.				blysis of aqueous solution of
2.	nickel sulfate for 150			signed of aqueous solution of
	A. 0,06 g		C. 3,58 g,	D. 214,9 g.
			Variant № 5	
1.	Specify the number o HMnO ₄ \rightarrow Mn ²⁺ :	of lost or attached of	electrons according to	the scheme
	A. +3,	B. -3,	C. -5,	D. +5.
2.		tions using metho	od of electron balan	ce. Point out oxidizing and
	reducing agents:			
	$Zn + H_2SO_4 \text{ conc.} \rightarrow$		$Sn + HNO_{3 \text{ dil.}} \rightarrow$	•
	$Pb + H_3PO_4 \rightarrow$		$Co + H_2O \rightarrow CuSO + E_2$	
3	Sb + LiOH → To calculate EMF for	r the Zn-Cu calvar	$CuSO_4 + Fe \rightarrow$	
5.	A. 0,32 V	B. -1,2 V		D. 2,8 V
4.	<i>,</i>	,	, ,	ode and anode during the
		-		of aluminium chloride?
5.			-	of aqueous solution of nickel
	sulfate for 45 minutes	s at a current 5A?		
	A. 7,49 g	B. 15 g,	C. 149,7 g,	D. 29,9 g.
1	Succify the number of		riant № 6	the achieves
1.	Specify the number o $Fe^0 \rightarrow Fe^{3+}$:	of lost of attached e	electrons according to	the scheme
	A. +3,	B. -3,	C. +6,	D. -1.
2.	Balance Redox react reducing agents:	tions using metho	od of electron baland	ce. Point out oxidizing and
	$Ba + H_2SO_4 conc. \rightarrow$		$Zn + HNO_{3 \text{ dil.}} \rightarrow$	•
	Ca + HCI→		$Na + H_2O \rightarrow$	
	$\mathrm{K} + \mathrm{NaOH} \rightarrow$		Zn(CH ₃ COO) ₂ +	$Sr \rightarrow$
3.	To calculate EMF for	r the Fe-Cd galvan	ic cell:	

A. 0,74 V		C. 0,06 V,	
			athode and anode during the
electrolysis of aq	ueous solutions of zinc	sulfate and melt of	f litium iodide?
5. Calculate amour	nt of Aurum on the ca	athode during elec	ctrolysis of aqueous solution of
nickel sulfate for	200 minutes at a curre	ent 10A?	
A. 183 g	B. 367,5 g,	C. 49,1 g	D. 122,5 g.
C			
	Ĭ	∕ariant № 7	
. Specify the number	ber of lost or attached e		y to the scheme
$HMnO_4 \rightarrow H_2M_1$			·····
A. +2,	B. -2,	C. +1,	D. -1.
-		,	ance. Point out oxidizing and
reducing agents:	_		0
$Cu + H_2SO_{4 \text{ conc.}}$ -		Ba + HNO _{3 di}	\rightarrow
$Al + HCI \rightarrow$		$Au + H_2O \rightarrow$	
$Pb + NaOH \rightarrow$		$FeCl_2 + Zn \rightarrow$	
	F for the Fe-Al galvani		
A. 1,22 V	•	C. 1,5 V,	\mathbf{D} 21V
			athode and anode during the
	ueous solutions of stan		
			lyte solution electric current 5A
power to 1050 g	_	in ough the electro	Tyte solution electric current SA
A. 83,75 h		C. 41,8 h,	D. 120 h.
A• 05,75 II	D. 25,5 II,	C. 41,0 II,	D. 120 II.
	¥7		
Crace: from the comment		riant № 8	a to the scheme
H ₂ SO ₄ \rightarrow S ⁰ :	ber of lost or attached	electrons accordin	g to the scheme
	ЪЭ	C. +8,	Ν 9
A. +6, Balanca Baday			
		ou of electron da	lance. Point out oxidizing and
reducing agents		$7m + 11NO_{1}$	
$Ag + H_2SO_4$ conc	\rightarrow	$Zn + HNO_{3 di}$	
$Co + HCI \rightarrow$		$Al + H_2O \rightarrow$	
$Be + NaOH \rightarrow$		Mg(CH ₃ COC	$D)_2 + Ca \rightarrow$
	IF for the Fe-Cu galvar		
A. 0,47 V	B. -0,47 V,		D. 2,1 V
	-		cathode and anode during the
•			melt of sodium chloride??
			ctrolysis of aqueous solution of
nickel sulfate for	r 40 minutes at a curre	nt 2A?	
A. 51,6 g	B. 23,8 g,	C. 0,86 g,	D. 12 g.
	,	Variant № 9	
1. Specify the num	ber of lost or attached		g to the scheme
$H_2S \rightarrow SO_2$:			
A. +2,	B. -2,	C. +4,	D. -6.

A. +2, B. -2, C. +4, D. -6.
2. Balance Redox reactions using method of electron balance. Point out oxidizing and reducing agents:

 $Cu + H_2SO_{4 \text{ conc.}} \rightarrow$

 $Fe + HNO_{3dil.} \rightarrow$

	$Mg + HCI \rightarrow$			$Ba + H_2O -$	>	
	$Ca + LiOH \rightarrow$			Cu(CH ₃ CO	$O_{2}+Fe \rightarrow$	
3.	To calculate EN	/IF for the Ag-Cu g	alvanic ce	11::		
	A. 1,24 V	B. -0,36 V,		C. 0,36 V,	D. 2,1 V	
4.		uit electrode proc	esses that	occur on	cathode and anode melt of sodium brow	-
5.		much time should p eceive 3 kg of Auru		gh the elect	rolyte solution elect	ric current 1-
	A. 51,6 h	B. 122,2 h,	C. 40 ł	1,	D. 0,12 h.	
			Varian	t № 10		
1.	Specify the num	ber of lost or attacl	ed electro	ons accordi	ng to the scheme	
	H ₂ SO ₄ →SO ₂ :					
	A. +2,	B. -2,		,		
2.		•	ethod of	electron b	alance. Point out o	xidizing and
	reducing agents	:				
	$Ca + H_2SO_4$ conc.	\rightarrow		$Fe + HNO_3$	dil. \rightarrow	
	$Ag + HCI \rightarrow$			$Ba + H_2O -$	>	
	$Sb + NaOH \rightarrow$			$ZnCl_2 + Ca$	\rightarrow	
3.	To calculate EM	IF for the Fe-Co ga	lvanic cell	::		
	A. 0,62 V	B. -0,47 V,		C. 0,06 V,	D. 0,74 V	
4.		-			cathode and anode d melt of lithium sul	0
5.	Calculate amou	-	he cathod	e during el	ectrolysis of aqueou	

A. 0,05 g	B. 3,18 g,	C. 0,86 g,	D. 191 g.

Module №3

«Electrolytic dissosciation. Chemistry of the elements»

Variant № 1 1. Ions Al³⁺ are formed during dissociation in an aqueous solution of: A. Al(NO₃)_{3.} **Б.** Al(OH)_{3.} **B.** Na₃AlO₃, Γ . Al₂O₃. 2. The main points of theory of electrolytic dissociation are: A. electrolytic dissociation occurs during melting or dissolving of electrolyte; **B**. substance with ionic or covalent non-polar bonds undergo dissociation; **C.** dissociation – is an equilibrium process; **D.** ions are surrounded by hydration shell in aqueous solution. 3. To write molecular, complete and net ionic equations: $ZnCl_2 + K_3PO_4 \rightarrow$ $Ba(NO_3)_2 + H_2SO_4 \rightarrow$ $K_2SiO_3 + HCl \rightarrow$ $Fe_2O_3 + HNO_3 \rightarrow$ $Zn(OH)_2 + Ca(OH)_2 \rightarrow$ $(NH_4)_2SO_4 + NaOH \rightarrow$ 4. To write the dissociation equation for the ions of the following compounds: ferrum (III) carbonate, itric acid, potassium hydroxide. 5. Specify the number of lost or attached electrons according to the scheme NO₃⁻ \rightarrow NH₃: **B.** -3. **A.** +2. Б. -2. **Γ.** +8. 6. Balance Redox reactions using method of electron balance. Point out oxidizing and reducing agents: $Ba + H_2SO_{4 \text{ conc.}} \rightarrow$ $Mn + HNO_{3 \text{ dil.}} \rightarrow$ $Cu + HCI \rightarrow$ $Na + H_2O \rightarrow$ $Al + NaOH \rightarrow$ $Zn(CH_3COO)_2 + Mg \rightarrow$ Variant № 2 1. Ions Pb²⁺ are formed during dissociation in an aqueous solution of: A. PbCl₂ **5.** Pb(OH)₂ **B.** Na₂PbO₂. Γ . Pb(CH₃COO)₂. 2. Determinate strong electrolytes: A. CaCO₃, Na₂CO₃, Al₂(SO₄)₃, **b**. BaO, Mn(CH₃COO)₂, HBr, **B**. Na₃AlO₃, (NH₄)₃PO₄, HClO₄, Γ . CuCl₂, HNO₂, Ca(NO₃)₂. 3. To write molecular, complete and net ionic equations:: $CoCl_2 + Na_3PO_4 \rightarrow$ $BaCl_2 + H_2SO_4 \rightarrow$ $K_2SO_3 + HNO_3 \rightarrow$ $NH_4NO_3 + NaOH \rightarrow$ $Al(OH)_3 + NaOH \rightarrow$ $Cr_2O_3 + HClO_4 \rightarrow$ 4. To write the dissociation equation for the ions of the following compounds: Aluminium hydroxide, mangane (II) chloride, sulfate acid. 5. Specify the number of lost or attached electrons according to the scheme NO₃⁻ \rightarrow NO₂: A. +2. **B.** +1, Б. -2, Γ. +8. 6. Balance Redox reactions using method of electron balance. Point out oxidizing and reducing agents: $Ca + H_2SO_{4 \text{ conc.}} \rightarrow$ $Cu + HNO_{3dil.} \rightarrow$ $Au + HCI \rightarrow$ $Ba + H_2O \rightarrow$ $Cr + NaOH \rightarrow$ $Cu(CH_3COO)_2 + Zn \rightarrow$ Variant № 3 1. Ions Ca²⁺ are formed during dissociation in an aqueous solution of:

- **A.** $Ca(NO_3)_{2,}$ **B.** $CaCO_{3,}$ **B.** $Ca_3(AlO_3)_{2,}$ **F.** $CaO_{3,}$
- 2. The main points of theory of electrolytic dissociation are:

- A. electrolytic dissociation occurs during melting or dissolving of electrolyte;
- **B**. substance with ionic or covalent non-polar bonds undergo dissociation;
- **C.** dissociation is an equilibrium process;
- **D.** ions are surrounded by hydration shell in aqueous solution.
- 3. To write molecular, complete and net ionic equations:

Б. +6.

 $\begin{array}{l} MgBr_2 + Na_3PO_4 \rightarrow \\ Cu(CH_3COO)_2 + HNO_3 \rightarrow \end{array}$

 $Be(OH)_2 + Ba(OH)_2 \rightarrow$

 $Pb(NO_3)_2 + H_2SO_4 \rightarrow AgNO_3 + NH_4Cl \rightarrow Fe_2O_3 + HJ \rightarrow$

- **4.** To write the dissociation equation for the ions of the following compounds: manganese phosphate, chlorate acid, cobalt hydroxide.
- 5. Specify the number of lost or attached electrons according to the scheme $SO_4^{2-} \rightarrow S^0$:
 - **A.** +2,

 $ZnO + HJ \rightarrow$

B. -6, Γ. +8.

6. Balance Redox reactions using method of electron balance. Point out oxidizing and reducing agents:

$Cu + H_2SO_{4 \text{ conc.}} \rightarrow$	$Fe + HNO_{3 \text{ dil.}} \rightarrow$
$Fe + HCI \rightarrow$	$Li + H_2O \rightarrow$
$\text{Sn} + \text{NaOH} \rightarrow$	$CaCl_2+Zn \rightarrow$

Variant № 4

- Ions Mn²⁺ are formed during dissociation in an aqueous solution of:

 A. MnBr₂,
 B. MnCO₃,
 C. Mn(CH₃COO)₂.
- 2. Determinate strong electrolytes:
 A. H₂CO₃, Na₂SO₃, Al₂(SO₄)₃,
 B. Na₃AlO₃, NH₄OH, LiOH,

b. Ba(OH)₂, Mn(CH₃COO)₂, HBr, **Γ**. HF, HNO₂, Ca(NO₃)₂.

Γ. +8.

- 3. To write molecular, complete and net ionic equations: $Mn(CH_3COO)_2 + HJ \rightarrow Fe_2O_3 + H_2SO_4 \rightarrow K_2S + Cu(NO_3)_2 \rightarrow K_2SO_4 + Ca(OH)_2 \rightarrow Na_3PO_4 + H_2SO_3 \rightarrow Na_3PO_4 + H_2SO_4 \rightarrow Na_3PO_4 + H_2$
- **4.** To write the dissociation equation for the ions of the following compounds: zinc hydroxide, copper (II) silicate, sulfide acid.
- 5. Specify the number of lost or attached electrons according to the scheme $NO_3^- \rightarrow NH_4^+$:
 - A. +9, **B.** -2, **B.** -8,
- 6. Balance Redox reactions using method of electron balance. Point out oxidizing and reducing agents:

$K + H_2 SO_4 _{conc.} \rightarrow$	$Zn + HNO_{3 \text{ dil.}} \rightarrow$
$Ca + H_2SO_{4 \text{ dil.}} \rightarrow$	$Cr + H_2O \rightarrow$
$Al + NaOH \rightarrow$	$Zn(NO_3)_2 + Ag \rightarrow$

Variant № 5

Ions Fe² are formed during dissociation in an aqueous solution of::

 A. Fe(OH)₂,
 B. FeCO₃,
 B. Fe₃(AlO₃)₂,
 C. FeCl₂.

 Acids are dissociated with forming of:

 A. metal atoms (or ion NH₄⁺)
 B. acid residue
 For Hydrogen atom

 To write molecular, complete and net ionic equations:

 Fe(NO₃)₂ + H₃PO₄ →
 Zn(CH₃COO)₂ + HNO₃ →
 KOH + Cr(OH)₃ →

 $Na_2CO_3 + CaCl_2 \rightarrow$

- 4. To write the dissociation equation for the ions of the following com-pounds: calcium hydroxide, ferrum (III) nitrate, phosphate acid.
- 5. Specify the number of lost or attached electrons according to the scheme $MnO_4 \rightarrow Mn^{2+}$:

Б. -3, **B.** -5, A. +3, **Γ.**+5. 6. Balance Redox reactions using method of electron balance. Point out oxidizing and reducing agents:

$Zn + H_2SO_4 \text{ conc.} \rightarrow$	$Sn + HNO_{3 \text{ dil.}} \rightarrow$
$Pb + H_3PO_4 \rightarrow$	$Co + H_2O \rightarrow$
$Sb + LiOH \rightarrow$	$CuSO_4+Fe \rightarrow$

Variant № 6

1.	Ions PO4 ³⁻ are formed during dissociation in an aqueous solution of:			
	A. H_3PO_{4}	Б. Na ₃ PO _{4,}	B. Mn ₃ (PO ₄) ₂ ,	Γ. Zn ₃ (PO ₄) ₂ .
2.	Determinate strong ele	ctrolytes:		
	A. H ₂ SO ₃ , H ₂ SiO ₃ , Al ₂ (S	SO ₄) _{3,}	Б. Ba(OH)2, BaSO4,	HJ,
	B . NaCl, (NH ₄) ₂ SO ₄ , Li	OH,	Γ . HF, HNO ₂ , Ca(NO	$(D_3)_{2.}$
3	To write molecular co	mplate and not ionic a	austions.	

3. To write molecular, complete and net ionic equations: $NaOH + (NH_4)_3PO_4 \rightarrow$ $CuS + H_2SO_4 \rightarrow$ $FeSO_4 + Na_3PO_4 \rightarrow$ $NH_4NO_3 + Ca(OH)_2 \rightarrow$ $Al(OH)_3 + NaOH \rightarrow$ $ZnO + HNO_3 \rightarrow$

Б. -3,

- 4. To write the dissociation equation for the ions of the following compounds: copper (II) phosphate, stibium hydroxide, carbonate acid.
- 5. Specify the number of lost or attached electrons according to the scheme $Fe^0 \rightarrow Fe^{3+}$:

	- 1

A. +3,

,		
•	nd	

B. +6,

Γ. -1.

6. Balance Redox reactions using method of electron balance. Point out oxidizing and reducing agents:

$Zn + HNO_{3 \text{ dil.}} \rightarrow$
$Na + H_2O \rightarrow$
$Zn(CH_3COO)_2 + Sr \rightarrow$

Variant № 7

1.	Ions CO ₃ ²⁻ are formed during dissociation in an aqueous solution of::				
	A. H ₂ CO ₃	Б. СаСО _{3,}	B. Na ₂ CO ₃	Γ. NiCO ₃ .	
2.	Bases - are dissociated	with forming of:			
	A. metal atoms (or ion	NH4 ⁺)	B. a	cid residue	
	Б. hydroxyl group – (OH⁻.	Г. Н	lydrogen atom	
3.	To write molecular, co	mplete and net ioni	c equations:		
	$CuCl_2 + Na_3PO_4 \rightarrow$		$BaCl_2 + H_2S$	$O_4 \rightarrow$	
	$Fe(CH_3COO)_2 + HNO_3$	\rightarrow	$Na_2CO_3 + C$	$a(OH)_2 \rightarrow$	
	$Cr(OH)_3$ + NaOH \rightarrow		CuO + HClO	$D_4 \rightarrow$	
4.	To write the dissociation	on equation for the	ions of the follo	owing compounds:	
	plumbum (II) hydroxide	e, calcium nitrate, sul	furic acid.		
5.	Specify the number of	lost or attached ele	ctrons accordin	ig to the scheme	
	$MnO_4 \rightarrow MnO_4^2$:				
	A. +2,	Б2,	B. +1,	Γ1.	
6.	Balance Redox reacti	ons using method	of electron ba	lance. Point out oxidizing and	
	reducing agents:				

 $Cu + H_2SO_{4 \text{ conc.}} \rightarrow$

 $Ba + HNO_{3 \text{ dil.}} \rightarrow$

$Al + HCI \rightarrow$	$Au + H_2O \rightarrow$
$Zn + NaOH \rightarrow$	$FeCl_2 + Zn \rightarrow$

	Variant №8				
1.	1. Ions Cr ³⁺ are formed during dissociation in an aqueous solution of:				
	A. $CrBr_3$. B. $Cr(OH)_3$.	B. K_3 CrO ₃ ,	Γ . Cr ₂ O ₃ .		
2.	Determinate weak electrolytes:	201130103,	1.01203.		
	A. H_2CO_3 , Na_2SO_3 , $Al_2(SO_4)_3$,	F Ba(OH) ₂	Mn(CH ₃ COO) ₂ , HBr,		
	B . Na_3AlO_3 , NH_4OH , $Sr(OH)_2$,	Γ . HF, HNC	. , , , ,		
3	To write molecular, complete and net ion		2, 112003.		
5.	Ca(CH ₃ COO) ₂ + HJ \rightarrow	MgCO ₃ + H	C1		
	$(NH_4)_2CO_3 + NaOH \rightarrow$	0	$-\operatorname{Zn}(\operatorname{NO}_3)_2 \rightarrow$		
		. ,	. ,		
4	$Pb(OH)_2 + Ca(OH)_2 \rightarrow$	$CoO+H_2SC$			
4.	To write the dissociation equation for the		owing compounds:		
-	beryllium hydroxide, ammonium carbonate,				
5.	Specify the number of lost or attached elec	ctrons accordin	ig to the scheme		
	$\mathbf{Cr}^{2+} \rightarrow \mathbf{Cr}^{3+}$:				
	А. +2, Б2,	B. +1,	Γ1.		
6.	Balance Redox reactions using method	of electron ba	alance. Point out ox	idizing and	
	reducing agents:				
	$Ag + H_2SO_4 conc. \rightarrow$	$Zn + HNO_3$	iii. \rightarrow		
	$\text{Co} + \text{HCI} \rightarrow$	$Al + H_2O \rightarrow$			
	$Be + NaOH \rightarrow$	Mg(CH ₃ CO	$O_{2}+Ca \rightarrow$		
		U v	,		
	Varia	nt № 9			
1			colution of		
1.	Ions SO ₃ ² are formed during dissociation	-			
-	A. H_2SO_3 B. $CaSO_{3,}$	B. N	I_2SO_3 Г. Ni	SO ₃ .	
2.	Salt are dissociated with forming of:				
	A.				
	A. metal atoms (or ion NH_4^+)		cid residue		
	6. hydroxyl group – OH^- .		lydrogen atom		
3.	To write molecular, complete and net ion	ic equations:			
	$CH_3COOH + Na_2CO_3 \rightarrow$	$CaCO_3 + HNO_3 \rightarrow$			
	$Cu(OH)_2 + HCl \rightarrow$	(NH4	$)_2SO_4+ NaOH \rightarrow$		
	$Sn(OH)_2 + NaOH \rightarrow$	CoC	$_{2} + (NH_{4})_{3}PO_{4} \rightarrow$		
4.	To write the dissociation equation for the	ions of the foll	owing compounds:		
	chromium hydroxide, ammonium sulfate, can	rbonate acid.			
5.	Specify the number of lost or attached ele	ctrons accordi	ng to the scheme		
	$H_2S \rightarrow SO_2$:		-		
	А. +2, Б2,	B. +4,	Γ6.		
6.	Balance Redox reactions using method		alance. Point out ox	idizing and	
	reducing agents:			0	
	$Cu + H_2SO_4 conc. \rightarrow$	$Fe + HNO_3$	iı →		
	$Mg + HCI \rightarrow$	$Ba + H_2O \rightarrow$			
	$Ca + LiOH \rightarrow$	$Cu(CH_3COO)_2 + Fe \rightarrow$			
			$J_{J_{z}} \cap \Gamma \cup \neg$		
	*7				
1		iant № 10	- 14 ²		
1.	Ions Cd ²⁺ are formed during dissociation i	—			
	A. $CdBr_{2}$, B. $Cd(OH)_{2}$,	B. CdS,	Γ. CdO.		
2.	Determinate weak electrolytes:				

A. CdBr_{2,}
B. Cd(OH)_{2,}
2. Determinate weak electrolytes:

A. H₂CO₃, Na₂SO₃, Al₂(SO₄)₃,

B. AgOH, NH₄OH, H₂SO₃,

B. Ba(OH)₂, Mn(CH₃COO)₂, HBr,

- Γ . HF, HNO₂, Sr(OH)₂.
- 3. To write molecular, complete and net ionic equations: $Fe(NO_3)_3 + Na_2CO_3 \rightarrow$ $NaNO_2 + H_2SO_4 \rightarrow$ $(NH_4)_2SO_3 + HClO_4 \rightarrow$ $NH_4NO_3 + Ba(OH)_2 \rightarrow$ $Cr(OH)_3 + KOH \rightarrow$ $Al_2O_3 + HNO_3 \rightarrow$
- 4. To write the dissociation equation for the ions of the following compound: stannum (II) hydroxide, sodium sulfide, phosphate acid.
- 5. Specify the number of lost or attached electrons according to the scheme $Mg^{2+} \rightarrow Mg^{0}$: Б. -2,
 - A. +2,

B. +1, Γ. +8.

6. Balance Redox reactions using method of electron balance. Point out oxidizing and reducing agents:

$Ca + H_2SO_4 cons. \rightarrow$	$Fe + HNO_{3 \text{ dil.}} \rightarrow$
$Ag + HCI \rightarrow$	$Ca + H_2O \rightarrow$
$Sb + NaOH \rightarrow$	$ZnCl_2 + Ca \rightarrow$

Example of final test

NATIONA	LUNIVERSIT		ENVIRONMENTAL SC	IENCES	OF UKRAINE
Degree progra	am « <u>Bachelor»</u>	Department of General, organic and	EXAMINATION PAPER		d of department.
Speciality 192 Constructi	on and Civil	physical	Variant № <u>1</u>		(підпис)
Engineering		<u>chemistry</u>	of		Ass.prof.
Lingineering		<u>2020-2021</u> e.y	"Chemistry"]	Kovshun L.O
				,	<u>22 May 2020</u>
		Examin	ation question		
			f 10 points for an answer)		
			nstruction and Civil Engine		
			Natural and synthetic polyn	ners. Adv	antages and
disadvantages	of plastic constr		n comparison with others.		
			of different types		
4			bints for an answers to test t	tasks)	
	the simple com				
1.		Ag, HCl			_
2.	N ₂ , Cu, 0				
3.		Mn ₂ O ₇ , H ₂ O, N			
4.		NaCl, Ca(OH) ₂ ,	H ₂ O		
	teric metals are				
		cal symbols of the			
		es of elements ch	nange along periods of Me	ndeleev's	s periodic system
from left to ri	ght:				
1.	increase	3.	decrease		
2.	don't change	4.	first increase, then decreas		
answer with th	e chemical form	ula of salt):			
			pes of oxides and their che		
А.	basic oxid			1. SO ₂	4. ZnO
В.	acidic oxi	des		2. N_2O_5	5. K ₂ O
C.	amphoteri			3. MnO	6. Cr_2O_3
6. To identify	the strong elect	trolytes:	T		
1.	Ca(OH) ₂				H ₄ OH
2.	FeS				NO ₂
			necessary to take Pb (NO3	$\mathbf{s})_2 (\mathbf{M} = 3)_2$	31.2 g / mol) in
		n in justification f	orm):		00.01
	1. 125,10 g;				80,21 g;
2. 165,6 g; 4. 45,03 g. 8. Which of the metals do not react with water? 4. 45,03 g.					
		t react with wate	r:	2 5	1
1.	Li			3 P	
2.Ca4.Cu9. Determine the number of Oxidation of Sulfur in the compound K2SO3, Chlorine in - HClO3,					
			-	93, Chlor i	ine in - HClO3,
		e (foxidation through a coma)	noted and	furio agid (40
	-	-	tion of silver with concent	rated Sull	
	nding chemical	<i>,</i>	ad as a negative of the new -t	on FaCl	
	•		ed as a result of the reaction		
in the enter th	e jormula of wee	uk electrolyte,to w	vrite the equation in the just	gication	(orm)

12. To identify the	e proces	ses of electrolysis of	a solution of sodium	chloride	e there are processes:
1.	2C1	2e→Cl ₂	3.		$2H^+ + 2e \rightarrow H_2;$
2.	Na ⁺ +	$e \rightarrow Na$	4.		$4\text{OH}^{-} -4\text{e} \rightarrow 2\text{H}_2\text{O}^{-} +$
					O_2
13. The EMF of a <i>answers in V</i>)	nickel-r	nagnesium galvanic	element is (E [°] _(Mg) = - 2	2,36 V, E	$\mathcal{L}_{(Ni)}$ = - 0,25V) (enter the
14. The maximum	n numbe	r of electrons at the	p - sublevel is: (write	e only the	e right number):
			um-copper galvanic		
1.		$\frac{\mathrm{Cu}^{2+} + 2\mathrm{e} \rightarrow \mathrm{Cu};;}{\mathrm{Cu} - 2\mathrm{e} \rightarrow \mathrm{Cu}^{2+};}$	3.		$Ca - 2e \rightarrow Ca^{2+};$ $Ca^{2+} + 2e \rightarrow Ca;$
2.		$Cu - 2e \rightarrow Cu^{2+};$	4.		$Ca^{2+} + 2e \rightarrow Ca;$
16. To find the con	rrespon	dence between the co	ompound and the typ	pe of che	mical bonds in it:
А.	Non-p	olar covalent	1.		NH ₃
В.	Ionic b	oond	2.		КСІ
C.	Covale	ent polar	3.		Cl ₂
D.	Hydro	gen bond	4.		Cu
E.	Metall	ic bond	5.		$2 H_2 S$
17. Arrange the fo	ollowing	compounds accordi	ng to the classes		
А.		Oxide	1.	H ₃ PO ₄	
B.		Base	2.	Ca ₃ (PO	4)2
С.		Acid	3.	H_2SO_4	
D. Salt		Salt	4.	Ca(OH)2
18. Steel, brass, bronze - are (to write right answer only with one word)					
19. A substance that prevents or decreases the rate of a chemical reaction is called: (to write					
right answer only w					
			on the cathode durin		
with a force of 20 A for 48 hours? (to write the value in grams, in the justification form write the solution)					

8. Methods of teaching

In conducting lectures appropriate to use verbal teaching methods: explanation, narration, discussion, educational debate, with a combination of visual learning methods: illustration, showing. In carrying out laboratory work should be used such as verbal learning method of instruction on the combination of visual learning methods of illustration and demonstration, the aspect of these studies is that they facilitate communication theory and practice. Laboratory work in the laboratory are equipped basic chemical and electrochemical equipments.

9. Forms of control

The main methods of control of knowledge and skills students have to study the subject "Remote sensing for land resources monitoring" are: oral examination, written and practical test, standardized control in the form of modular test papers, assessment for individual learning task, the final test. The total value of these methods is to make the best possible to ensure timely and comprehensive feedback between students and teachers, by which establishes how students perceive and learn the material. The purpose determines the choice of control methods, it should be borne in mind that these methods can be applied in all kinds of control - only complete applications allows regularly and objectively identify the dynamics of the formation of knowledge and skills of students. Each control method has its advantages and disadvantages, scope of application, none of them can not be the only one able to diagnose all aspects of the learning process. So: - to control the absorption of lectures: oral questioning, written modular test papers, current testing score for an individual learning task, the final test. - for the monitoring and evaluation of laboratory work: practical test and evaluation of each laboratory work.

10. Distribution	of grades	received by students	during study.

	Current testing	5					
Module 1	Module 2	Module 3	Rating of educational work R _{HP}	Rating of additional work R _{дР}	Negative Rating R _{ШТР}	Final test	Total amount of scores
0-100	0-100	0-100	0-70	0-20	0-5	0-30	0-100

0,7 · ($\mathbf{R}^{(1)}_{3M}$ · $\mathbf{K}^{(1)}_{3M}$ + ... + $\mathbf{R}^{(n)}_{3M}$ · $\mathbf{K}^{(n)}_{3M}$)

 $R_{HP} = ----- + R_{ДP} - R_{IIITP}$,

Кдис

де $\mathbf{R}^{(1)}_{3M}$, ... $\mathbf{R}^{(n)}_{3M}$ – rating of 1st, 2nd and 3d modules by 100 mark scale;

 \mathbf{n} – number of modules;

 $K^{(1)}_{3M}$, ... $K^{(n)}_{3M}$ – credits ECTS;

 $\mathbf{K}_{\text{ДИС}} = \mathbf{K}^{(1)}_{3M} + \ldots + \mathbf{K}^{(n)}_{3M}$ – total amount of credits ECTS;

R_{дP} – rating of additional work;

R IIITP – penal rating.

A rating of discipline can be calculated by formula:

$$0,7 \cdot (R^{(1)}_{3M} + ... + R^{(n)}_{3M})$$

RHP = ------ + RдP - RШТР.
n

Ratio between national and ECTS values and rating from the discipline

Grading is based on tests, homework assignments, quizzes and laboratory investigations by to the following table.

	National	value
Rating, points	Examination	Test
90 - 100	Excellent	
74-89	Good	passed
60-73	Satisfactory	
0-59	Unsatisfactory	not passed

Required and recommended literature

11. Methodical support

1. Антрапцева Н.М., Жила Р.С., Пономарьова І.Г. Лабораторний практикум (з основами теорії) для студентів напрямів: 6.050503 – "Машинобудування", 6.070101 – "Транспортні технології", 6.100102 – "Процеси, машини та обладнання агропромислового виробництва", 6. 060101 – "Будівництво". – К.: – НУБіП, 2015. - 194 с.

2.Антрапцева Н.М., Пономарьова І.Г. Хімія (з основами електрохімії). Лабораторний практикум. К.: - НУБіП. – 2012. – 193с.

3.Антрапцева Н.М., Пономарьова І.Г., Кочкодан О.Д. Загальна та неорганічна хімія. Збірник тестових завдань. К.: - 2007. – 92с.

12. Basic literature

1.Буря О.І., Повхан М.Ф., Чигвінцева О.П., Антрапцева Н.М. Загальна хімія. Дн.: наука і освіта. – 2002. – 306с.

2.Карнаухов О.І. Копілевич В.А., Мельничук Д.О. та ін.. Загальна хімія. – К. : Фенікс. – 2005. – 839с.

3.Григорьєва В.В., Самойленко В.М., Сич А.М. Загальна хімія. К.: Вища школа. – 1991. – 431с.

4.Романова Н.В. Загальна та неорганічна хімія. – К.: Вища школа. – 1988. – 430с. Supplemental materials

1. .Хомченко Г.П., Цитович И.К. Неорганическая химия. – М.: Высшая школа. – 1987. - 464с.

2. Егоров А. А. Общая и неорганическая химия. – Ростов на Дону.: - 1997. – 673с. **13. IT resources**

- 1. 1. http://www.chemnet.ru/
- 2. <u>http://www.hemi.nsu.ru/</u>
- 3. <u>http://www.hij.ru/</u>
- 4. <u>http://n-t.ru/ri/ps/</u>
- 5. <u>http://www.physchem.chimfak.rsu.ru/Sources.html</u>
- 6. <u>http://him.1september.ru/</u>
- 7. <u>http://www.alhimik.ru/</u>
- 8. <u>http://all-met.narod.ru/</u>
- 9. <u>http://www.chemistry.ru/</u>
- 10.<u>http://simplescience.ru/video/about:chemistry/</u>
- 11.<u>http://chemistry-chemists.com/Video.html</u>
- 12.<u>http://www.chemicum.com/ru/</u>
- 13.<u>https://www.youtube.com/channel/UCD2fRmgV93G8ZUxZTGLbScA</u>