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Вступ 

Сучасні біотехнічні об'єкти і процеси є результатом осмислення, 

формалізації і наукових досліджень явищ фізичного світу та практичної 

діяльності багатьох поколінь вчених, інженерів, робітників. Поява нових 

технологій і удосконалення вже відомих відбувається за рахунок все більш 

глибокого розуміння суттєвості біотехнічних процесів, їх внутрішніх зв'язків та 

тенденцій розвитку. 

Математичне моделювання, як емпірико - теоретичний метод пізнання. 

набуло широке застосування при побудові сучасної наукової картини світу, що 

посприяло створенню новітніх технологій. Таким чином, теоретичною основою 

багатьох технологічних процесів є розвинуті математичні моделі. 

Створення математичних моделей біотехнічних процесів та об'єктів 

вимагає не тільки ґрунтовного знання фізичних процесів, математичних методів, 

а і володіння відповідною методикою. Велике різноманіття технологічних 

процесів утруднює розробку універсальних алгоритмів створення математичних 

моделей, але можна визначити головні етапи цього процесу. 

Системний аналіз є загальною методичною основою, на якій ґрунтуються 

основні етапи створення математичних моделей починаючи з постановки задачі, 

окреслення меж об'єкту чи процесу і їх первинної структуризації і закінчуючи 

аналізом розробленої моделі. 

На початкових етапах створення математичної моделі проводиться 

структурна ідентифікація, яка в першому наближенні визначає вид 

математичних співвідношень, які описують властивості об'єкта, що 

моделюється. Подальші етапи пов'язані з параметризацією об'єкта та 

встановленням функціональних залежностей між параметрами. 

Аналіз досвіду використання математичних моделей технологічних 

процесів свідчить, що достатньо часто виникає необхідність в визначенні чи 

уточненні величини параметрів математичної моделі. Ця задача вирішується за 

допомогою параметричної ідентифікації. Наявність математичної моделі 

дозволяє цілеспрямовано виконувати оптимізацію технологічного процесу чи 

стану біотехнічного об'єкту та прогнозування їх розвиток. 

Складність вирішення задачі створення математичних моделей та їх 

структурної і параметричної оптимізації пояснюється необхідністю 

використання спеціальних розділів математики, теорії автоматичного керування, 

теорії випадкових процесів, спектрального аналізу та ін. В лекціях будуть 

розглядатися методичні особливості створення математичних моделей та їх 
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ідентифікації, а також частково будуть висвітлені теоретичні відомості з деяких 

розділів математики та інших дисциплін. 

Важливе місце в моделюванні займають приклади створення 

математичних моделей процесів та об'єктів з різних галузей техніки. Курс 

поділений на два модулі. В першому модулі проводиться класифікація моделей 

і розглядаються питання створення математичних моделей, а також 

висвітлюються питання пов'язані з визначенням адекватності моделей. В 

другому модулі розглядаються питання ідентифікації математичних моделей та 

керування багатовимірними біотехнічними об’єктами різними методами. 
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ТЕМА 1. ОСНОВНІ ПОЛОЖЕННЯ І ВИЗНАЧЕННЯ  І КЛАСИФІКАЦІЯ 

В МОДЕЛЮВАННІ СКЛАДНИХ СИСТЕМ КЕРУВАННЯ  

 

1.1. Види моделей і їх призначення. 

Моделі та моделювання досить поширені поняття в науці, техніці та 

побуті. Під моделлю розуміють уявну або фізичну побудову, яка може в деяких 

умовах представляти або замінювати відповідне явище (об'єкт моделювання), 

давати про нього досить точну та достовірну інформацію. Модель дозволяє 

прогнозувати поведінку об'єкта моделювання, а деякі види моделей дають 

можливість зробити і кількісну оцінку реакції об'єкта в конкретній ситуації. 

Моделі застосовуються в тих випадках, коли використання самого об'єкта 

моделювання нераціональне, невигідне або неможливе. Об'єктом моделювання 

може бути всяке явище, процес, предмет, пристрій, будова та ін. 

Людським розумом створені моделі всесвіту, сонячної системи, 

атмосферних явиш, соціальних структур, людини і її органів, тварин, 

різноманітних машин, пристроїв, живих клітин, молекул білків, органічних та 

неорганічних речовин, атомів хімічних елементів, різних елементарних частинок 

та іншого. 

При цьому під моделлю ми розуміємо уявне представлення про яке не-будь 

явище або пристрій; пристосування, яке має зовнішній вигляд або конструкцію 

подібні до об'єкта моделювання; зображення, які із використанням прийнятих 

або досить зрозумілих позначень відтворюють структуру, будову або 

конструкцію об'єкта моделювання; математичний вираз, який при відповідних 

перетвореннях або розв'язанні дає числові результати аналогічні об'єкту 

моделювання; програму, реалізовану на комп'ютері та багато іншого. 

Вид, фізичне втілення, матеріал виготовлення та конструкція моделі 

залежить від її призначення та способу застосування. При розробці чи 

проектуванні споруд, для оцінки їх естетичних характеристик, моделі мають 

вигляд макетів, а для дослідження міцності - вигляд математичних виразів, за 

якими можна розрахувати допустимі навантаження. 

Під час розробки та проектування автоматичних систем керування або 

оцінки якісних взаємозв'язків між елементами системи їх моделюють за 

допомогою структурних або функціональних схем, а для дослідження стійкості 

або перехідних процесів систему моделюють математичними виразами, 

алгоритмами, програмами, які відображають кількісні залежності між вхідними 

та вихідними змінними. 
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Як видно із наведених прикладів, одні і ті ж явища та побудови можна 

представляти різними видами моделей в залежності від способу їх подальшого 

використання. В зв'язку з цим розглянемо основні способи використання 

моделей. 

Під час пізнання явищ, предметів та іншого із навколишнього світу у 

людини, в її свідомості виробляються про них уявлення. Ці уявлення є фактично 

моделями відповідних об'єктів у свідомості людини. Такі моделі, методи їх 

отримання та застосування є предметом досліджень теорії пізнання. Таким 

чином, одним із найбільш поширених способів використання моделей є 

формування уявлень під час пізнання навколишнього світу. 

Другим, досить поширеним способом застосування моделей є створення 

певної системи моделі світу для спрощення його сприймання .дитячим розумом. 

Це дитячі іграшки. Вони певним чином відтворюють реальні явища, тварини чи 

пристрої. 

Широко використовуються моделі у навчальному процесі в школах та 

вузах. Схеми, макети, муляжі, структурні формули, географічні карти та інше 

являються моделями відповідних об'єктів вивчення, полегшують сприйняття 

багатьох складних понять. 

Застосовуються також моделі у виробничій діяльності людей. Для 

використання в проектно-конструкторських роботах, окрім наведених вище 

моделей, застосовуються також компоновки різного складного обладнання, 

наприклад, кабіни літака чи металорізального верстата; фізична модель 

гідроелектростанції; випробувальна установки хіміко-технологічного процесу 

чи виробництва; математичні моделі в системах автоматизації проектування 

технологічних процесів, обладнання, пристроїв чи систем автоматизації. Для 

керування виробничими процесами в рамках автоматизованих систем керування 

технологічними процесами АСКТП часто використовуються математичні моделі 

технологічних процесів. За ними проводяться розрахунки параметрів процесу, 

які неможливо виміряти, виробляються керуючі впливи при відхиленні 

технологічних режимів від заданого значення, проводиться діагностування 

процесів та інше. 

Подібні математичні моделі застосовуються також у тренажерах 

операторів складних потенційно небезпечних технологічних процесів або водіїв 

рухомих машин. Тренажери використовуються, наприклад, для навчання 

операторів атомних електростанцій, пілотів літаків, водіїв автомашин та в інших 

випадках. 
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Моделі широко застосовуються також в науково-дослідних роботах (НДР). 

Вони є, як правило, узагальненням характерних особливостей досліджуваних 

явищ, через що розробка моделей, особливо математичних, є однією із основних 

задач НДР. 

Розробка моделі явища, яке вивчається, може бути кінцевою метою цілого 

дослідження, але частіше всього вона використовується для всебічного аналізу 

об'єкта моделювання. Окрім того, моделі, особливо математичні, застосовуються 

в системах автоматизації наукових досліджень і дають можливість значно 

прискорити такі дослідження шляхом обробки результатів у ході самого 

експерименту. 

Моделі можуть характеризувати всі властивості об'єкта моделювання, а 

можуть лише характеризувати якісь із них. Моделі, які відображають всі 

характерні властивості об'єкта моделювання, називаються повними моделями. 

Якщо моделі відображають лише окремі властивості об'єкта моделювання, то 

вони називаються частинними моделями, або характеристиками. Найчастіше 

застосовуються частинні моделі. 

В залежності від ознаки класифікації, моделі можна розділити на 

матеріальні та уявні, формалізовані та неформалізовані, просторово подібні, 

фізично подібні, математично подібні, експериментальні та інші. 

Поклавши за основу ознаку матеріальності і використовуючи для 

розмежування на підкласи другі ознаки, розглянемо класифікацію моделей. 

Для наочності класифікацію моделей наведемо у вигляді схеми. На рис. 1.1 

приведено класифікацію моделей, виконану з використанням обраної ознаки. 

 

Рис. 1.1. Класифікація моделей 

 

Розглянемо коротку характеристику класів і підкласів моделей, а також 

області їх застосування. 
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Всі моделі можна розділити на матеріальні та уявні. 

Матеріальні моделі – це моделі, виконані у вигляді певних фізичних 

пристроїв, які виконують функції моделей. 

Уявні або нематеріальні моделі – це певна уява у свідомості людини 

(моделі, які існують в уяві людини), або викладені певним чином на папері чи 

інших-носіях інформації. Уявні моделі, виходячи з останнього, можна назвати 

ще й інформаційними. 

Уявні та матеріальні моделі, у свою чергу, в залежності від ступеню 

формалізації, призначення та форми представлення можна розділити на ряд 

підкласів (видів). 

Матеріальні моделі, як видно із схеми, приведеної на рис. 1.1, ділять на 

просторово подібні, фізично подібні та математично подібні. 

Просторово подібні моделі характеризуються подібністю просторових 

форм з об'єктом моделювання. Про особливості функціонування та інші 

характеристики об'єкта моделювання просторово подібні моделі інформації не 

несуть. Як приклад просторово подібних моделей можна навести макети, муляжі, 

компоновки. 

Фізично подібні (фізичні) моделі характеризуються фізико-хімічною 

аналогією з процесом чи обладнанням, що моделюються. Використовуються 

тоді, коли масштаб об'єкта дослідження є незручним або невигідним для 

дослідження. У цьому випадку виготовляють зменшену або збільшену фізичну 

модель об'єкта досліджень і проводять з нею відповідні дослідження. Для цього 

необхідна не тільки просторова подібність, але й подібність процесів, що 

протікають у моделі та об'єкті моделювання. 

Математично подібні моделі – це матеріальні моделі, які мають з 

об'єктами моделювання лише однакові математичні властивості. Фізична 

природа об'єкта моделювання та моделі можуть бути зовсім різними. Вибір 

принципу дії та фізичного втілення у математично подібних моделей зв'язаний із 

зручністю їх використання, вартістю та швидкістю розробки. 

Прикладом математично подібної моделі може бути електронна модель 

технологічних процесів хімічного реактора, набрана на аналоговій 

обчислювальній машині. У цьому випадку відпадає необхідність створення 

спеціальної складної установки для проведення дослідження об'єкта 

моделювання як у фізичному моделюванні. 
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Дослідження можна проводити з використанням універсальних 

обчислювальних засобів, однак у цих випадках виникає потреба у високій 

точності та достовірності моделі. 

Уявні моделі розділяють на образні або іконічні, образно-знакові та 

знакові або формалізовані, 

Образні або іконічні моделі – це те неформалізоване уявне представлення, 

яке ми отримуємо під час знайомства або вивчення якогось явища чи іншого 

об'єкта. 

Розумова діяльність - це оперування образами, тобто певними 

представленнями, які людина отримує в процесі пізнання навколишньої 

дійсності або тим чи іншим чином виникаючими в її свідомості. Процес пізнання 

людиною навколишньої дійсності базується на формуванні, розширенні та 

поглибленні таких представлень або образних моделей. Вони, як і інші моделі, 

можуть бути правильними, не зовсім правильними чи зовсім не відповідати 

дійсності. 

У процесі практичної діяльності людина перевіряє правильність її 

образних моделей – наскільки її уява відповідає дійсності. 

Вивчення об'єкта моделювання, поглиблення уяви про нього в процесі 

вивчення – це фактично процес поліпшення образних моделей, які створились до 

цього. Інші види моделей, які створюються людьми, є реалізацією та 

формалізацією образних моделей, через що можна стверджувати, що образні 

моделі мають найширше застосування в діяльності людей переважно для 

особистого використання. Однак образні моделі, як словесні викладки уявлень, 

можна передавати також і іншим людям. Більш детальне представлення про 

образні моделі дає теорія пізнання. 

Образно-знакові моделі - це, в деякій мірі, формалізовані уявлення з 

використанням умовних зображень для користування широкого загалу або 

спеціалістів. Вони несуть об'єктивну інформацію в частково формалізованому 

вигляді. Однак це не зовсім формалізовані моделі, так як основним їх елементом 

є уява людини, яка користується цими моделями. Прикладами таких моделей є 

географічні мали, структурні схеми процесів та систем, технологічні, 

функціональні, принципові та інші схеми; креслення пристроїв; структурні 

формули хімічних сполук; розрахункові схеми та інше. 

Образно-знакові моделі широко використовуються в різних сферах 

діяльності людей, починаючи від навчання в школах і закінчуючи виробничою 

та науковою працями. Хоча образно-знакові моделі не є формалізованими, вони 
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відображають об'єкт моделювання, можуть давати кількісні дані про об'єкт 

моделювання в рамках, звичайно, тієї інформації, яку несе модель. 

Наприклад, за географічною картою можна визначити відстань між 

пунктами чи висоту даної місцевості над рівнем океану, але не можна визначити 

наявність та вид трав'яного покриву та інше. Креслення деталі дає можливість 

визначити її розміри та конструктивні особливості, але, звичайно не дає 

інформації про вагу та ціну. 

Знакові моделі – це цілком формалізовані моделі, що представлені 

математичними залежностями, формулами, алгоритмами, які відображають 

залежність одних кількісних величин від інших. Ці моделі також називають 

математичними. 

Математична модель – це система математичних співвідношень, що 

описують досліджуваний процес або явище. Для її складання можна використати 

будь-які математичні засоби. Наприклад, мова диференціальних або 

інтегральних рівнянь, теорію множин, теорію ймовірностей та ін. 

Математичні моделі, що належать до різних рівнів організації матерії й 

різні форми її руху, є універсальними. 

Під час їх застосування не потрібно оперувати уявленнями, вони несуть 

інформацію про кількісні взаємозв'язки в об'єкті моделювання. За такими 

моделями важко або зовсім неможливо уявити технологію, призначення чи 

зовнішній вигляд об'єкта. Однак у тій інформаційній області, яку відображає 

математична модель, вона є найбільш довершеною, так як дозволяє дати числові 

залежності між її параметрами. 

Ця особливість математичних моделей використовується для 

узагальнення, отримання фундаментальних залежностей в природі та техніці. 

Фізико-математичні та технічні галузі науки пов'язані з розробкою та 

використанням математичних моделей відповідних явищ. Всі фундаментальні 

закони електротехніки, гідравліки, теплопередачі, хімічної кінетики та інших 

галузей науки і техніки являються математичними моделями відповідних явищ 

природи. 

Сфера застосування математичних моделей значно розширилась з появою 

обчислювальної техніки в наукових дослідженнях та техніці. Програмне 

забезпечення обчислювальних машин є формалізованою (математичною) 

моделлю задачі, яка розв'язується. Під математичним моделюванням будемо 

розуміти розробку та застосування математичних моделей. 
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1.2.Етапи математичного моделювання та класифікація 

математичних мрделей 

Математичне моделювання – потужний метод пізнання зовнішнього світу, 

а також прогнозування й керування. Аналіз математичних моделей дозволяє 

проникнути в сутність досліджуваних явищ. Процес математичного 

моделювання, а саме вивчення явища за допомогою математичних моделей, 

можна підрозділити на 4 етапи. 

Перший етап – формулювання законів, що зв'язують основні об'єкти 

моделі. Цей етап вимагає широкого знання фактів, що ставляться до 

досліджуваних явищ, і глибокого проникнення в їхній взаємозв'язок. Ця стадія 

завершується записом у математичних термінах сформульованих якісних 

уявлень про зв'язки між об'єктами моделі. 

Другий етап – дослідження математичних задач, до яких приводять 

математичні моделі. Основним питанням тут є розв'язання прямої задачі, тобто 

одержання в результаті аналізу моделі вихідних даних (теоретичних наслідків) 

для подальшого їхнього зіставлення з результатами спостережень 

досліджуваних явищ. На цьому етапі важливу роль здобуває математичний 

апарат, необхідний для аналізу математичних моделей, а також обчислювальна 

техніка – потужний засіб для одержання кількісної вихідної інформації як 

результату розв'язання складних математичних задач. Часто математичні задачі, 

що виникають на основі різних математичних моделей явищ, бувають 

однаковими. Це дає підставу розглядати такі типові математичні задачі, як 

самостійний об'єкт, абстрагуючись від досліджуваних явищ. 

Третій етап – з'ясування того, чи задовольняє прийнята (гіпотетична) 

модель критерію практики, тобто з'ясування питання про те, чи погоджуються 

результати спостережень із теоретичними наслідками моделі в межах точності 

спостережень. Якщо модель була цілком визначена – всі параметри її були 

задані, то визначення відхилень теоретичних наслідків від спостережень дає 

розв’язання прямої задачі з наступною оцінкою відхилень. Якщо відхилення 

виходять за межі точності спостережень, то модель не може бути прийнята. 

Часто при побудові моделі деякі її характеристики залишаються 

невизначеними. Задачі, в яких визначаються характеристики моделі 

(параметричні, функціональні) таким чином, щоб вихідна інформація була 

порівнянна в межах точності спостережень із результатами спостережень 

досліджуваних явищ, називаються зворотними задачами. 
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Якщо математична модель є такою, що ні при якому виборі характеристик 

умовам критерію практики не може задовольнити, то вона непридатна для 

дослідження розглянутих явищ. Застосування критерію практики до оцінки 

математичних моделей дозволяє робити висновок про правильність положень, 

що лежать в основі гіпотетичної моделі, що піддягає вивченню. 

Четвертий етап – наступний аналіз моделі у зв'язку з нагромадженням 

даних про досліджувані явища й модернізація моделі. У процесі розвитку науки 

й техніки дані про досліджувані явища усе більше й більше уточнюються й 

наступає момент, коли висновки, одержувані на підставі прийнятої математичної 

моделі, не відповідають нашим знанням про явище. Таким чином, виникає 

необхідність побудови нової, більш досконалої математичної моделі. 

Метод математичного моделювання, що зводить дослідження явищ 

зовнішнього світу до математичних задач, займає провідне місце серед інших 

методів дослідження, особливо у зв'язку з появою комп'ютерів. Він дозволяє, 

проектувати нові технічні засоби, що працюють в оптимальних режимах; 

використовується для рішення складних завдань науки й техніки; допомагає при 

пошуку нових фізичних явищ. Математичні моделі виявили себе як важливий 

засіб в питаннях керування складними системами. Вони застосовуються у 

всіляких областях знання, стали необхідним апаратом в області економічного 

планування і є важливим елементом автоматизованих систем керування. 

Проведемо класифікацію математичних моделей виходячи з методів їх 

отримання (рис. 1.2). 

Історично склалося так, що інформація про об'єкти і процеси 

накопичувалась завдяки спостереженням та експериментам, і подальша її 

обробка дозволяє створити математичну модель. Експериментальний шлях 

створення математичних моделей хоч і є найбільш природним, але має вади, 

пов'язані з обмеженнями можливостей органів почуттів людини і тому 

передбачає використання приладів. Створення та використання приладів є 

самостійною дуже складною науково-технічною задачею, яка не має в 

загальному випадку кінцевого рішення, оскільки процес пізнання світу 

нескінчений. 

Виходячи з цього обмеження, математичні моделі, які будуються на основі 

експериментальних даних, умовно поділяють на дві групи. 

Перша з них – це детерміновані моделі, вони охоплюють ті явища, об'єкти 

і процеси, в яких з великою достовірністю можна визначити причин-но-

наслідкові зв'язки між вхідними і вихідними величинами, чи між параметрами та 
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вихідними величинами, чи розвиток стану об'єкта або розвиток процесу у часі. 

Побудова таких моделей, як правило, обмежується багатьма умовами, які 

уточнюють область використання моделі. Прикладом детермінованої моделі 

може бути закон Гука, що пов'язує силу та деформацію пружини лінійною 

залежністю. У цьому разі обмеженням є величина деформації, але при більш 

глибокому аналізі фізичних процесів, які відбуваються, при деформації 

пружини, можна знайти інші обмеження для лінійної математичної моделі, 

наприклад, − температурні.  

Друга група математичних моделей, що будуються на основі 

експериментальних даних – це статистичні моделі. Явища, об'єкти і процеси, 

які вони описують, відрізняються великою складністю причинно-наслідкових 

зв'язків. У цьому разі досить важко визначити домінуючі фактори, які 

визначають розвиток стану об'єкта або розвиток процесу у часі. Тому при 

побудові таких моделей використовують поняття теорії ймовірностей. При 

цьому визначається ймовірність розвитку процесів і станів, а моделі 

характеризують усереднені значення вхідних і вихідних величин, параметрів та 

характеристик. 

 

Рис. 1.2  Класифікація математичних моделей 

 

Час, як фізична величина, завжди присутній у наших уявленнях про 

навколишнє середовище, але при створенні математичної моделі деяких явиш, 

можна вважити, що на визначеному інтервалі часу явище суттєво не змінюється. 

Це припущення дозволяє створювати статичні математичні моделі, які не 

враховують плину часу. Використання таких моделей дуже поширене, тому що 
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їхня складність завдяки розвиненому математичному апарату значно менша, ніж 

складність математичних моделей, що враховують час. 

Динамічні моделі складаються для явищ, об'єктів та процесів, які 

цікавлять дослідників саме з точки зору їх зміни у часі, або коли час неможливо 

виключити з розгляду в наслідок його швидкоплинності. Саме динамічні моделі 

дозволяють робити прогнози розвитку і передбачати події. 

З рис. 1.2 видно, що статичні і динамічні моделі складаються як для 

детермінованого, так і для статистичного підходів до аналізу експериментальних 

даних. 

Побудова аналітичних моделей спирається на певний науковий 

світогляд, який сформульований у вигляді концепцій, постулатів, теорій, законів. 

Звичайно не теоретичні узагальнення практичного досвіду, але прослідити 

логічний ланцюг думок від спостереження до формулювання теоретичного 

узагальнення не завжди можливо. В якості прикладу можна навести концепцію 

атомарної побудови Всесвіту, яку сформулював 2500 років назад Демокрит з 

Абдери, і якою ми користуємося у теперішній час. 

В методичному плані основою для створення математичних аналітичних 

моделей є закони збереження енергії, речовини, імпульсу, моменту та інші. 

Виходячи з особливостей явищ, об'єктів та процесів, для яких створюється 

модель, та цілей, які ставляться, параметри моделі можуть залежати або не 

залежати від просторового виміру. Якщо параметри моделі, які відбивають 

властивості об'єкта моделювання, залежать від просторових координат, то такі 

моделі називаються математичними моделями з розподіленими параметрами. 

Наприклад, електрична мережа високої напруги, яка має велику довжину, має 

розподілені по довжині параметри, які характеризують її повний електричний 

опір. Тому розвиток перехідних електричних процесів в мережі можна 

моделювати не тільки в часі, а і в просторі. 

Моделі з зосередженими параметрами є частковим випадком 

математичних моделей з розподіленими параметрами. В них з метою спрощення 

параметри, які відбивають властивості явищ, об'єктів та процесів, віднесені до 

ідеалізованих елементів. Такий елемент не має просторових розмірів, а лише є 

носієм властивостей. Зазначений підхід до створення моделей виправдовує 

внесені спрощення, якщо цілі побудови моделі не передбачають визначення 

залежностей в процесах, які відбуваються в середині ідеалізованого елемента. 

Аналітичні, як і експериментальні моделі бувають статичними і 

динамічними в залежності від вимог щодо врахування фактору часу. 
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Проведена класифікація не є повністю вичерпною. Процес дослідження 

навколишнього світу, який потребує створення нових математичних моделей і 

поглиблення існуючих, безперечно потребує систематизації математичних 

моделей і з інших точок зору, але саме через процес класифікації математичних 

моделей з точки зору їх отримання дозволяє визначити відповідний інструмент 

дослідження явищ, об'єктів та процесів. 

 

1.3. Статичні моделі в керуванні технологічними процесами 

Біотехнічні об'єкт керування, як і інші об'єкти моделювання, може бути в 

сталому (стаціонарному, статичному) режимі та в динамічному 

(нестаціонарному, перехідному) режимі. 

Статичний та динамічний режими об'єкта керування знаходяться між 

собою в складному взаємозв'язку. Статичний, сталий режим, можна розглядати 

як окремий випадок більш поширеного перехідного режиму. Об'єкти керування, 

як правило знаходяться в нестаціонарних, перехідних режимах і дуже рідко у 

надійно сталому режимі. Однак і динамічний режим можна розглядати як 

перехідний між двома сталими, статичними режимами. Обидві ці уяви є вірні, 

обидва ці підходи до моделей широко використовуються. 

Сталий статичний режим характеризується узгодженістю всіх 

матеріальних та енергетичних входів і виходів об'єкта та незмінністю в часі всіх 

його параметрів, що визначають даний режим роботи. Узгодити входи та виходи 

об'єкту для більшості об'єктів моделювання можна на різних рівнях значень їх 

визначальних параметрів і, таким чином, можна побудувати залежність між 

входами та виходами для каналів, що викликають інтерес. Однак є також нестійкі 

об'єкти, які не мають сталих режимів і через що в них відсутня залежність між 

входами та виходами. 

Функціональна залежність виходів об'єкта уі (і = 1, ..., n) від входів хj (j = 1, 

…, m) в статичних режимах роботи називають його статичною моделлю 

 

yі = f(х1, х2, …, xj, …, хm) (і = 1, ..., n)              (1.1) 

 

Статичну модель, що відображає всі параметри об'єкта моделювання, 

називають повною статичною моделлю. Якщо ж модель відображає лише окремі 

зв'язки в об'єкті, то таку модель називають частинною. Прикладом такої 

частинної моделі може бути функціональний взаємозв'язок одного вихідного 

параметра зі всіма вхідними: 
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y1 = f(х1, х2, …, xj, …, хm)              (1.2) 

 

У більшості випадків як статичні моделі використовуються частинні 

моделі. 

Функціональна залежність вихідного параметра від вхідного в статичному 

режимі називають статичною характеристикою. Статична характеристика є 

математичною моделлю одного каналу впливу об'єкта моделювання для його 

функціонування в сталих режимах. її можна виразити залежністю 

 

yі = fi( xj)              (1.3) 

 

Така характеристика показує, як буде змінюватися вихідна величина yi від 

зміни вхідної величини xj у статичних режимах, тобто в режимах, коли перехідні 

процеси в об'єкті закінчуються. 

Статичні характеристики можуть бути представлені математичними 

рівняннями, графічними залежностями виходу від входу, а також 

ймовірностними залежностями. 

Найбільш простою аналітичною залежністю, що відображає статичну 

характеристику, є лінійне алгебраїчне рівняння: 

 

YI = YI0 + КХj,                                      (1.4) 

 

де YI0 − початкове значення вихідної величини  YI  для Хj = 0; К − коефіцієнт 

передачі об'єкта для каналу впливу, що розглядається. 

Але залежність між виходами та входами об'єкта частіше всього є 

нелінійною, а звідси і рівняння статики частіше всього будуть нелінійними. 

Таких нелінійних алгебраїчних рівнянь може бути дуже багато: параболічні, 

гіперболічні, експоненціальні, логарифмічні та інші. Найчастіше нелінійні 

статичні характеристики представляють у вигляді полінома: 

 

у = у0 + а1х + а2х
2 + а3х

3 +... + аnх
n,               (1.5) 

 

де а1, …, аn – коефіцієнти рівняння статики. 

Таке представлення нелінійних залежностей основане на теоремі 

Вейєрштрасса, відповідно з якою всяку нелінійну залежність на певному 
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інтервалі можна виразити поліномом і точність такої апроксимації буде залежати 

від підбору степені полінома. 

Для об'єктів з просторовим розподіленням параметрів рівнянням статики 

буде диференційне рівняння. Наприклад, для одномірного розподілення 

температури  по товщині стінки в напрямі координати X рівняння статики, яке 

зв'язує температуру стінки в точці X, тобто  (х) з температурами стінки на її 

поверхнях  1  та 2, має вигляд: 

 

2211)(
)(




kkx
dx

xd
A +=+

                       (1.6) 

 

де А, k1 та k2 − коефіцієнти рівняння статики. 

У випадку 2-х чи 3-х мірного розподілення визначального параметра в 

об'єкті моделювання рівняннями статики будуть диференціальні рівняння в 

частинних похідних. 

Для випадку відсутності детермінованого (закономірного) зв'язку між 

вихідними та вхідними параметрами, тобто за наявністю випадкових впливів та 

взаємозв'язків між параметрами об'єкту моделювання, статичні його 

характеристики представляються ймовірністними залежностями − 

кореляційними чи регресійними. 

Досить часто статичні характеристики технологічних об'єктів 

моделювання зручно представляти топологічними (графовими) залежностями у 

вигляді потокових, сигнальних, структурних чи інших графів. Об'єкти 

моделювання, що мають дискретний характер, наприклад, тарільчаcті 

ректифікаційні колони, ланцюжок реакторів повного змішування і такі інші, 

досить ефективно представляти скінчено – різницевими рівняннями. Можна ще 

привести значну кількість методів представлення статичних моделей чи 

характеристик. 

Статичні моделі чи характеристики досить широко використовуються у 

науці та техніці. Більшість фундаментальних залежностей є статичними 

характеристиками, чи рівняннями статики. Це – закони збереження матерії чи 

енергії, рівняння матеріальних чи енергетичних балансів, закони Ома, Кірхгофа 

та багато інших. 

Для дослідження, розробки чи проектування різних систем, пристроїв та 

обладнання розробляють та застосовують їх статичні залежності. Найбільш 
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поширеною формою представлення є функціональна залежність однієї вихідної 

величини від декількох вхідних, наприклад для двох: 

у = f (х1, х2), 

яка може бути представлена у формі полінома 

 

у  =  у0 + k1х1 + k2х2 + k3х1
2 + k4х2

2 + k5х1х2 + k6х1
3 +...,           (1.7) 

 

де k1, k2, ... − коефіцієнти моделі. 

Якщо об'єкт має декілька вихідних параметрів, то його модель як правило 

представляють системою рівнянь статики, кожне з яких відображає 

функціональну залежність однієї вихідної величини від однієї чи декількох 

вхідних: 
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 або у векторно-матричній формі 

 

     ,XAY =  (1.9) 

 

де Y  − вектор виходів, X − вектор входів, А − матриця коефіцієнтів. 

Статичні моделі можуть бути отримані аналітичним (розрахунковим), 

експериментальним та експериментально-аналітичним методом. 

Основні залежності, на яких базуються моделі статики технологічних 

об'єктів є рівняннями матеріальних чи енергетичних, і в першу чергу – теплових 

балансів. Ці рівняння дозволяють відобразити зв'язок об'єкта моделювання з 

іншими об'єктами чи пристроями. Це будуть рівняння сумарних балансів. Крім 

того, балансні рівняння можуть відображати внутрішні залежності об’єкта 

моделювання. Це будуть балансні рівняння його складових частин, або балансні 

рівняння для окремих компонентів технологічного середовища чи балансні 

рівняння для теплоносіїв. У другому випадку відтворюються технологічні 

процеси, що відбуваються в об'єкті моделювання, а для цього використовуються 

основні кінетичні, гідродинамічні, тепло-масообмінні залежності цих процесів. 
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Досить часто виникає питання, які рівняння балансів і в якій кількості 

необхідно представити для отримання математичної моделі статики об'єкта? 

Універсального рецепту для розв'язання цього питання дати неможливо, але 

існує певний підхід до розв'язання цього питання. Він полягає у тому, що 

потрібно в залежності від фізико-хімічної суті вихідного параметру скласти одне 

або систему рівнянь, що зв'язують цей вихід з входами, що нас цікавлять. У 

цьому випадку до складу отриманих рівнянь можуть входити проміжні змінні 

параметри, які неможливо виразити наявними рівняннями. У зв'язку з ним 

виникає потреба в додаткових рівняннях, щоб виразити ці проміжні змінні через 

вхідні чи інші, які нам відомі. 

Таким чином, слід більш детально розглянути складання рівнянь 

сумарного балансу, складання системи рівнянь матеріального балансу, що 

відображають внутрішні зв'язки змінних стану елементів об'єкта, а також 

складання рівнянь теплових балансів. 

Рівняння сумарних балансів базуються на передумові, що загальна 

кількість речовини або енергії, що заходять до об'єкту, дорівнює загальній 

кількості речовини або енергії, що виходить з об'єкту. Необхідно звернути увагу, 

що кількість речовини або енергії, що знаходиться в об'єкті, залишається 

незмінною, як і значення технологічних параметрів, що її відображає. 

Рівняння сумарного балансу як матеріального, так і енергетичного можна 

записати 

 

                                             ,вихвх QQ =                                   (1.10) 

 

де Qвх – сумарний  вхід речовини або енергії, Qвих – сумарний вихід речовини 

або енергії з об'єкту, 

 

                                             
=

=
m

i

вхiвх QQ
1

,                              (1.11) 

 

де m – кількість  вхідних потоків речовини або енергії; Qвхi – кількісне значення 

і-го масового потоку речовини або ж енергії;  
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де n – кількість  вихідних потоків речовин або енергії, Qвихj – кількісне значення 

j-го масового потоку речовини або енергії. Таким чином, рівняння сумарного 

матеріального чи теплового балансу буде мати вигляд 

 

                                   
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                                   (1.13) 

 

Розглянемо тепер матеріальні та теплові баланси для складових частин 

об'єкта моделювання. 

Більшість об'єктів керування мають декілька більш чи менш 

відокремлених складових частин, кожна з котрих характеризується певним 

значенням технологічного параметру. 

Наприклад у сушильній установці можна виділити частину, в якій 

готовиться сушильний агент (топка, калорифер) та камеру сушки. Щоб можна 

було розкрити внутрішні зв'язки в такому об'єкті, складають рівняння 

матеріальних чи теплових балансів для кожної такої частини. Для цього 

отримуємо систему рівнянь статики, кожне з яких має вигляд (2.13) 
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де k – кількість складових частин об'єкта моделювання, для яких формується 

рівняння балансу. 

Крім складових частин об'єкта рівняння балансів можна отримати і для 

окремих компонентів технологічного середовища чи теплоносіїв. Розглянемо 

рівняння матеріальних балансів для окремих компонентів технологічного 

середовища. 

Для статичного режиму маса окремого компонента технологічного 

середовища, що подається на вхід об'єкта разом з тим, що виникло в результаті 

хімічних чи фізичних перетворень, дорівнює масі цього компоненту на виході з 

об'єкту разом з кількістю його, що пішла на певні хімічні чи фізичні 

перетворення технологічного середовища 
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де Сi – концентрація  компонента в i-му вхідному потоці (кг/кг); Сj – 

концентрація  цього ж компонента в j-му вихідному потоці (кг/кг); Qn1 – кількість 

компонента, що виникла в наслідок хімічних чи фізичних перетворень інших 

компонентів технологічного середовища; Qn2 – кількість речовини, що 

витрачається на якійсь хімічні чи фізичні перетворення. 

Такі ж рівняння можна отримати і для окремих фаз технологічного 

середовища (газоподібної, рідинної чи твердої). Якщо розглядати декілька 

компонентів чи фаз, то можна отримати систему рівнянь (1.15), яка разом з 

рівняннями (1.14) та сумарних балансів (1.13) складе статичну модель об'єкта 

керування. 

 

Розглянемо тепер рівняння теплових балансів для об'єкта моделювання. 

Крім рівняння сумарного теплового балансу під час статичного моделювання 

об'єктів керування широко використовуються і інші рівняння теплових балансів 

для окремих фаз, теплоносіїв, для конструктивних елементів об'єкту. Під час 

розрахунків теплових балансів для конструктивних елементів, теплоносіїв чи фаз 

технологічного середовища об'єкта моделювання потрібно враховувати 

існуючий обмін теплової енергії між цими елементами, теплоносіями чи фазами. 

У цьому випадку під теплоносіями розуміємо теплообмінні середовища, які 

відокремлені теплообмінними стінками. Теплообмін між фазами проходить 

прямим контактом фаз без розділової поверхні. 

Крім того, під час складання рівнянь теплових балансів слід враховувати 

теплові ефекти хімічних реакцій, зміни фазового стану речовин, механічної 

роботи (наприклад при змішуванні), теплові втрати в навколишній простір. 

Тепловий потік між теплоносіями за наявності стінок розділу 

розраховується згідно з формулою теплопередачі 

 

                                      срT FkQ =                            (1.16) 

 

де   k – коефіцієнт  теплопередачі; F – поверхня  теплообміну; cp – середня  

різниця температур теплоносіїв. 



23 

 

Для розрахунку теплообміну між теплоносіями можна тепловий потік Qт 

визначити як тепловіддачу від теплоносія до стінки розділу і від цієї стінки до 

іншого теплоносія за залежністю 

 

                                      срT FQ  =                             (1.17) 

 

де  – коефіцієнт  тепловіддачі; cp – різниця  температур теплоносія та стінка 

розділу. 

Потрібно також враховувати вид теплопередачі – конвекційний  чи 

радіаційний (випромінюванням). Наведені формули (1.16) та (1.17) відносяться 

до найбільш поширеного в технологічних процесах конвекційного теплообміну. 

Теплообмін між фазами розрахувати складніше у зв'язку з тим, що 

поверхню відокремлення фаз визначити не завжди можливо, коефіцієнт 

тепловіддачі у цьому випадку також визначити не завжди можливо. Крім того, 

теплообмін між фазами часто супроводжується масообміном, що має певний 

тепловий ефект, наприклад теплота випарювання вологи чи конденсації пару. 

Тепловий ефект хімічної реакції QР можна виразити залежністю 

                                         p

p

p q
M

G
Q = ,                                 (1.18) 

де Gр – кількість (маса) речовини, що вступила в реакцію (кг/год); М – маса 

кілограм-молекули речовини, що прореагували (кг-моль); qР – тепловий ефект 

хімічної реакції в перерахунку на кг-моль речовини (кДж/кг-моль) 

Тепловий ефект фізичних перетворень речовини (випарювання, 

конденсації, розчинення, кристалізації) Qф можна виразити залежністю 

 

                                            ффф qGQ =                               (1.19) 

 

де Gф – маса  речовини, що змінила фазовий стан за одиницю часу (кг/год);  qф – 

питомий  тепловий ефект фізичного перетворення речовини (кДж/кг). 

Теплота, що утворилася під час виконання механічної роботи, наприклад 

під час змішування (теплота дисипації) Qм, може бути виражена залежністю 

 

                                         мм qАQ = ,                                  (1.20) 
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де А – виконана  робота за одиницю часу, qм – тепловий  еквівалент механічної 

роботи. Теплота, що приноситься або виноситься потоком речовин (фізичне 

тепло потоку речовини) (Qі, може бути виражено як 

 

                                       iiii CGQ = ,                             (1.21) 

 

де Gi – витрата  речовини в і-тому потоці (кг/год); Ci – теплоємкість  цієї ж 

речовини (кдж/кг  град); i – температура  речовини в і-му потоці. 

Підставляючи вирази (1.16) − (1.21) в рівняння теплових балансів 

відповідних конструктивних елементів, компонентів чи фаз, ми отримаємо 

систему рівнянь теплових балансів, тобто систему рівнянь статики. 
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ТЕМА 2. СТВОРЕННЯ ДИНАМІЧНИХ МОДЕЛЕЙ КЕРУВАННЯ І 

ЇХ ДОСЛІДЖЕННЯ НА ІМІТАЦІЙНИХ МОДЕЛЯХ  

 

2.1 Динамічний режим об’єктів моделювання 

Побудова динамічних моделей біотехнічних об'єктів є задачею набагато 

складнішою, ніж побудова статичних моделей. Для створення статичних 

моделей головним чином використовується апарат алгебраїчних перетворень, а 

для динамічних моделей – інтегрально-диференційного обчислення. Саме для 

створення математичної моделі всесвітнього тяжіння Ісаак Ньютон розробив цей 

математичний апарат. 

Динамічним режимом називають перехідний режим між певними сталими 

(статичними) режимами. На відміну від сталого режиму, що характеризується 

сталими значеннями визначальних величин у часі, в динамічному режимі 

значення визначальних величин залежать від часу. В процесі нормальної 

експлуатації об'єкти керування, як правило, знаходяться в несталих, перехідних, 

динамічних режимах, а сталі (статичні) режими є лише окремими випадками 

таких динамічних режимів. 

Математичним описом об'єкта в динамічному режимі є динамічна модель, 

яка визначає взаємозв'язки характеристик такого об'єкта в динамічному режимі. 

Як правило, для задач керування користуються певною частинною 

динамічною моделлю, що визначає вплив вхідних величин об'єкта на вихідну 

величину у(t) 

 

                       ))(),...,(),(()( 21 txtxtxfty m= ,                       (2.1)  

 

де х1(t),..., хm(t) – вхідні  величини, що можуть змінюватися в часі; f – оператор  

або функція. 

Вираз (3.1) називають рівнянням динаміки об'єкта моделювання. Крім 

рівняння динаміки для опису динамічного режиму об'єкта керування 

використовуються динамічні характеристики окремих каналів впливу 

 

            mjnitxftY jii ,...,1,,...,1)),(()( === ,               (2.2) 

 

де  n – кількість  вихідних величин об'єкта моделювання; m – кількість  вхідних 

величин. 
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Диференційні рівняння лінійної динамічної системи з k ступенями свободи 

мають вигляд 
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               (2.3) 

 

В цих рівняннях через x1, x2,..., хk позначені узагальнені координати 

системи, через f1(t), f2(t),…,fk(t) – впливи  збурень та через аil(р) оператори вигляду 

 

                               ilililil cpbpmpa ++= 2)( ,                        (2.4) 

 

в яких величини mil, bil, cil, які називаються параметрами динамічної системи, 

вважаються сталими (деякі з них можуть бути нулями) та 
dt

d
p  . 

Ці рівняння разом з початковими умовами повністю визначають поведінку 

динамічної системи. 

Будь яка лінійна динамічна система підкоряється принципу суперпозиції, 

у відповідності до якого ефект декількох прикладених до системи збурень f1(t), 

f2(t),…,fk(t) дорівнює сумі ефектів кожного з цих збурень окремо. Тому без втрати 

узагальнення подальших висновків можна вважати, що всі впливи крім одного, 

наприклад f1(t) = f(t), дорівнюють нулю. 

Тоді рівняння (3.3) приймуть вигляд 
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Якою нас цікавить зміна в часі тільки однієї будь якої із змінних х1 х2,...,хk, 

наприклад х1 = х, то виключаючи з рівнянь (2.5) змінні х2, х3, ...,хk, ми отримаємо 

одне диференційне рівняння n-го порядку 
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Динамічні характеристики фактично відображають реакцію вихідної 

величини об'єкта моделювання на певну зміну вхідної величини (збурення). 

Збурення, що діють на об'єкт керування в процесі його роботи, можуть бути 

різної форми, інтенсивності (величини) та частоти виникнення. Звичайно, 

динамічні характеристики об'єкта будуть змінювати свій вигляд не тільки від 

його властивостей, але й від форми, величини та частоти збурень. Для 

порівняння динамічних властивостей об'єктів моделювання використовуються 

певні види стандартних динамічних характеристик. Для отримання таких 

стандартних динамічних характеристик використовуються збурення стандартної 

форми у вигляді ступінчатого або імпульсного одноразових змін вхідної 

величини або у вигляді періодичного (синусоїдального гармонічного) збурення. 

У залежності від виду використаної дії збурення динамічні 

характеристики діляться на часові (з використанням одноразових збурень) та 

частотні (з використанням періодичних збурень синусоїдальної форми). 

Динамічні характеристики як часові, так і частотні, можуть бути 

представлені аналітичними залежностями та графіками. Класифікація 

динамічних характеристик представлена на рис. 2.1. 

У межах двох основних видів динамічних характеристик – часових та 

частотних – розрізняються певні їх групи. Часові характеристики в залежності 

від форми стандартного впливу збурення діляться на перехідні, імпульсні та 

хвильові імпульсні, а від форми представлення – на рівняння динаміки, передатні 

функції, імпульсні характеристики та ін. 

Серед частотних характеристик використовуються амплітудно-фазові 

характеристики (АФХ), амплітудно-частотні характеристики (АЧХ), фазові 

частотні характеристики (ФЧХ), дійсна частотна характеристика (Rе()), уявна 

частотна характеристика (Іm()) та ін. 

На вид частотних характеристик впливає система координат (декартова, 

полярна чи логарифмічна), а також спосіб представлення. 

Розглянемо основні особливості динамічних характеристик, 

представлених на рис. 2.1. 

Рівняння динаміки може відображати один або декілька каналів впливу з 

однією вихідною величиною. Рівняння динаміки каналу впливу є аналітичним 

виразом перехідного процесу вихідної величини каналу в неявній формі. 

Розв'язання рівняння динаміки є аналітичним виразом перехідних процесів чи 

характеристик уже в явній формі, тобто перехідний процес чи перехідна 

характеристика є графіком функції, отриманої шляхом розв'язання відповідного 
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рівняння динаміки, який відображає канал впливу. Рівняння динаміки, що 

відображає декілька каналів впливу, можна перетворити в декілька рівнянь 

динаміки, що відображають один канал впливу. 

Інерційні системи описуються звичайно диференційними або 

інтегральними рівняннями. Якщо параметри об'єкта можна вважати 

зосередженими, то рівняння динаміки будуть звичайними диференційними 

рівняннями. Об’єкти з розподіленими параметрами описуються диференційними 

рівняннями в частинних похідних. У загальному вигляді диференційні рівняння 

нелінійні, але при малих відхиленнях від положення рівноваги їх можна замінити 

лінійними рівняннями. Процес заміни нелінійного рівняння лінійним називається 

лінеаризацією диференційного рівняння. 

 

 

Рис. 2.1.  Класифікація динамічних характеристик об'єктів моделювання 

 

При цьому всі нелінійні функції змінних, які входять у рівняння руху, 

розкладають у ряд Тейлора в околицях робочої точки (сталого значення 

змінних). Так як відхилення малі, при розкладанні залишають лише члени, що 

містять відхилення в перших ступенях, після чого з отриманих рівнянь 

віднімають рівняння рівноваги (статики) і отримують запис лінеаризованих 

рівнянь у відхиленнях. 
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Зокрема, нелінійна функція двох змінних F(x,y) розкладається в околицях 

робочої точки (х0, у0) у ряд Тейлора за формулою 
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Лінійна частина наведеного розкладу визначається лише першими трьома 

членами, інші доданки можна не рахувати в силу  малого значення х, у. Таким 

чином, поверхня F(х,у) замінюється площиною 

),( yxFCyBxA =++ . 

Для лінійних диференційних рівнянь можна використовувати інтегральне 

перетворення Лапласа, яке дозволяє формально отримати з диференційного 

рівняння алгебраїчне. 

Нехай f(t) – дійсна функція дійсного змінного t, що задовольняє умовам 

Діріхлє (безперервна і яку можна диференціювати на розглянутому інтервалі) і 

рівна нулю при t < 0. Будемо називати цю функцію оригіналом. Кожному 

оригіналу f(t) завжди можна поставити у відповідність функцію F(р) 

комплексного змінного р =  ± j, визначену як інтеграл вигляду 
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де L – оператор  прямого перетворення Лапласа, Права частина рівняння (3.6) 

називається прямим перетворенням Лапласа функції f(t), а функція F(р) – 

зображенням Лапласа. 

Розглянемо деякі властивості перетворення Лапласа. 

1. Властивість лінійності. Зображення алгебраїчної суми декількох 

функцій дорівнює сумі зображень цих функцій 
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Справедливість виразу (3.7) випливає з виразу (3.6), відповідно до якого 

перетворення Лапласа являє собою лінійну операцію. 

2. Диференціювання оригіналів. Похідній від функції f(t)  відповідає 

різниця зображень цієї функції F(р), помноженої на р, і її початкового значення 

f(0) 

 

                             )0()()( fppFtfL −= .                                 (2.8) 

 

Дійсно, помноживши (2.6) на р і взявши інтеграл по частинах, отримаємо 
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Виконавши цей прийом n раз, остаточно отримаємо 

 

                     
=

−−−=
n

k

kknnn fppFptfL
1

)1()( )0()()( .               (2.9) 

 

Вираз (2.9) є математичним записом теореми диференціювання. При 

нульових початкових умовах теорема диференціювання приймає вигляд 

                                                    )()()( pFptfL nn = . 

 

3. Зображення інтеграла. Можна показати, що 
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У відповідності із властивостями 1 й 2, диференційні рівняння в області 

дійсної змінної t перетворяться в області комплексної змінної р в алгебраїчний 

вираз. При цьому автоматично враховуються початкові умови й визначаються 

постійні інтегрування. Маємо 
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Помноживши (2.10) на е-рt після інтегрування його по t у межах від 0 до  

при нульових початкових умовах, одержимо це рівняння, перетворене по 

Лапласу 
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Звідси 
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Позначимо В(р)/А(р) = W(р). Тоді (2.11) перепишеться у вигляді Y(р) = 

W(р)Х(р), звідки 
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Вираз (2.12), що представляє собою відношення значення вихідної 

величини системи (об’єкту автоматизації) Y(р) до значення вхідної величини Х(р) 

при нульових початкових умовах, називається передатною функцією системи 

(об’єкту автоматизації). 

Оскільки при дослідженні динамічних властивостей системи потрібно 

визначити залежність змінних системи від функції дійсного аргументу t, виникає 

обернене завдання як від зображення змінної перейти до її оригіналу. 

Найбільш загальним способом знаходження оригіналу у(t) за відомим 

зображенням Y(р) є застосування оберненого перетворення Лапласа 
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де L-1 – оператор оберненого перетворення Лапласа. 

Найбільш простим способом знаходження оригіналу за зображенням є 

використання таблиць, у яких для найпоширеніших функцій дійсної змінної t 
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наведені відповідні зображення. Якщо зображення Y(р) можна представити 

дрібно-раціональною функцією вигляду 

                                              Y(р) = В(р)/А(р), 

де В(р) і А(р) – поліноми відповідно m-го і n-го ступеня, причому для інерційних 

об'єктів m < n, то оригінал у(t) можна знайти скориставшись теоремою 

розкладання Хевісайда-Карсона 
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де рk – корінь  рівняння А(р) = 0, а А'(р) визначається як похідна А'(р) = dА(р)/dp. 

 

2.2. Дослідження динаміки об’єктів на імітаційних моделях 

Із частотних характеристик частіше всього використовуються амплітудно-

фазові характеристики (АФХ). 

Скористаємося прямим перетворенням Фур'є, яке можна отримати з 

перетворення Лапласа при р = j 
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Тоді перетворення Фур'є при нульових початкових умовах запишеться у 

вигляді 
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Позначивши поліноми, що розташовані у дужках правої й лівої частин 

рівняння як А(j) і В(j) відповідно, отримаємо 
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Звідки 
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Вираз (3.15) є частотною функцією або амплітудно-фазо-частотною 

характеристикою системи (АФЧХ), яку можна записати у вигляді 

 

                         
)(arg)()(  jWjejWjW = ,                            (2.16) 

 

де |W(j)| = А() – амплітудно-частотна характеристика системи (АЧХ); arg(j) 

= () – фазочастотна  характеристика системи (ФЧХ). Частотна функція 

системи (2.16) може бути представлена і у алгебраїчному вигляді 

 

                )()()()( )(   jPeAjW j +== , 

де                        )()()()( 22  QPjWA +== ;  

                 )(/)()(arg)(  ParctgQjW == . 

 

У цьому випадку Р() називають дійсною частотною характеристикою, а 

Q() – уявною частотною характеристикою. У деяких випадках при 

математичному моделюванні використається логарифмічна частотна 

характеристика вигляду 

 

                          ejAjW lg)()(lg)(lg  += , 

 

де lgА() – логарифмічна амплітудно-частотна характеристика (ЛАХ), а lgе = 

0,434. 

У випадку подачі на вхід системи гармонійного сигналу х = asint, з 

урахуванням того, що еjt =cost + jsint, можна записати у вигляді х*(t) = аеjt 

[х(t) = Іmх*(t)], часткове розв'язання рівняння (2.14) відшукується у тому ж 

вигляді, що й вхідний сигнал х(t) 
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Підставивши х*(t) і у*(t) у рівняння (2.14) і скоротивши його на еjt, 

остаточно одержимо ajBeAjA j )()( 0   = , звідки 
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Порівнюючи вирази (2.16) і (2.18) при  = const отримаємо 

                               == )(arg;)( 0 jW
a

A
jW . 

Якщо  – змінна величина, то величина А0 буде функцією частоти; тоді 

А0()/а = А(), Таким чином, амплітудно-частотна характеристика А() 

характеризує посилення періодичного сигналу на різних частотах (рис. 2.2, а). 

 

Рис. 2.2  Графічне подання амплітудно-фазо-частотних характеристик 

 

Як видно з рисунка в системі можуть бути відсутні (крива 1) і виникати 

резонансні коливання (крива 2, р – частота резонансу). 

Фазо-частотна характеристика (), що характеризує зсув фаз між вхідним 

х(t) і вихідним y(t) сигналами, представлена на рис. 2.2, б. З рисунка видно, що з 

ростом частоти  запізнювання вихідної координати у(t) стосовно вхідної х(t) 

збільшується. 

Геометричне місце кінців вектора частотної функції W(j) на комплексній 

площині при зміні частоти від нуля до нескінченності називається годографом 

вектора W(j) (рис. 2.3). 

Помітимо, що для знаходження функції дійсного змінного і при відомій 

функції Y(j) необхідно скористатися зворотним перетворенням Фур'є 
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Зі співвідношення )()()()( )(   jQPeAjW j +==  виходить, що 

частотна характеристика повністю визначена, якщо задано кожна з пар А() і 

(), або Р() і Q(). Однак за певних умов існує однозначний зв'язок між А()  

і (), а також Р() і Q(). 

 

Рис. 2.3  Годограф вектора W(j) 

 

Це дозволяє спростити дослідження систем, обмежуючись, наприклад, 

розглядом тільки А() або Р(). У теорії інтегралів Фур'є доводиться, що умова 

існування однозначного зв'язку полягає в тому, щоб частотна функція W(j) = 

B(j)/A(j) не мала ні нулів, ні полюсів у нижній напівплощині поліномів 

чисельника й знаменника (нулі – корінь полінома B(j) = 0, отже, при цьому 

W(j) = 0, а полюси – корінь полінома A(j) = 0, отже, W(j) = . 

Системи, які задовольняють цим умовам, називаються мінімально-

фазовими (рис. 2.4). З усіх можливих систем з однією й тією ж АЧХ вони дають 

найменше зрушення фаз (при будь-якій частоті). 

 

Рис. 2.4  Розміщення нулів та полюсів мінімально-фазової системи 
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Із графічних зображень часових динамічних характеристик найширше 

застосування знайшли перехідні характеристики. Перехідні характеристики 

(перехідні функції, криві розгону) відображають в часі реакцію вихідної 

величини каналу впливу на вплив збурення ступінчатої форми. Перехідна 

характеристика є графіком розв'язання рівняння динаміки або передатної функції 

каналу впливу. Величина ступінчастого збурення може бути різною. 

Досить часто, особливо в теоретичних дослідженнях, використовується 

одиничне ступінчате збурення, тобто стрибкоподібне збурення величиною, що 

дорівнює одиниці. Однак при дослідженні об'єктів та систем керування величина 

збурення, як правило, відрізняється від одиниці. 

Імпульсні характеристики відображають також у часі реакцію вихідного 

параметра каналу впливу об'єкта моделювання на збурення імпульсної форми. 

Одинична ступінчаста функція (рис. 2.5, а) описує миттєву зміну вхідного 

сигналу й позначається х(t) = 1(t) 
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Одинична імпульсна функція (рис. 2.5, б) описується виразом 
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Рис. 2.5. Збурення ступінчастої і імпульсної форми 

 

Очевидно, що функції 1(t) і (t) зв'язані між собою співвідношенням (t) = 

1'(t). При подачі на вхід системи типового вхідного впливу виду 1(t) або (t) 
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вихідна величина системи буде змінюватися в часі тим або іншим способом. Ця 

зміна і є реакцією системи на певний вплив. 

Якщо х(t) = 1(t) і початкові умови нульові (система перебуває в сталому 

стані), то реакція системи на цей вплив називається перехідною функцією або 

перехідною характеристикою h(t). Якщо х(t) = (t) й початкові умови також 

нульові, то реакція системи називається імпульсною перехідною 

характеристикою або функцією ваги w(t). 

Функції h(t) і w(t) є часовими характеристиками системи або кривими 

розгону і для лінійних систем зв'язані співвідношенням 

 

                                 )()( thtw = .                                          (2.19) 

 

Основним оператором лінійної системи є лінійне диференціальне 

рівняння, що дозволяє одержати будь-які інші форми операторів перетворення. 

Наприклад, нехай система керування описується диференціальним рівнянням 

першого порядку 

 

                              xbyaya 010 =+  .                                       (2.20) 

 

Перетворивши рівняння (2.20) за Лапласом при нульових початкових 

умовах, знайдемо передатну функцію, що також є оператором перетворення. 

Маємо 
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Звідки 
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Перетворивши рівняння (2.20) за Фур'є, можна отримати частотну функцію 

системи 
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Зіставивши (2.21) і (2.22), знайдемо зв'язок між W(j) й W(р) 
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Розв'язавши диференціальне рівняння (2.20) при типовому одиничному 

ступінчатому збуренні х(t) = 1(t) і нульових початкових умовах, отримаємо 

перехідну функцію h(t) 
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Скориставшись з (2.21) і врахувавши, що L{1(t)} = 1/р, отримаємо 
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тоді маємо 
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Таким чином, вираз (2.24) зв'язує передатну функцію з перехідною 

функцією. При цьому W(р) = рL{h(t)} = рН(р). 

Вагову функцію w(t) знаходимо з урахуванням того, що вхідний сигнал х(t) 

= (t) = 1'(t). Тому що w(t) = h'(t), то ( )
t

a

a

eabtw 0

1

00)( = . 

 

Скориставшись (2.21) і врахувавши, що L{(t)} = 1,   отримаємо Y(р) = 

W(р) = L{w(t)}, звідки 

 



39 

 

                                   )()( 1 pWLtw −= .                             (2.25) 

 

Таким чином, співвідношення (2.20) − (2.25) дозволяють знайти будь-який 

оператор перетворення сигналів лінійної системи (диференціальне рівняння, 

W(р); W(j), h(t), (t)), якщо відомо хоча б один з них. 

Динамічні властивості об'єкта моделювання визначають його поведінку в 

динамічному або перехідному режимі, тобто режимі викликаному певним 

збуренням. Перехідний режим об'єкта як реакція на одноразове збурення має, 

таким чином, початок – дія збурення і кінець, що визначається закінченням 

перехідного процесу та виходом на сталий або статичний режим. Об'єкти можуть 

бути нестійкими і збурення, що подається на вхід такого об'єкта, може привести 

його вихідні характеристики за допустимі межі. Таким чином, стійкість, вид 

перехідного процесу, швидкодія та інші якості об'єктів керування визначаються 

їх динамічними властивостями. 

 

2.3. Динамічні властивості об'єктів керування 

До основних динамічних властивостей об'єктів керування можна віднести 

акумулюючу здатність, самовирівнювання та швидкодію (інерційність та 

запізнення). 

Під акумулюючою здатністю розуміємо властивість об'єктів 

накопичувати речовину або енергію в перехідних режимах, тобто в таких 

режимах, коли змінюються з часом їх визначальні параметри. 

Робота всякого неперервно діючого пристрою зв'язана з надходженням та 

витратою речовин або (та) енергії. При зміні визначальних його параметрів деяка 

кількість речовини чи енергії акумулюється в такому об'єкті. В сталому 

(статичному) режимі кількість акумульованої в об'єкті речовини або енергії 

залишається постійною, а в динамічному – змінюється. Ця кількість речовини 

або енергії залежить від розмірів пристрою, значення змін визначаючого 

акумуляцію параметра об'єкта та деяких інших властивостей об'єкта, а також 

його робочого середовища. Кількість акумульованої в об'єкті речовини в даний 

момент можна визначити одночасним перекриттям його вхідних та вихідних 

потоків, можна і розрахунковим шляхом, знаючи акумулюючу здатність об'єкта 

та значення його визначального параметра. Можна і навпаки, знайти значення 

визначальних параметрів об'єкта, якщо знаємо акумулюючу здатність об'єкта та 

кількість акумульованої в ньому речовини чи енергії. У випадку незмінної 
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акумулюючої здатності параметри стану об'єкта визначають кількість 

акумульованої в ньому речовини чи енергії. 

Наприклад, кількість електроенергії, накопиченої в електрохімічних 

акумуляторах чи ємністях (конденсаторах), визначається напругою. Кількість 

акумульованої теплоти характеризується температурою. Кількість 

акумульованого газу – тиском і т.д. 

Акумулююча здатність однотипних пристроїв може бути різною. Для 

різних об'єктів необхідна різна кількість речовини чи енергії, щоб змінити на 

одиницю їх визначальний параметр. 

Акумулювання речовини чи енергії зв'язано з акумулюючими ємностями. 

Під акумулюючою ємкістю ми розуміємо частину простору, в якій визначальний 

параметр має однакове значення у всякій його точці. 

Саме стан акумулюючої ємності характеризує значення визначального 

параметра, який, фактично, є мірою наповнення акумулюючої ємності. 

Всі технологічні характеристики, що використовуються для контролю та 

керування, зв'язані з акумулюючими ємностями та процесами акумуляції. 

Наприклад, концентрація певного компоненту в суміші відображає акумуляцію 

чи кількість цього компонента в суміші, рівень – акумуляцію рідини в ємності. 

Об'єкт моделювання може мати декілька акумулюючих ємностей, кожна з 

яких характеризується певним значенням визначального параметра чи параметра 

стану. Параметри стану об'єкта можуть бути проміжними та вихідними. 

Проміжні параметри стану характеризують проміжні ємності, вихідні параметри 

стану характеризують ємкість, що визначає значення вихідного параметра 

об'єкта тобто його регульовану чи керовану величину. 

Математичний опис об'єкта моделювання в динамічному режимі зв'язаний 

з математичним описом його акумулюючих ємностей. Розглянемо математичний 

опис процесу акумуляції речовини чи енергії в ємності. 

У динамічних режимах змінюється кількість акумульованої в ємності 

речовини чи енергії, у зв'язку з чим під час складання балансних рівнянь 

кількість речовини чи енергії на вході в ємкість не буде рівною кількості 

відповідно речовини чи енергії на її виході 
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У таких балансних рівняннях, що отримують для моделювання об'єктів у 

динамічних режимах, необхідно враховувати кількість акумулюваної в ємності 

речовини чи енергії. На рис. 2.6 зображена розрахункова схема найбільш 

простого об'єкта чи акумулюючої ємності. 

 

Рис. 2.6  Розрахункова схема об'єкта моделювання 

 

Визначальний параметр (параметр стану) позначений Y(t), вхідний потік – 

Qвх(t), вихідний потік – Qвих(t), кількість в ємності речовини чи енергії позначимо 

Qa(t). Відповідно до цієї розрахункової схеми складемо рівняння балансу в 

динамічному режимі 

 

                            )()()( tQtQtQ aвихвх =− .                          (2.27) 

 

Кількість акумульованої в ємності речовини чи енергії Qа(t) можна 

виразити через визначальний параметр Y(t). За нескінченно малий час dt різницю 

між вхідним потоком Qвх(t)  та вихідним Qвих(t) можна виразити 

 

                       )()()()( tkdytdQdttQtQ aвихвх ==− ,          (2.28) 
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Як видно з рівняння (2.29), різниця між вхідним та вихідним потоками 

речовини чи енергії за одиницю часу пропорційна першій похідній 

визначального параметра (параметра стану) за часом. Коефіцієнт 

пропорціональності k у цьому виразі визначає величину акумулюючої здатності 

ємності. Наприклад, для проточної заповненої рідиною ємності визначальним 

параметром є рівень у ній рідини Н. Якщо така ємкість має один вхідний потік 
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Qвх(t), та один вихідний потік Qвих(t), то рівняння (2.29) у цьому випадку буде 

мати вигляд 

 

                            
dt

tdH
FtQtQ вихвх

)(
)()( =− .                        (2.30) 

 

Акумулююча здатність ємності для рідини зі зміною рівня Н визначається 

площею перетину ємності F. 

Рівняння (2.29) чи (2.30) називають рівняннями динаміки акумулюючої 

ємності або одноємкістного об'єкта. Рівняння динаміки кожної ємності є 

диференційними рівняннями першого порядку. 

Багатоємностні об'єкти в динаміці описуються системою 

диференціальних рівнянь першого порядку кількістю, що дорівнює кількості 

акумулюючих ємностей, або диференціальним рівнянням n-го порядку, де n – 

кількість акумулюючих ємностей об'єкта моделювання. Реальні об'єкти 

моделювання, в тому числі і об'єкти керування технологічними процесами, не 

завжди можливо представити ідеальними акумулюючими ємностями. Ємності у 

багатьох об'єктах не мають чіткої межі або якось ці межі розмиті. Доводиться 

нерідко приймати деякі спрощення, які для практичного застосування моделей є 

можливими. Наприклад, у проточній газовій ємності в її нижній частині тиск газу 

буде трохи більший, чим зверху. Однак, у випадку скінченних розмірів такої 

ємності різниця тиску за висотою буде настільки малою, що нею можна 

знехтувати, і вважати проточну газову ємкість акумулюючою ємкістю з 

однаковим тиском у всьому її об'ємі. 

Здатність об'єктів керування самостійно змінювати швидкість відхилення 

визначального параметра від початкового статичного стану після нанесення 

збурення називається самовирівнюванням. 

Виходячи з критерію самовирівнювання об'єкти керування ділять на 

об'єкти з позитивним самовирівнюванням, без самовирівнювання та з 

негативним самовирівнюванням. 

Самовирівнювання об'єкта керування визначається внутрішніми 

зворотними зв'язками в самому об'єкті. Якщо об'єкт не має внутрішніх зворотних 

зв'язків, то він буде об'єктом без самовирівнювання. За наявності негативного 

зворотного зв'язку, що збільшує стійкість об'єкта в динамічних режимах, 

швидкість зміни вихідної величини з часом зменшується за рахунок зменшення 

впливу збурення, то що діє негативний зворотній зв'язок. Об'єкти, що мають 



43 

 

негативні внутрішні зворотні зв'язки, належать до класу об'єктів з позитивним 

самовирівнюванням. 

Об'єкти, що мають позитивні внутрішні зворотні зв'язки, які підсилюють 

дію збурення, швидкість відхилення вихідної величини з часом збільшується. 

Таким чином, об'єкти, що мають позитивні зворотні зв'язки, належать до класу 

об'єктів з негативним самовирівнюванням. 

Важливою динамічною властивістю об'єкта керування є його швидкодія, 

тобто швидкість появи реакції (відгуку) об'єкта на збурення. Частіше всього, ця 

властивість оцінюється в кількісному плані як час відпрацювання об'єктом 

збурення ступінчастої форми. 

Реакція об'єкта на стрибкоподібне збурення може бути миттєвою чи з 

деякою затримкою. Об'єкти з миттєвою реакцією на ступінчате збурення 

називаються безінерційними, і навпаки, об'єкти, що мають значну часову 

затримку реакції об'єкта на ступінчате збурення називаються інерційними. 

Однак, часова затримка реакції на ступінчате збурення може мати дві причини: 

інерційність об'єкту та наявність чистого або транспортного запізнювання. 

Інерційність об'єктів керування можна пояснити наявністю їх акумулюючої 

здатності. 

Швидкодія об'єктів з позитивним самовирівнюванням оцінюється часом, 

зв'язаним з переходом визначального параметра зі старого на новий сталий 

режим. Інерційністю об'єкта в даному випадку називається його властивість, 

приводити до поступової зміни вихідної величини після подання збурення 

ступінчатої форми на вхід об'єкта. Залежність вихідної величини від часу після 

подання такого збурення називають перехідним процесом, а для об'єктів ця 

функція називається перехідною характеристикою або перехідною функцією. На 

практиці інерційність об'єктів з позитивним самовирівнюванням оцінюють з 

використанням тривалості (часу) перехідного процесу Т як реакції на збурення 

ступінчатої форми. 
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ТЕМА 3. МОДЕЛЮВАННЯ СТОХАСТИЧНИХ ПРОЦЕСІВ І СИСТЕМ 

КЕРУВАННЯ З ВИПАДКОВИМИ ВХІДНИМИ І ВИХІДНИМИ 

СИГНАЛАМИ 

 

3.1 Загальні особливості аналітичного і статистичного методів 

синтезу динамічних характеристик об’єктів керування 

Динамічні характеристики об'єктів керування можуть бути отримані 

аналітичним (розрахунковим) та експериментальним методами. 

Аналітичний метод, який базується на використанні найбільш загальних 

залежностей для процесів, що проходять в об'єкті моделювання, а також на 

вивченні конструктивних, фізико-хімічних та технологічних особливостей 

такого об'єкту, дозволяє отримати математичні моделі для діючих об'єктів, 

об'єктів що споруджуються, і навіть тих, що тільки проектуються. Отримані, 

таким чином, математичні моделі динаміки у вигляді балансних рівнянь, що 

враховують акумуляцію речовин чи енергії в кожній ємності об'єкта, 

відображають його структуру, а також взаємозв'язки між конструктивними та 

технологічними параметрами, ємностями і їх визначальними параметрами або 

параметрами станів. 

Такі динамічні моделі в загальному вигляді описують, фактично, певну 

групу однотипних об'єктів моделювання. Прив'язка такої моделі в загальному 

вигляді до конкретних об'єктів здійснюється шляхом підстановки числових 

значень конструктивних та технологічних параметрів конкретного об'єкта в 

модель, записану в загальному вигляді, тобто шляхом розрахунків коефіцієнтів 

динамічної моделі. Таким чином, аналітичні моделі об'єктів є науковим 

узагальненням всіх відомостей про них, мають важливий науковий характер та 

досить високо ціняться, звичайно, якщо отримані моделі адекватні об'єктам. 

Разом з тим, аналітичні моделі динаміки об'єктів досить часто є 

недостатньо точними із-за недостатньої глибини знання об'єкта моделювання, а 

також із-за спрощень та припущень, що приймаються під час розробки моделі. 

Підвищення точності таких моделей шляхом врахування багатьох малозначних 

чинників та залежностей може привести до таких складних виразів, які на 

практиці використати неможливо. Через що під час аналітичного моделювання 

завжди стоїть дилема: простота чи точність. Це питання розв'язується и кожному 

конкретному випадку. 

Разом з тим, є можливість дати певні рекомендації з оптимальної 

складності (чи простоти), а значить і точності моделей. Такі рекомендації 
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базуються на основі теорії похибок. Кожна операція з неточними числами 

вносить свою похибку в результат. Відносно до задач моделювання ці 

рекомендації можна сформулювати таким чином. 

Включення множини малозначних параметрів для підвищення точності 

аналітичної моделі може збільшити складність обчислень і зменшити точність 

моделі. Таким чином, для конкретної математичної моделі враховуючи похибки 

розрахунків та знання про точність використаних параметрів можна визначити 

оптимальну складність, а значить, і точність моделі, а також визначити 

доцільність врахування того чи іншого параметра в моделі. Це є додатковим та 

досить складним дослідженням і його слід використовувати лише у 

відповідальних випадках. 

Частіше з отриманою аналітичним шляхом моделлю проводиться більш 

просте дослідження – перевірка на адекватність об'єкту моделювання. 

Дослідження адекватності можна виконати і для моделей об'єктів, що тільки 

розробляються. Для цього потрібно підібрати функціонуючий об'єкт, подібний 

тому, що моделюється, тобто такий об'єкт, який описується тією ж 

математичною моделлю, записаною у загальному вигляді. Далі, для цього об'єкта 

розраховують числову аналітичну модель і перевіряють її адекватність цьому 

об’єкту. В результаті такої перевірки адекватності можна прогнозувати 

адекватність розробленої аналітичної моделі і для не функціонуючого об'єкту 

моделювання. 

Експериментальні методи отримання динамічних моделей базуються на 

результатах експериментальних досліджень, для яких внутрішня структура та 

взаємозв'язки проміжних параметрів є несуттєвими. Частіше всього, об'єкт 

моделювання розглядається як "чорний ящик", тобто щось з невідомою 

внутрішньою структурою. Ми знаємо лише межі об'єкта, входи та виходи. 

Задачами експериментальних методів дослідження динаміки є виявлення реакції 

об'єкта на збурення певної форми. Реакція об'єкта визначається шляхом 

спостереження за змінами у часі визначальних параметрів. Збурення для 

дослідження динамічних характеристик можуть бути одиничними або 

періодичними. 

Експериментальні методи отримання динамічних моделей є, як правило, 

більш простими, менш трудомісткими, чим аналітичний метод. Крім того, 

отримані цими методами динамічні характеристики є, звичайно, більш точними. 

Однак мають місце і недоліки експериментальних методів моделювання 

динаміки і отриманих з їх допомогою характеристик: 
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1.Під час експериментального дослідження динаміки об'єктів 

моделювання доводиться, як правило, порушувати їх нормальну роботу шляхом 

подачі на вхід спеціальних впливів збурень. 

2.Отримані експериментальним шляхом динамічні характеристики не 

відображають внутрішні взаємозв'язки в об'єкті моделювання, та його структуру. 

3.Моделі динаміки, що отримані експериментальним шляхом, описують 

лише конкретні об'єкти, для яких вони отримані. Перенесення результатів 

експерименту на інші, навіть близькі за конструкцією та технологією об'єкти, є 

неправомірним. 

Як видно з наведеного аналізу, кожен із методів має свої позитивні і 

негативні якості. Вибір методу моделювання слід проводити в залежності від 

можливості роботи з об'єктом, вимог до математичних моделей та способу їх 

подальшого застосування. Деякі додаткові відомості до вибору методу 

отримання динамічних моделей розглянемо під час їх детального дослідження. 

Розглянемо основні положення та методику аналітичного отримання 

динамічних характеристик. 

 

3.2. Синтез динамічних моделей аналітичним методом 

Аналітичний (розрахунковий) метод отримання динамічній моделей 

базується на складанні рівнянь матеріальних чи енергетичних балансів 

акумулюючих ємностей об'єкта моделювання в перехідних (динамічних) 

режимах, тобто з урахуванням акумуляції речовин чи енергії, які мають місце 

при змінах визначальних (вихідних) параметрів. Результатом аналітичного 

моделювання динамічного режиму об'єкта є рівняння динаміки, яке зв'язує 

вихідну величину та її похідні з усіма входами об'єкта, що враховуються під час 

моделювання. 

Якщо об'єкт має декілька вихідних (визначальних) величин, то його 

динамічна модель повинна мати стільки рівнянь динаміки, скільки є вихідних 

величин. Для аналітичного моделювання динаміки об'єктів керування потрібно 

визначення меж цього об'єкта, його входів та виходів, а також внутрішньої 

структури. Внутрішні взаємозв'язки об'єкта визначаються певними фізичними чи 

хімічними процесами, що проходять в його ємностях чи на їх межах, наприклад, 

процесами теплопередачі, масообміну, хімічного чи фізичною перетворення 

речовин, тощо. 

Знання внутрішньої структури об'єкта моделювання, а також основних 

процесів, що проходять у ньому, дозволяє отримати розрахункову схему об'єкта, 
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а з неї і самі рівняння матеріальних чи теплових балансів у динаміці. Рівняння 

динаміки ємностей звичайно отримують із рівнянь їх балансів у статичних 

(сталих) режимах шляхом врахування акумуляції речовин чи енергії в ємності 

під час змін у часі визначальних її параметрів. 

Отримані таким чином рівняння динаміки акумулюючих ємностей з 

числовими коефіцієнтами можуть бути кінцевим продуктом моделювання. 

Однак досить часто з отриманих рівнянь динаміки ємностей, шляхом їх 

спільного розв'язування відносно входів та виходів, отримують одне рівняння 

динаміки всього об'єкта, яке зв'язує його виходи з входами. Таке рівняння буде, 

звичайно, вже не першого порядку. 

Його порядок буде дорівнювати кількості акумулюючих ємностей. 

Систему рівнянь акумулюючих ємностей, записавши їх в формі Коші, можна 

перетворити в систему рівнянь станів, а отриману таким чином модель 

називають математичною моделлю в просторі станів. 

Рівняння динаміки акумулюючих ємностей нерідко є нелінійними 

диференціальними рівняннями. Для подальшого використання їх доводиться 

лінеаризувати. 

Розрахунок числових значень коефіцієнтів рівнянь динаміки виконується 

виходячи із загального (символьного) запису цих коефіцієнтів. Замість 

використаних під час отримання моделі позначень підставляються їх числові 

значення, що відповідають початковому для динаміки статичному режиму. 

Звичайно, таким початковим статичним (сталим) режимом є основний статичний 

режим. Рівняння динаміки перед розрахунком числових значень коефіцієнтів 

перетворюють до канонічної форми, тобто такої форми, коли їх коефіцієнти 

приймають певний фізичний зміст. 

Отримання рівнянь динаміки об'єктів моделювання аналітичним шляхом у 

значній мірі носить індивідуальний характер, у зв'язку з фізико-хімічною 

специфікою об'єктів. Але, разом з тим, для моделювання об'єктів із 

зосередженими параметрами можна розробити певну послідовність, тобто 

певний загальний підхід до аналітичного отримання динамічних моделей. Цей 

загальний підхід можна виразити у вигляді методики аналітичного моделювання 

об'єктів із зосередженими параметрами. 

Для аналітичного моделювання об'єкта необхідно: 

1 .Визначити входи та виходи об'єкту моделювання, а також його границі. 

2. Визначити внутрішню структуру об'єкта моделювання, ввести 

припущення, які спрощують модель, виділити акумулюючі ємності. 
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З. Ввести позначення основних параметрів об'єкта моделювання та його 

акумулюючих ємностей. 

4. На базі пунктів 1-3 побудувати розрахункову схему об'єкта 

моделювання. 

5. Скласти для кожної акумулюючої ємності рівняння статики у вигляді 

балансних рівнянь, виходячи із фізичної природи визначальних параметрів 

ємності. 

6. Розв'язати рівняння статики. Визначити числові значення всіх констант 

та змінних, що задовольняють рівнянням статики. 

7. Скласти таблицю числових значень констант та змінних, що входять в 

рівняння статики, тобто задати основний (початковий) режим. 

8. Рівняння статики (п. 5) перетворити в рівняння динаміки ємностей 

шляхом врахування акумуляції в них речовин чи енергії. 

9. Лінеаризувати рівняння динаміки ємностей з використанням 

розкладання його складових у ряд Тейлора. 

10. Записати рівняння динаміки ємностей у канонічній формі (або, при 

необхідності, у формі Коші). 

11. Розрахувати числові значення коефіцієнтів рівнянь динаміки, 

використовуючи числові значення величин, які вміщені в таблицю (п. 7). 

12. 0тримана система рівнянь динаміки акумулюючих ємностей і буде 

динамічною моделлю об'єкта керування. Якщо рівняння акумулюючих ємностей 

записані в канонічній формі, то така система рівнянь дає модель в канонічній 

(звичайній) формі. Якщо ж рівняння записані в формі Коші, то ми отримаємо 

модель об'єкта в просторі станів. Часто необхідно отримати одне сумарне 

рівняння динаміки всього багатоємкістного об'єкта моделювання. У цьому 

випадку змінюються пункти методики, починаючи з п. 10. 

13. Перетворити рівняння динаміки акумулюючих ємностей за Лапласом. 

14. Розв'язати отриману систему рівнянь моделі відносно виходу та входів 

об'єкта. Отримати зображення рівняння динаміки об'єкта. 

15. Виконати зворотне перетворення зображення рівняння динаміки 

об'єкта до оригіналу. 

16. Записати отримане (п. 12) рівняння динаміки в канонічній формі. 

17. Розрахувати числові значення коефіцієнтів рівняння динаміки, 

використовуючи дані таблиці (п. 7), або числові значення коефіцієнтів рівнянь 

динаміки акумулюючих ємностей, якщо вони отримані. 
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18. Отримано рівняння динаміки об'єкта моделювання, яке зв'язує його 

вихідну величину з входами. 

 

3.3. Моделювання стохастичних процесів і систем керування з 

випадковими вхідними і вихідними сигналами 

Аналіз роботи біотехнічних об'єктів показує, що детермінована модель 

вхідних і вихідних величин не завжди адекватно відображає реальні технологічні 

процеси. В цих величинах завжди є випадкова складова. Тому необхідно 

розробляти аналітичні динамічні моделі, в яких враховується ця складова. 

На практиці дуже часто зустрічаються випадкові процеси, що протікають 

у часі приблизно однорідно й мають вигляд безперервних випадкових коливань 

навколо деякого середнього значення, причому ні середня амплітуда ні характер 

цих коливань не виявляють істотних змін з часом. Такі випадкові процеси 

називаються стаціонарними. 

Як приклади стаціонарних випадкових процесів можна привести: 

1. коливання літака на сталому режимі горизонтального польоту; 

2. коливання напруги в електричній освітлювальній мережі; 

3. випадкові шуми в радіоприймачі; 

4. процес похитування корабля та ін. 

Кожен стаціонарний процес можна розглядати як триваючий невизначено 

довго у часі. При дослідженні стаціонарного процесу як початок відліку можна 

вибрати будь-який момент часу. Досліджуючи стаціонарний процес на будь-якій 

ділянці часу, ми повинні отримати ті самі його характеристики. 

На противагу стаціонарним випадковим процесам можна вказати інші, 

нестаціонарні, випадкові процеси, наприклад, коливання літака в процесі 

пікірування, процес загасаючих коливань в електричному ланцюзі, процес 

горіння порохового заряду в реактивній камері й ін. 

Нестаціонарний процес характерний тим, що він має певну тенденцію 

розвитку в часі. Характеристики такого процесу залежать від початку відліку та 

від часу. 

Як правило, випадковий процес у будь-якій динамічній системі 

починається з нестаціонарної стадії – з так званого «перехідного процесу». Після 

згасання перехідного процесу система як правило переходить у сталий режим, і 

тоді випадкові процеси, що протікають у ній, можуть вважатися стаціонарними. 

Стаціонарні випадкові процеси дуже часто зустрічаються у фізичних і 

технічних задачах. За своєю природою ці процеси простіші, ніж нестаціонарні, і 
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описуються більш простими характеристиками. Лінійні перетворення 

стаціонарних випадкових процесів також значно простіші, ніж у нестаціонарних. 

У зв'язку з цим на практиці набула широкого застосування спеціальна 

теорія стаціонарних випадкових процесів, або, точніше, теорія стаціонарних 

випадкових функцій (тому що аргументом стаціонарної випадкової функції в 

загальному випадку може бути й не час). 

Випадкова функція Х(t) називається стаціонарною, якщо всі її ймовірнісні 

характеристики не залежать від t (точніше, не міняються при будь-якій зміні 

аргументів, від яких вони залежать, за часом). 

Так як зміна стаціонарної випадкової функції повинна протікати однорідно 

за часом, то природно вважати, щоб для стаціонарної випадкової функції 

математичне очікування буде постійним 

 

                          constmtm xx ==)( .                                         (3.1) 

 

Зауважимо, що ця вимога не є суттєвою: ми знаємо, що від випадкової 

функції завжди можна перейти до центрованої випадкової функції Х(t), для якої 

математичне очікування тотожно дорівнює нулю і, отже, задовольняє умові (4.1). 

Таким чином, якщо випадковий процес нестаціонарний тільки за рахунок 

змінного математичного очікування, це не перешкодить нам вивчати його як 

стаціонарний процес. 

Друга умова, якій, повинна задовольняти стаціонарна випадкова функція, 

− це умова сталості дисперсії 

 

                              constDtD xx ==)( .                                     (3.2) 

 

Встановимо, якій умові повинна задовольняти кореляційна функція 

стаціонарної випадкової функції. Розглянемо випадкову функцію Х(t) (рис. 3.1).  
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Рис. 3.1. Реалізація випадкової функції Х(t). 

 

Приймемо у виразі Кх(t, t') значення, t'= t +  і розглянемо Кх(t, t + ) –

кореляційний момент двох перетинів випадкової функції, розділених інтервалом 

часу . Очевидно, якщо випадковий процес Х(t) дійсно стаціонарний, то цей 

кореляційний момент не повинен залежати від того, де саме на часовій осі ми 

взяли інтервал , а повинен залежати тільки від довжини цього інтервалу. 

Наприклад, для інтервалів І і II на рис. 3.1, що мають однакову довжину , 

значення кореляційної функції Кх(t, t + ) і Кх(t1, t1 + ) повинні бути однаковими. 

Взагалі, кореляційна функція стаціонарного випадкового процесу повинна 

залежати не від положення і першого аргументу на осі абсцис, а тільки від 

проміжку   між першим і другим аргументами 

 

                         )(),(  xx kttK =+ .                                            (3.3) 

 

Отже, кореляційна функція стаціонарного випадкового процесу є 

функцією не двох, а всього одного аргументу. Ця обставина в ряді випадків 

сильно спрощує операції над стаціонарними випадковими функціями. 

Замітимо, що умова (3.2), що вимагає від стаціонарної випадкової функції 

сталості дисперсії, є частковим випадком умови (3.3). Дійсно, вважаючи, що у 

формулі (4.3) t +   = 1 ( = 0), маємо 

 

                constkttKtD xxx === )0(),()( .                                (3.4) 

 

Таким чином, умова (3.3) є єдиною істотною умовою, якій повинна 

задовольняти стаціонарна випадкова функція. Тому надалі під стаціонарною 
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випадковою функцією будемо розуміти таку випадкову функцію, кореляційна 

функція якої залежить не від обох своїх аргументів t i t', а тільки від різниці  

між ними. Щоб не накладати спеціальних умов на математичне очікування, ми 

будемо розглядати тільки центровані випадкові функції. 

Ми знаємо, що кореляційна функція будь-якої випадкової функції має 

властивість симетрії 

                                         ),(),( ttKttK xx
= . 

Звідси для стаціонарного процесу, вважаючи t' − t  = , маємо 

 

                                     )()(  −= xx kk .                                    (3.5) 

Таким чином, кореляційна функція kх() є парна функція свого аргументу і 

її беруть тільки для позитивних значень аргументу (рис. 3.2). 

На практиці замість кореляційної функції kх() часто користуються 

нормованою кореляційною функцією 

 

                                  
x

x
x

D

k )(
)(


 = .                                         (3.6) 

 

де Dх = kх(0) – постійна дисперсія стаціонарного процесу. Функція х() є не що 

інше, як коефіцієнт кореляції між перетинами випадкової функції, розділеними 

інтервалом  за часом. Очевидно, що х(0) = 1. 

 

Рис. 3.2  Графік кореляційної функція kх() 

 

Існує зв'язок між характером кореляційної функції і внутрішньою 

структурою відповідного їй випадкового процесу. Залежно від того, які частоти 

й у яких співвідношеннях переважають у складі випадкової функції, її 
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кореляційна функція буває різною. Це приводить до поняття про спектральний 

склад випадкової функції. 

Якщо який-небудь коливальний процес подається у вигляді суми 

гармонійних коливань різних частот (так званих «гармонік»), то спектром 

коливального процесу називається функція, що описує розподіл амплітуд по 

різних частотах. Спектр показує, якого роду коливання переважають у даному 

процесі і яка його внутрішня структура. 

Для випадкового процесу амплітуди коливань також будуть випадковими 

величинами. Спектр стаціонарної випадкової функції буде описувати розподіл 

дисперсій за різними частотами. 

Розглянемо стаціонарну випадкову функцію Х(t), що ми спостерігаємо на 

інтервалі (0, Т) (рис. 3.1). 

Задано кореляційну функцію випадкової функції Х(t). 

                                         )(),(  xx kttK =+ , 

яка є парною )()(  −= xx kk  і отже, на графіку буде відображена 

симетричною кривою відносно осі ординат (рис.4.4). 

При зміні t i t' від 0 до Т аргумент х = t' − t  змінюється від −Т до + Т. 

Відомо, що парну функцію на інтервалі (−Т , Т) можна розкласти в ряд 

Фур’є. 

Отже, випадкова функція Х(t)може бути представлена у вигляді 

канонічного розкладу 

 

                        ( )


=

+=
0

sincos)(
k

kkkk tVtUtX 


,                (3.7) 

 

де Uk, Vk – некорельовані випадкові величини з математичними очікуваннями, 

рівними нулю, і дисперсіями, однаковими для кожної пари випадкових величин 

з тим самим індексом k 

 

                                         kkk DVDUD == .                                (3.8) 

 

Таким чином, ми отримали на інтервалі (0, Т) канонічний розклад 

випадкової функції )(tX


, координатними функціями якого є функції coskt, 

sinkt при різних значеннях k. Розкладом такого роду називається спектральний 
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розклад стаціонарної випадкової функції. На поданні випадкових функцій у 

вигляді спектральних розкладів заснована так звана спектральна теорія 

стаціонарних випадкових процесів. 

Спектральний розклад представляє стаціонарну випадкову функцію 

розкладену на гармонійні коливання різних частот (1,, 2, ..., k, ...), причому 

амплітуди цих коливань є випадковими величинами. 

Визначимо дисперсію випадкової функції )(tX


, заданої спектральним 

розкладом (3.7). Згідно теореми про дисперсії лінійної функції некорельованих 

випадкових величин 

 

( ) ( ) 


=



=

=+=


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
=

0 0

22 sincos
k k

kkkkkkx DDtVtUtXDD 


  (3.9) 

 

Таким чином, дисперсія стаціонарної випадкової функції дорівнює сумі 

дисперсій всіх гармонік її спектрального розкладу. Формула (3.9) показує, що 

дисперсія функції )(tX


 відомим образом розподілена за різними частотами. 

Одним частотам відповідають більші дисперсії, іншим – менші. 

Розподіл дисперсій за частотами стаціонарної випадкової функції )(tX


 на 

кінцевій ділянці часу (0, Т) можна проілюструвати графічно у вигляді спектра 

дисперсій. Для цього по осі абсцис відкладаються частоти (0 = 0, 1,, 2, ..., k 

) через рівні проміжки, а по осі ординат – відповідні дисперсії (спектр) (рис. 3.3) 

у вигляді ліній. 

Очевидно, що сума всіх ординат побудованого в такий спосіб спектра 

дорівнює дисперсії випадкової функції. 

 

Рис. 3.3  Графік спектра стаціонарної випадкової функції 
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Чим більшу ділянку часу ми будемо розглядати, тим кращі будуть наші 

відомості про випадкову функцію. Тому в спектральному розкладі спробуємо 

перейти до межі при Т → і подивитися, в що при  цьому перетвориться спектр 

випадкової функції. При Т → та 0
2

2
1 →=

T


  відстані між частотами k, на 

яких будується спектр, будуть необмежено зменшуватися. При цьому 

дискретний спектр буде наближатися до безперервного, в якому кожному як 

завгодно малому інтервалу частот  буде відповідати елементарна, дисперсія 

D(). 

 Зобразимо неперервний спектр графічно. Для цього будемо відкладати по 

осі ординат вже не саму дисперсію Dk (яка нескінченно зменшується при Т →), 

а середню щільність дисперсії, тобто дисперсію, що доводиться на одиницю 

довжини даного інтервалу частот. Позначимо відстань  між сусідніми частотами 

  


 ==
T2

2
1  і на кожному відрізку , побудуємо прямокутник із площею 

Dk. Отримаємо ступінчасту діаграму (рис. 3.4). 

Висота діаграми на інтервалі , яка належить до точки k, дорівнює 

                                         





= k
kk

D
S )( ,                                (3.10) 

 

і являє собою середню щільність дисперсії на цій ділянці. 

Сумарна площа всієї діаграми дорівнює дисперсії випадкової функції. 

Будемо необмежено збільшувати інтервал Т. При цьому  → 0, і 

ступінчаста крива буде необмежено наближатися до безперервної плавної кривої 

Sх() (рис. 3.5), спектральної щільності стаціонарної випадкової функції )(tX


.  
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Рисю 3.4 Ступінчаста діаграма щільності дисперсії 

 

Очевидно, що площа, обмежена кривою Sх(), як і раніше повинна бути 

рівною дисперсії Dх випадкової функції )(tX


. 

                                    


=
0

)(  dSD xx .                                   (3.11) 

 

Формула (3.11) відображає розкладання дисперсії Dх на суму елементарних 

дисперсій Sх()d, кожне з яких являє собою дисперсію, що  доводиться на 

елементарну ділянку частот d , яка лежить поряд з точкою  (рис. 3.5). 

 

Рис. 3.5 Графік спектральної щільності дисперсії Sх() 

 

Таким чином, дано визначення важливої характеристики стаціонарного 

випадкового процесу – спектральної щільності, що описує частотний склад 

стаціонарного процесу. Однак ця характеристика не є самостійною, вона 



57 

 

повністю визначається кореляційною функцією даного процесу. Спектральна 

щільність Sх() може бути виражена через кореляційну функцію. 

 

Запишемо ці вирази 

 

                       


=
0

cos)()(  dSk xx ,                             (3.12) 

 

                     


=
0

cos)(
2

)( 


 dkS xx ,                          (3.13) 

 

Вирази типу (3.12) відомо в математиці за назвою інтеграла Фур'є. Інтеграл 

Фур'є с узагальнення розкладу в ряд Фур'є для випадку неперіодичної функції. 

розглянутої на нескінченному інтервалі, і являє собою розкладання функції на 

суму елементарних гармонійних коливань із безперервним спектром. 

Подібно тому як ряд Фур'є виражає розкладання функції через коефіцієнти 

ряду, які у свою чергу виражаються через розкладання функції, формули (3.12) і 

(3.13) виражають функції kх() і Sх() взаємно одна через іншу. Формула (3.12) 

виражає кореляційну функцію через спектральну щільність; формула (3.13), 

навпаки, виражає спектральну щільність через кореляційну функцію. Формули 

типу (3.12) і (3.13), що зв'язують взаємно дві функції, називаються 

перетвореннями Фур'є. 

Відмітимо, що із загальної формули (3.12) при  = 0 виходить раніше 

отримане розкладання дисперсії по частотах (3.11). 

На практиці замість спектральної щільності Sх() часто користуються 

нормованою спектральною щільністю 

 

                                    
x

x
x

D

S
s

)(
)(


 = ,                                    (3.14) 

 

де Dх  – дисперсія  випадкової функції. 

У ряді випадків з погляду простоти математичних перетворень виявляється 

зручним користуватися не дійсної, а комплексною формою запису як 

спектрального розкладання випадкової функції, так і її характеристик 
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спектральної щільності й кореляційної функції. Комплексна форма запису 

зручна, зокрема, тому, що всілякі лінійні операції над функціями, що мають 

вигляд гармонійних коливань (диференціювання, інтегрування, розв'язання 

лінійних диференціальних рівнянь і т.д.), здійснюються набагато простіше, коли 

ці гармонійні коливання записані не у вигляді синусів і косинусів, а в 

комплексній формі, у вигляді показових функцій. Комплексна форма запису 

кореляційної функції й спектральної щільності застосовується в тих випадках, 

коли сама випадкова функція (а отже, і її кореляційна функція й спектральна 

щільність) дійсна. 

Для перетворень скористаємося формулою Ейлера 

                                  
2

cos
tjtj ee

t



−+

= , 

замінимо  Sх() = 2Sх*() і розширимо область інтегрування на інтервал 

від − до +. 

В результаті з формул (3.12) і (3.13) отримаємо 

                         


−

=   deSk j
xx )()( *

,                               (3.14) 
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Вважаємо, що у формулі (3.14)  = 0 та отримаємо вираз дисперсії 

випадкової функції )(tX


 

 

                             


−

=  dSD xx )(*
.                                        (3.16) 

 

Формула (3.16) виражає дисперсію випадкової функції у вигляді суми 

елементарних дисперсій, розподілених з деякою щільністю на всьому діапазоні 

частот від − до +. 
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Рис. 3.6  Графіки функцій спектральної щільності, Sх()  та Sх
*()  

 

Порівнюючи формулу (3.16) і раніше виведену (для дійсної форми 

спектрального розкладання) формулу (3.11), бачимо, що вони розрізняються 

лише тим, що у формулі (3.16) використовується трохи інша функція 

спектральної щільності Sх*(), визначена не від 0 до +, а від − до +, але проте 

із удвічі меншими ординатами. Якщо зобразити обидві функції спектральної 

щільності на графіку (рис.4.8), вони розрізняються тільки масштабами по осі 

ординат і тим, що функція Sх() для від’ємних  частот не визначена. 

 

3.4. Перетворення стаціонарної випадкової функції стаціонарною 

лінійною системою. 

Якщо і вхідний вплив )(tX


 і реакція системи Y(t) стаціонарні, завдання 

перетворення випадкової функції можна звести до перетворення невипадкової 

функції – спектральної  щільності Sх().  

Для того щоб при стаціонарному впливі реакція системи могла бути теж 

стаціонарною, очевидно необхідно, щоб параметри системи (наприклад опори, 

ємності, індуктивності і ін.) були постійними, а не змінними. Умовимося 

називати лінійну систему з постійними параметрами стаціонарною лінійною 

системою. Звичайно робота стаціонарної лінійної системи описується лінійними 

диференціальними рівняннями з постійними коефіцієнтами. 

Розглянемо задачу про перетворення стаціонарної випадкової функції 

стаціонарною лінійною системою. Нехай на вхід лінійної системи L  надходить 

стаціонарна випадкова функція Х(t), реакція системи є випадкова функція Y(t) 

(рис. 3.7). Відомі характеристики випадкової функції Х(t) математичне 

очікування mx, і кореляційна функція kх(). Потрібно визначити характеристики 

випадкової функції Y(t) на виході лінійної системи. 
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Так як для розв'язання задачі нам доведеться перетворювати невипадкові 

функції – математичне очікування й координатні функції, розглянемо 

насамперед задачу про визначення реакції системи L на невипадковий вплив х(t). 

 

 

Рис. 3.7  Структурна схема перетворення стаціонарної випадкової функції 

стаціонарною лінійною системою 

 

Напишемо в операторній формі лінійне диференціальне рівняння з 

постійними коефіцієнтами, що зв'язує реакцію системи y(t) із впливом х(t) 
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де р = d/dt – оператор  диференціювання. 

Більш коротко рівняння (3.17) можна записати у вигляді  

 

                            )()( txBtyA mn = ,                                         (3.18) 

 

або, умовно розв'язуючи рівняння (4.18) відносно y(t), записати оператор системи 

у «явному» вигляді 
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Реакцію системи L на вплив х(t) можна знайти шляхом розв'язання 

лінійного диференціального рівняння (3.17). 

З теорії диференціальних рівнянь відомо, що розв'язання складається із 

двох складових y(t) і yп(t). Складова yп(t) – це  розв'язання рівняння без правої 

частини й визначає вільні, або власні коливання системи. Це коливання, створені 

системою при відсутності вхідного впливу, якщо система в початковий момент 
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якось була виведена зі стану рівноваги. На практиці найчастіше зустрічаються 

стійкі системи; у цих системах вільні коливання з часом згасають. 

Якщо обмежитися розглядом інтервалів часу, досить, віддалених від 

початку процесу, коли всі перехідні процеси в системі можна вважати 

закінченими, і система працює в сталому режимі, можна відкинути другий 

доданок yп(t) і обмежитися розглядом тільки першого, що складає y(t). Цей 

перший доданок визначає дії на неї заданої функції х(t). 

У випадку, коли вплив х(t) являє собою досить просту аналітичну функцію, 

часто вдається знайти реакцію системи також у вигляді простої аналітичної 

функції. Зокрема, коли вплив представляє із себе гармонійне коливання певної 

частоти, система відповідає на нього також гармонійним коливанням тієї ж 

частоти, але зміненим за амплітудою і фазою. 

Так як координатні функції спектрального розкладання стаціонарної 

випадкової функції X(t) представляють собою гармонійні коливання, то 

насамперед необхідно навчитися визначати реакцію системи на гармонійне 

коливання заданої частоти . Це завдання розв'язується дуже просто, особливо 

якщо гармонійне коливання представлено в комплексній формі. 

Припустимо, що на вхід системи надходить, гармонійне коливання 

вигляду 

 

                                     
tjetx =)( .                                         (3.20) 

 

Будемо шукати реакцію системи y(t) також у вигляді гармонійного 

коливання частоти , але помноженого на деякий комплексний множник (j). 

 

                                  
tjejty )()( = .                                  (3.21) 

 

Множник (j) знайдемо в такий спосіб. Підставимо функцію (3.20) у 

праву, а функцію (3.21) у ліву частину рівняння (3.17). Отримаємо 
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Маючи на увазі, що при будь-якому k 
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і ділячи обидві частини рівняння (3.22) на еjt, отримаємо  
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Ми бачимо, що множник при (j) являє собою багаточлен.
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−  у якому замість оператора 

диференціювання р підставлена (j), аналогічно права частина рівності (3.23) є 

не що інше, як Вm(j). Рівняння (3.23) можна записати у вигляді 
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звідки 
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Функція (j) носить спеціальну назву частотної характеристики лінійної 

системи. Для визначення частотної характеристики досить в оператор системи, 

записаний у явній формі (3.24), замість оператора диференціювання р підставити 

j . 

Таким чином, якщо на вхід лінійної системи з постійними параметрами 

надходить гармонійне коливання виду еjt, то реакція системи дасться у вигляді 

того ж гармонійного коливання, помноженого на частотну характеристику 

системи (j). 

Припустимо, що на вхід системи надходить вплив виду 

 

                                 
tjUetx =)( ,                                          (3.25) 

 

де U - деяка величина, що не залежить від t. У силу лінійності системи 

величина U виходить за знак оператора і реакція системи на вплив (3.25) буде 

дорівнювати 
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                                ( ) tjejUty =)( .                                  (3.26) 

 

Очевидно, ця властивість збережеться й у тому випадку, коли величина U 

буде випадковою (аби тільки вона не залежала від t). 

Застосуємо викладені прийоми перетворення гармонійних коливань 

лінійною системою до математичного очікування випадкової функції X(t) і 

координатним функціям її спектрального розкладання. 

Представимо математичне очікування mх стаціонарної випадкової функції 

X(t) як гармонійне коливання нульової частоти  = 0 і будемо вважати, що у 

формулі (3.24)  = 0 
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звідки одержуємо математичне очікування на виході системи 
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Перейдемо до перетворення лінійною системою істотно випадкової 

частини функції X(t), а саме функції 
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Для цього представимо функцію )(tX


 на інтервалі (0, Т) у вигляді 

спектрального розкладання 
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де Uk – некорельовані  випадкові величини, дисперсії яких cтворять спектр 

випадкової функції X(t). 
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Розглянемо окремий доданок цієї суми 
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Реакція системи на цей вплив буде мати вигляд 
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Відповідно до принципу суперпозиції реакція системи на суму впливів 

дорівнює сумі реакцій на окремі впливи. Отже, реакцію системи на вплив (3.30) 

можна представити у вигляді спектрального розкладання 
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або, позначаючи Uk(jk) = Wk, 
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де Wk – некорельовані випадкові величини з математичними очікуваннями, що 

дорівнюють нулю. 

Визначимо спектр цього розкладання. Для цього знайдемо дисперсію 

комплексної випадкової величини Wk у розкладанні (3.33). Маючи на увазі, що 

дисперсія комплексної випадкової величини дорівнює математичному 

очікуванню квадрата її модуля, маємо 
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Можна зробити висновок: при перетворенні стаціонарної випадкової 

функції стаціонарною лінійною системою кожна з ординат її спектра множиться 

на квадрат модуля частотної характеристики системи для відповідної частоти. 
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Таким чином, при проходженні стаціонарної випадкової функції через 

лінійну стаціонарну систему її спектр певним чином змінюється: деякі частоти 

підсилюються, деякі, навпроти, послабляються (фільтруються), Квадрат модуля 

частотної характеристики (залежно від k) показує, як реагує система на 

коливання тієї або іншої частоти. 

Перейдемо у спектральному представлені випадкової функції до границі 

при Т →  й від дискретного спектра – до  спектральної щільності. Очевидно, 

спектральна щільність на виході лінійної системи виходить із спектральної 

щільності на вході тим же множенням на |Ф(j)|2, як і ординати дискретного 

спектра 
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2

 xy SjS = .                                 (3.35) 

 

Таким чином, отримано досить просте правило: при перетворенні 

стаціонарної випадкової функції стаціонарною лінійною системою її 

спектральна щільність множиться на квадрат модуля частотної 

характеристика системи. 

Користуючись цим правилом, можемо легко розв'язати поставлену вище 

задачу – за характеристиками випадкової функції на вході лінійної системи 

знайти характеристики випадкової функції на її виході. 

Нехай на вхід стаціонарної лінійної системи з оператором (3.19) надходить 

стаціонарна випадкова функція Х(t) з математичним очікуванням mх і 

кореляційною функцією kх(). Потрібно знайти математичне очікуванні my й 

кореляційну функцію ky() випадкової функції Y(t) па виході системи. 

Задача розв'язується в наступному порядку. 

1. Знаходимо математичне очікування на виході 
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2. За кореляційною функцією kх() знаходимо спектральну щільність на 

вході 
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3. За формулою (4.19) знаходимо частотну характеристику системи і 

квадрат її модуля 
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4. Множачи спектральну щільність на вході на квадрат модуля частотної 

характеристики знаходимо спектральну щільність на виході 
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5. За спектральною щільністю Sy() знаходимо кореляційну функцію ky() 

на виході системи 
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ТЕМА 4. МЕТОД ПРОСТОРУ СТАНІВ ДЛЯ МОДЕЛЮВАННЯ 

ЛІНІЙНИХ БАГАТОВИМІРНИХ БІОТЕХНІЧНИХ ОБ’ЄКТІВ 

 

4.1. Математичні моделі та структурні схеми систем у просторі 

змінних стану. 

 

Багатовимірними називаються такі системи автоматичного керування, в 

яких є кілька регульованих змінних (координат стану).  

Метод простору стану передбачає первинну математичну модель системи у 

вигляді диференціальних рівнянь першого порядку, розв’язану відносно 

похідних. Таку систему називають нормальною системою або системою у формі 

Коші. 

В загальному випадку нелінійна система описується рівнянням : 

                              

 (4.1) 

                  …………………………………… 

  

 

де: Хі – координати стану, які характеризують стан системи в n-вимірному 

просторі Rn, Ui – дії керування, fi – нелінійні функції. 

Якщо приймати, що функції f1, f2, fn є лінійними відносно координат Х та дій 

U, то можна записати : 

                      

    (4.2) 

           …………………………………………………….. 

 

або в матричному виді : 
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          (4.3) 

В компактній векторно-матричній формі рівняння (1.3) можна записати так: 

                     X = А(t)Х + В(t)U,                 (4.4) 

де: А(t), В(t) – матриці, складені з відповідних коефіцієнтів, причому матриця  

А(t) є завжди  квадратною  [n x n] , а матриця  В(t) – прямокутна [n x m]. 

Система, в якій матриці А(t) та В(t) залежать від часу (t) називається 

багатовимірною нестаціонарною системою. 

 

X1(t)=f1(X1,X2…Xn,U1,U2…Um,t), 

X2(t)=f2(X1,X2…Xn,U1,U2…Um,t); 

Xn(t)=fn(X1,X2…Xn,U1,U2…Um,t), 

X1 =а11 (t)Х1 + а12(t)X2 +...+ а1n(t)Xn + b11(t)U1  +…+ b1m(t)Um, 

X2 =а21(t)Х1 + а22(t)X2 +...+ а2n(t)Xn + b21(t)U1  +…+ b2m(t)Um, 

Xn =аn1(t)Х1 + аn2(t)X2 +...+ аnn(t)Xn + bn1(t)U1  +…+ bnm(t)Um, 
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Якщо А(t)=const та В(t)=const, то така система називається стаціонарною. 

 Повний опис системи доповнюється залежностями, які зв’язують вихідні 

змінні Y та Х: 

                    Y1= C11(t)X1 + C12(t)X2 + …+ C1n(t)Xn, 

                    Y2= C21(t)X1 + C22(t)X2 + …+ C2n(t)Xn, 

                      …            (4.5) 

                    Yp= Cp1(t)X1 + Cp2(t)X2 + …+ Cpn(t)Xn, 

причому p≤n; або в матричній формі    

 Y=C(t)X.                (4.6) 

Вектор Х – фазовий вектор, або вектор змінних (координат) стану. 

Координатии Х1, Х2,…, Хn називають фазовими координатами, або координатами 

стану (рис.4.1).    

  

 

 

 

 

 

 

 

 

Рис.4.1. Фазовий простір. 

Множина векторів Х – простір стану. Координати Хі вектора стану є 

регульовані змінні або абстрактні величини, які вводяться штучно. Вектор стану 

Х утворюється за допомогою компонентів Хі, які обираються так, щоб при 

відомому значенні X(tф) при t=tф (tф – фіксований момент часу) і заданому 

вектору входу U(t) для t є [tф,Т] можна було однозначно визначити вектор виходу 

Y(t). Перехід системи з початкового стану Х0 в кінцевий Хк визначається фазовою 

траєкторією. 

За рівняннями (1.2) можна побудувати структурну схему системи (рис.4.2), 

що дає можливість зробити такі висновки :   
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Рис.4.2.Структурна схема системи. 

- за допомогою вектора U(t) здійснюється керування об’єктом; 

- вектор Х(t)  характеризує стан об’єкта в фазових координатах Х1, Х2...Хn; 

- поведінка системи та її властивості повністю характеризуються поняттям 

стану, якому відповідає точка в просторі Rn; 

- якщо система описується векторно-матричним рівнянням в нормальній 

формі Коші, то розмірність простору стану дорівнює порядку цієї системи; 

- поведінка системи (її рух) характеризується фазовою траєкторією 

(рис.4.1), яка визначає змінювання координат системи з часом. Кожна конкретна 

(фіксована) точка на фазовій траєкторії характеризує стан системи при t=tф. 

Таким чином, фазова траєкторія повністю визначає стан системи в просторі Rn і 

за часом; 

- траєкторія станів системи в часі t є [tф, Т] – геометричне місце точок кінця 

вектора стану X(t) в просторі станів Rn, що параметрично визначається часом t є 

[tф, Т] .Траєкторія станів однозначна на інтервалі [tф, Т] для заданого на цьому 

інтервалі вхідного сигналу U(t); 

- фазовий простір системи n-го порядку - n-вимірний простір станів, 

координатами якого є похідні за часом X(k)(t), 1,0 −= nk .Число координат 

простору станів дорівнює порядку системи рівнянь в формі Коші. 

Координати Х1, Х2...Хn відповідають не реальній, а математичній моделі 

САУ. Функції  Y1, Y2...Yn доступні спостереженню (вимірюванню) – це реальні 

вихідні сигнали, які можна спостерігати (вимірювати). Тому, рівняння (4.4) 

називають рівнянням стану, а рівняння (4.6) – рівнянням виходу. 

Для опису лінійної стаціонарної неперервної системи іноді в модель (4.4) 

вводять вектор зовнішніх збурень: 

                              






+=

++=
•

WDCXY

WDBUAXX

2

1
,
                                                       (4.7) 

де: Х(t)Rn – вектор стану системи; U(t) Rm – управління (керування); Y(t)Rp – 

вихід системи; 1)( mRtW   - вхідні сигнали (зовнішні збурення) або сигнали 

завдання. Матриці: nnRA   , mnRB  , 1

1

mnRD  , npRC  , 1

2

mp
RD


 також можуть 

залежати та не залежати від часу t. 

Система називається повністю визначеною, якщо матриці 
21

,,,, DDCBA  

задані. В системах з невизначеностями ці матриці відомі не повністю (для 

робастних систем). 



70 

 

Зовнішні діяння )(tW  можуть бути відсутніми; детермінованими або 

випадковими; обмеженими у деякій нормі. 

Системи, моделі яких мають вид:  

   
,

,

2

1

WDCXY

WDAXX

+=

+=
•

              (4.8) 

називають відкритими (керування відсутнє). При програмному управлінні 

обрано )(tUU = , а у формі зворотнього зв’язку за станом KXU = . 

Розв’язок відкритої системи можна записати в явному вид:  

   
−+=

t tAAt dWDeXetX
0 1

)( )()0()( 
,            (4.9) 

 

де: )0(X  - значення )(tX  - у початковій момент 0=t , 
Ate - матрична експонента. 

Таким чином, фізичну постановку задачі необхідно визначити наперед. 

Дискретні системи описуються різницевими рівняннями: 

  
,

,

2

1111

kkk

kkkk

WDCXY

WDBUAXX

+=

++=
−−−

            (4.10) 

де: k – дискретний час або номер ітерації в ітераційному процесі. 

 

4.2. Матричні передаточні функції біотехнічних об’єктів. 

Для перетворень рівнянь у просторі станів вводиться оператор 

диференціювання 
dt

d
s =   на гладкі функції )(tx  він діє за правилом: 

  )()( tXtSX
•

= .              (4.11) 

Якщо розглядати S  як комплексну змінну та функції від неї, то тоді можна 

отримати певний зміст, наприклад якщо 

  k

k
sasaasR +++= ...)(

10
,             (4.12) 

то  

  )(...)()()()( )(

10
txatxatxatxsR k

k
=++=

•

;          (4.13) 

коли підставити у рівняння (1.7) 
dt

d
s =  при 0)0( =X  і формально розв’язати 

перше рівняння відносно х, отримаємо: 

  )()(
1

1 WDBUAsIX +−= − ,            (4.14) 

а для виходу буде: 
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  WDDAsICBUAsICY ))(()(
21

11 +−+−= −− .         (4.15) 

Матрична функція комплексної змінної S є: 

  BAsICsH yn −= −1)()(              (4.16) 

 

називається передаточною функцією від збурення W  до виходу Y. 

Елементами матриць )(sA  є дробнораціональні функції від змінної s, які 

мають спільний знаменник 

  )det()( AsIsP −= -              (4.17) 

- характеристичний поліном матриці А (характеристичний поліном системи), від 

розташування коренів якого залежить стійкість та інші властивості системи.  

Тоді можна записати: 

  )(
)(

1
)()( sW

sP
sHsH yu == ,            (4.18) 

 

де: )(sW - матриця, елементи якої є поліномами від s. 

Полюси )(sH  співпадають із власними числами матриці А, для решти                 

матриця )(sH  визначена. Зокрема, якщо )(sP  стійкий, тобто всі його корені 

лежать у відкритій лівій напівплощині, то )(sH - матрична функція, аналітична 

у правій напівплощині (такі передаточні функції є стійкими). 

Можна записати таку зручну залежність: 

  WsHUsHY ywyu )()( += .             (4.19) 

 

Зручність використання передаточних функцій можна показати на такому 

прикладі: 

- для системи відсутні зовнішні збурення та похибки вимірювань виходу: 

  em RYRUUsHY = ,,)( .            (4.20) 

 

Тут )(sH - передаточна функція (матриця me , елементи якої – дробно-

раціональні функції s, тобто: 

  )(
)(

1
)( sW

sP
sH = ,           (4.21) 
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де елементи  me  матриці )(sW - поліноми від s. Поліном  )(sP - загальний 

знаменник елементів матриці )(sH - характеристичний поліном системи, а його 

корені -  полюси   передаточної функції. 

Формально можна отримати: 

  UsWsHsP )()()( = .             (4.22) 

 

Тоді, якщо розглядати s як оператор диференціювання, отримуємо систему 

диференціальних рівнянь високого порядку відносно me RtURtY  )(,)( . Для 

реалізуємості матриці )(sH  формуються умови: степінь полінома чисельника не 

перевищує  степені полінома знаменника. Такі передаточні функції називають 

правильними (реалізуємими). Вводячи штучні змінні стану, останнє рівняння 

приводять до виду, аналогічного стандартній формі. Це називається реалізацією 

передаточної функції в просторі станів. Тоді використовується запис: 

  







=

DC

BA
sH

|

|
)(                      (4.23) 

або:    

  ),,,()( DCBAsH = , тобто система UsHY )(=  еквівалентна системі: 

  
.

,0)0(,

DUCXY

XBUAXX

+=

=+=
•

             (4.24) 

При цьому 

  DBAsICsH +−= −1)()( .            (4.25) 

 

Перехід від )(sH  до ),,,( DCBA - реалізації можна здійснити по-різному. 

Наприклад, можна забезпечити мінімальну розмірність А (тобто вектора стану Х) 

– мінімальну реалізацію. Відповідна розмірність А називається степенем Мак- 

Мілана для передаточної функції. 

Якщо ),,,( DCBA - мінімальна реалізація )(sH , то  

  )det()( AsIsP −= -              (4.26) 

 

характеристичний поліном системи, а його корені – власні значення А  - полюси 

матричної передаточної функції (полюси системи). 

Використання передаточних функцій є зручним також у такому випадку для 

системи: 
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,

,

CXY

BUAXX

=

+=
•

              (4.27) 

 

коли вхідний сигнал )(tU - комплексний гармонійний сигнал 

  jwtaetU =)(  ,              (4.28) 

 

де а- постійний вектор, w- частота. 

Тоді:  

BaAjwIBaeAjwIXeBadeeXRtX jwtAt
t

AjwIAtAt 11

0

)( )()()0()0()(
1 −−− −−−+=+= 
−

 ,(4.29) 

 

усталене значення вектору стану буде: 

  )()()( 1 tBUAjwItX −−= .             (4.30) 

 

Якщо матриця А стійка, то всі її власні значення 
i

  лежать у лівій  

напівплощині: ni
i

,...1,0Re = . Тоді для стійких матриць 0→Ate  при →t . 

Тоді 0)()( →− tXtX  при →t . Для усталеного значення виходу маємо: 

  ),()()()( 1 tBUAjwICtXCtY −
•

−==            (4.31) 

   0)()( →− tYtY  при →t  

або: 

  )()()( tUjwHtY = ,            (4.32) 

 

де матрична передаточна функція )( jwH  є частотною характеристикою системи. 

Це рівняння можна пояснити так: припустимо, що всі компоненти вхідного 

вектора U(t)  дорівнюють нулю, крім i –тої, яку подамо у вигляді: 

wtjawtatU
i

sincos)( +=  (а – число). Тоді k-та компонента усталеного значення 

вихідного сигналу буде: 

  )sin()()cos()()(  +++= wtajwhjwtajwhtY
kikiK

,        (4.33) 

 

де )()(
0
ikjwh

ki
− -й елемент матриці )( jwH , а )(arg iwh

ki
= . З урахуванням 

лінійності (.)H  відклик системи на суму дійсної та уявної складових )(tU
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дорівнює сумі відкликів на кожну з них, тобто якщо в якості )(tU
i

 взяти дійсну   

гармоніку а wtcos , то усталене значення на k –му виході буде:  

  )cos()()( += wtajwhtY
kik .            (4.34) 

 

Таким чином: якщо на і-й вхід системи із стійкою матрицею А надавати 

гармонійний сигнал з частотою w, то на k-му виході буде також гармонійний 

сигнал з тією ж частотою, а його амплітуда в )( jwh
ki

 разів відрізняється від 

амплітуди вхідного сигналу, тобто )(iwh
ki

- коефіцієнт підсилення вхідного 

гармонійного сигналу, а фаза змінюється на )(arg jwh
ki

. Це використовується для 

експериментального визначення частотної характеристики системи. 

Для дискретних систем вводиться оператор зсуву назад z, який 

розглядається як формальна змінна: 

  
1−

=
kk

XZX                 (4.35) 

 

Тоді при 0
0
=X  можна записати: 

  
kkkk

WZDZBUXZAXX
1

++= ,            (4.36) 

тобто 
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        (4.37) 

 

Передаточні функції виражаються через змінну Z: 

 ,)()( 1 BZAIZCZH
yu

−−=   
21

1)()( DDZAIZCZH
yw

+−= −         (4.38) 

 

а характеристичний поліном: 

  )det()( ZAIZP −=
•

              (4.39) 

 

Тоді передаточні функції мають вигляд: 

  )(
)(

1
)( ZW

ZP
ZH =              (4.40) 

 

де:  )(ZW - матриця, елементи якої є поліномами від Z. 

Якщо )(ZP  не має нулів всередині одиничного кола, то він є стійким ( )(ZH  

аналітична в цьому колі). 
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Якщо для відкритої системи без похибок у спостереженні )0(
2
=D  матриця 

А дискретно стійка, а на вхід подається гармонійний сигнал 

  jwk

k
aeU = ,                (4.41) 

 

то  вихід прямує до усталеного значення 

  
k

jw

k
UeHY )( −= ; BAeICeeH jwjwjw 1)()( −

•

−=  .         (4.42) 

Тобто і у цьому випадку гармонічний сигнал перетворюється (гранично) до 

гармонійного  з  амплітудою,  яка  змінилась   в )( jweH    разів  і  зсувала  за 

фазою  – )(arg jweH  (знак “–”  відповідає оператору зсуву назад). 

4.3. Керованість та спостережливість багатовимірних систем. 

 

При синтезі систем, в тому числі розрахунку регуляторів, інформацію про 

стан системи можна отримати за допомогою спостерігачів, які аналізують 

вектор Y(t) (вектор вимірювань) і дозволяють отримати наближене значення 

(оцінку) вектор-функції X(t). При цьому деякі координати стану можна виміряти, 

а деякі є комбінацією вихідних сигналів і їх можна розрахувати. 

Математичні моделі в координатах стану (1.7) дають можливість отримати 

оцінку таких важливих показників як спостережність та керованість системи. 

Якщо керувати станом системи X(t) можна зміною вектора U(t), а спостерігати її 

стан вимірюванням вихідного сигналу Y(t), то необхідно дати відповідь на два 

питання: 

– чи можна обрати U(t) так, щоб перевести систему (або об’єкт) з деякого 

довільного стану X0(t) в інший Xk(t)? 

– чи можна, спостерігаючи вектор виходу Y(t) на протязі тривалого часу, 

визначити стан системи X(t)? 

Система, яка описується математичною моделлю (4.7) є повністю 

керованою, якщо для будь-якого початкового стану X0(t) існує такий сигнал 

керування U(t), який переводить систему в кінцевий стан Xk(t) за кінцевий 

відрізок часу kttt 0 . Існує математична умова керованості (умова 

Р.Калмана): лінійна n-вимірна система (1.7) є повністю керованою, коли 

матриця: 

                     BABAABBN n

k

12 ;...;; −=          (4.43) 

 

має ранг, який дорівнює порядку системи n : 
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                                   rank Nk = n                                                                         (4.44) 

 

На рис.4.3 показана структурна схема системи, з якої видно, що вона не 

повністю керована (сигнал Х1 не з’єднаний з сигналом керування U). Для 

здійснення процесу керування повинна бути інформація про стан системи 

(об’єкта).  

Кількість вимірюваних координат, як правило, менше кількості координат 

стану. Система називається повністю спостережною, якщо можливо визначити 

стан X(t) за даними вимірювань Y(t) та U(t) за кінцевий інтервал часу kttt 0 . 

Математична умова повної спостережності (умова Р.Калмана) формулюється 

так: лінійна стаціонарна система (1.7) є повністю спостережною, коли матриця:          

       )(;...;)(;;
12 TnTTTTTT

c CACACACN
−

=      (4.45) 

 

має ранг n: 

                    rank Nc = n                      (4.46) 

 

Система, структурна схема якої показана на рис.4.3, є не повністю 

спостережною (координата Х2 не зв’язана з виходом Y). 

Також більш сильною формою керованості є нормалізованість. Система 

являється нормалізованою, якщо кожна координата вектора управління U(t) 

окремо забезпечує керованість. Необхідною та достатньою умовою при цьому є: 

  nbAAbbrankNrank i

n

ii
i

c == −1;;;      (4.47) 

для всіх i=1, 2, …, m, де bi, i=1, 2, …, m - стовбці матриці B. 
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X4 

X3 

X2 

X1 Z 
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W1(p) 

W2(p) 
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Рис.4.3.Структурна схема системи. 
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Тема 5. Моделювання інтелектуальних систем керування біотехнічних 

об’єктів 

 

5.1. Особливості розробки інтелектуальних систем керування 

біотехнічними об’єктами 

В останні роки спостерігається підвищений інтерес до інтелектуальних 

систем, які знайшли застосування в самих різних областях людської діяльності - 

бізнесі, медицині, техніці. При управлінні біотехнічними об’єктами 

інтелектуальні системи використовуються при вирішенні завдань 

прогнозування, класифікації, управління.  

Біотехнічні об’єкти аграрного спрямування (пташники, споруди закритого 

ґрунту тощо) характеризуються наявністю значних енергетичних потоків, що 

використовуються для забезпечення відповідної технології. Високі ціни на 

енергоносії (природній газ, електрична енергія) створюють умови для 

розроблення спеціальних систем, здатних зменшити, а краще мінімізувати 

енергетичні витрати. Наявні системи, як складові технології, реалізують 

найпростіші стабілізаційні алгоритми, котрі не забезпечують високу енерго- та 

ресурсоефективність, оскільки не враховується інформація про стани біологічної 

складової об’єкта керування, результати прогнозування природних збурень, що 

впливає на продуктивність живого організму). 

Вирішення зазначених проблем можливе шляхом використання сучасних 

інтелектуальних алгоритмів обробки інформації, що поступає від об’єкта 

керування, та застосування результатів для формування відповідних стратегій 

керування з метою максимізації прибутку за результатами виробництва. 

Очевидно, що цінність і ефективність використання інформації про стани 

біологічної складової об’єкта керування визначається перш за все можливістю її 

знайти і отримати до неї якісний доступ. Операції по обробці вже наявної 

інформації також стають все більш розвинутими: вони включають вже не тільки 

найпростіші арифметичні операції, але і операції з  базами даних (пошук, 

вибірка, відбір, фільтрація, сортування), статистичні розрахунки, числові 

методи, імітаційне моделювання, методи розпізнавання образів і прийняття 

рішень, теорії ігор, експертні системи, нейронні сітки, генетичні алгоритми, 

когнітивне моделювання і ін. Розвиток автоматизованих технологій обробки 

інформації йде по дорозі все більш глибокої переробки "інформаційної 

сировини", внаслідок чого "інформаційний продукт" все більшою мірою 

відрізняється від початкового стану інформації. Якщо на перших етапах ця 
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переробка полягала в основному в сортуванні і виконанні арифметичних 

операцій, то в подальшому вона стає все більш і більш інтелектуальною. 

Альтернативою централізованому проектуванню і впровадженню програмних 

систем є ідеологія відкритих систем, при якій над розвитком системи одночасно 

і незалежно один від одного працює дуже багато розробників, що не 

дотримуються якого-небудь одного плану, але за деякими загальними 

правилами: 

1. Адаптивні і самонавчальні системи настроюються на розв’язання тих 

або інших задач за рахунок врахування апріорної інформації і інформації, що 

поступає в систему в процесі її експлуатації. Можна вваажати, що подібні 

системи розвиваються на основі досвіду їх експлуатації і що засвоєння цього 

досвіду є один з технологічних етапів створення таких систем. 

2. Відкриті системи дуже великого масштабу, які не спроектовані якою-

небудь однією групою розробників і розвиваються не по якому-небудь плану, а 

що саморозвиваються. Ці системи створюють як би інформаційне середовище 

загального доступу,  в розвиток якого можуть вносити свій внесок розробники і 

навіть користувачі, незалежно від свого місця знаходження. 

При створенні систем штучного інтелекту розробники оперують такими 

основоположними поняттями, як: 

– дані, інформація, знання; 

– факт, значення, думка; 

– моніторинг, аналіз і управління. 

Від того, який конкретний зміст вкладається розробниками в дані поняття, 

найістотнішим чином залежать і підходи до створення математичних моделей, 

структур даних і алгоритмів функціонування інтелектуальних систем. Системи, 

що містять інформацію про систему в цілому в кожній своїй частині певного 

рівня структурної ієрархії, широко відомі, це: 

– біологічні системи, в кожній клітці яких міститься повний геном; 

– фрактальні системи; 

– високоорганізовані системи із великою взаємною інформацією в своїх 

частинах, які успішно протистоють закону зростання ентропії. 

Факти розглядаються як причини і їх значення вважається відомим, якщо 

відомі наслідки даного факту. Таким чином, розуміння значення певних 

конкретних подій полягає у виявленні причинно-наслідкових взаємозв'язків між 

цими подіями і іншими. 

Створення інтелектуальних систем  повинне включати три етапи: 
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– створення матеріальної системи підтримки (ця проблема в основному 

вирішена, оскільки інтелектуальні системи  можуть створюватися навіть на базі 

сучасних персональних комп'ютерів); 

– створення системи потенційного штучного інтелекту, тобто програмної 

оболонки, інструментальної системи (таких систем в даний час існує поки що 

дуже мало); 

– навчання і самонавчання системи потенційного штучного інтелекту і 

перетворення її в реальну інтелектуальну систему. При розгляді самої ідеї 

реалізації природного інтелекту на іншій матеріальній основі відразу виникає 

питання про те, наскільки це взагалі у принципі можливо, тобто питання про те, 

чи можуть інтелектуальні функції бути реалізовані на основі іншої, ніж мозок, 

матеріальної структури. Це питання про співвідношення функцій і 

підтримуючих їх структур. Звичайно, структура залежить від функцій, які вона 

підтримує, і в цілому складніші функції підтримуються складнішими 

структурами. Проте цей зв'язок "структура – функція" неоднозначний, тобто одні 

і ті ж функції можуть підтримуватися найрізноманітнішими, тобто 

альтернативними структурами функцій і підтримуючих їх структур. При цьому 

звичайно функціональна універсальність досягається за рахунок певної 

структурної надмірності, що неминуче приводить до зменшення ефективності 

підтримки конкретних функцій, в порівнянні з їх спеціалізованою реалізацією. 

Існує певна ієрархія задач обробки даних, інформації і знань: 

Моніторинг – накопичення даних за рядом  показників про об'єкт 

управління з прив'язкою до часу. 

Аналіз – виявлення значення в даних, тобто виявлення в них причинно-

наслідкових взаємозв'язків. 

Прогнозування – використання значення причинно-наслідкової залежності 

в предметній області для прогнозу поведінки об'єкта управління в умовах дії 

певних факторів. 

Управління –використання знань для досягнення певної мети управління: 

– забезпечення стабільного функціонування об'єкта управління; 

–переведення об'єкта управління в заздалегідь заданий цільовий стан. 

Таким чином, управління – це вища форма обробки і використання інформації. 

Системи штучного інтелекту  реалізують все більше функцій,  що раніше  

виконувалися виключно людиною, наприклад, таких як: отримання нових знань 

із фактів, виявлення причинно-наслідкових взаємозв'язків між факторами, 

діючими на об'єкт, і переходом цього об'єкту в ті або інші стани. В основі будь-
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якої математичної моделі, реалізованої в інтелектуальній системі, завжди лежить 

певне уявлення про те, яким чином здійснюються аналогічні процеси людиною. 

Тому для розробників інтелектуальних систем великий інтерес представляє 

уточнення смислового змісту і поглиблений аналіз таких базових понять, як дані 

– інформація – знання, факт –значення - думка, моніторинг – аналіз – управління. 

Існує багато різних підходів до класифікації інтелектуальних систем. 

Відмінності між цими класифікаціями визначаються тими критеріями, за якими 

проводиться класифікація, наприклад: 

–за ступеню структурованості  задачі, що розв’язується; 

– за функціями, що автоматизуються; 

– за ступенню автоматизації функцій, що реалізуються; 

– за сферою застосування і характером використання інформації, зокрема, 

по рівнях управління. 

Відомо, що при навчанні людей існують різні рівні вивченняї: відтворення 

(пам'ять); вирішення стандартних задач (уміння, навички); вирішення 

нестандартних, творчих задач (знання, активне інтелектуальне розуміння).  

Інтелект може виявляється в різних областях, але ми розглянемо його 

можливості у вирішенні  задач в предметних галузях, оскільки ця область 

використання є типовою для інтелекту. В цьому плані існують задачі стандартні 

і нестандартні. Для стандартних задач відомі алгоритми розв’язання. Для 

нестандартних задач вони невідомі. Тому розв’язання нестандартної задачі є 

проблемою. Саме поняття "стандартності" задачі відносно, відносна сама 

"невідомість": тобто алгоритм може бути відомий одним і невідомий іншим, або 

інформація про нього може бути недоступною в певний момент або період часу, 

і доступною – в інший. Тому для одних задача може бути стандартною, а для 

інших ні. Знаходження або розробка алгоритму вирішеня переводить задачу із 

розряду нестандартних в стандартні. 

В математиці і кібернетиці задача вважається розв’язаною, якщо відомий 

алгоритм її вирішенння. Тоді процес її фактичного вирішення перетворюється на 

рутинну роботу, яку можуть в точності виконати людина, обчислювальна 

машина або робот. Розробка алгоритму розв’язання  задачі пов'язана з тонкими і 

складними міркуваннями, що вимагають винахідливості, досвіду, високої 

кваліфікації. Вважається, що ця робота є творчою, якщо вона не формалізується 

і вимагає участі людини із його "природним досвідом" і інтелектом. 

Інтелектуальними вважаються задачі, пов'язані з розробкою алгоритмів 

розв’язання  раніше невирішених задач певного типу. Існує ряд задач, таких, як 
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розпізнавання образів, ідентифікація, прогнозування, прийняття рішень по 

управлінню, для яких розбиття процесу пошуку вирішення на окремі 

елементарні кроки, а значить і розробка алгоритму,  вельми скрутні. З цих 

міркувань витікає таке визначення інтелекту: інтелект є універсальним 

алгоритмом, здатним розробляти алгоритми розв’язання  конкретних задач. 

 

5.2. Реалізація інтелектуальних систем в системах управління. 

В даний час інтелектуальні системи знайшли успішне застосування для 

проектування систем управління динамічними процесами біотехнічних об’єктів. 

Універсальні можливості апроксимації за допомогою багатошарового 

персептрона роблять їх корисним інструментом для вирішення завдань 

ідентифікації, проектування і моделювання нелінійних регуляторів [15]. 

Описані 3 архітектури нейронних мереж, які реалізовані в Neural Network 

Toolbox у вигляді наступних контролерів: 

• контролер з прогнозом (NN Predictive Controller); 

• контролер на основі моделі авторегресії з ковзним середнім 

(NARMA-L2 Controller); 

• контролер на основі еталонної моделі (Model Reference Controller).  

Нижче подано короткий Опис кожної з цих архітектур і способи їх 

застосування на практиці. Застосування нейронних мереж для вирішення задач 

управління дозволяє виділити 2 етапи проектування: 

• етап ідентифікації керованого процесу; 

• етап синтезу закону керування. 

На етапі ідентифікації розробляється модель керованого процесу у вигляді 

нейронної мережі, яка на етапі синтезу використовується для синтезу регулятора. 

Для кожної з трьох архітектур використовується одна і та ж процедура 

ідентифікації, проте етапи синтезу істотно розрізняються. 

При управлінні з прогнозом модель керованого процесу використовується 

для того, щоб передбачити її майбутню поведінку, а алгоритм оптимізації 

застосовується для розрахунку такого управління, яке мінімізує різницю між 

бажаними і дійсними змінами виходу моделі. 

При управлінні на основі моделі авторегресії з ковзним середнім регулятор 

являє собою досить просту реконструкцію моделі керованого процесу. 

При управлінні на основі еталонної моделі регулятор - це нейронна 

мережа, яка навчена управляти процесом так, щоб він відстежував поведінка 
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еталонного процесу. При цьому модель керованого процесу активно 

використовується при налаштуванні параметрів самого регулятора. 

У наступних розділах обговорюються всі 3 структури систем управління і 

архітектури відповідних нейромережевих контролерів. Кожен розділ включає 

короткий виклад принципу управління динамічним процесом і супроводжується 

Описом сценарію функціонування проектованої системи, який реалізований у 

вигляді комбінації GUI-інтерфейсу і динамічної моделі регулятора в системі 

Simulink. 

Динамічні моделі систем управління з нейромережевими регуляторами 

розміщені в спеціальному розділі Control Systems набору блоків Neural Network 

Blocksets (рис. 5.1) і включають 3 згадані вище моделі регуляторів, а також блок 

побудови графіків. 

 

 

Рис. 5.1. Набір блоків Neural Network Blocksets 

 

Оскільки жоден конкретний регулятор не є універсальним, то Описані 

функціональні можливості всіх трьох типів регуляторів, кожен з яких має свої 

переваги і недоліки. 

Реалізація основних типів регуляторів за допомогою нейронних мереж: 

Регулятор з прогнозом. Цей регулятор використовує модель керованого 

процесу у вигляді нейронної мережі, для того щоб передбачити майбутні реакції 

процесу на випадкові сигнали управління. Алгоритм оптимізації обчислює 

керуючі сигнали, які мінімізують різницю між бажаними і дійсними змінами 

сигналу на виході моделі і таким чином оптимізують керований процес. 

Побудова моделі керованого процесу виконується автономно з використанням 

нейронної мережі, яка навчається в груповому режимі з використанням одного з 
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алгоритмів навчання. Контролер, який реалізує такий регулятор, вимагає 

значного обсягу обчислень, оскільки для розрахунку оптимального закону 

керування оптимізація виконується на кожному такті управління. 

Регулятор NARMA-L2. З усіх архітектур цей регулятор вимагає 

найменшого обсягу обчислень. Даний регулятор - це просто деяка реконструкція 

нейросетевой моделі керованого процесу, отриманої на етапі автономної 

ідентифікації. Обчислення в реальному часі пов'язані тільки з реалізацією 

нейронної мережі. Недолік методу полягає в тому, що модель процесу повинна 

бути задана в канонічній формі простору стану, який відповідає супроводжує 

матриця, що може призводити до обчислювальних погрішностей. 

Регулятор на основі еталонної моделі. Необхідний обсяг обчислень для 

цього регулятора можна порівняти з попереднім. Однак архітектура регулятора 

з еталонною моделлю вимагає навчання нейронної мережі керованого процесу і 

нейронної мережі регулятора. При цьому навчання регулятора виявляється 

досить складним, оскільки навчання засноване на динамічному варіанті методу 

зворотного поширення помилки [16]. Перевагою регуляторів на основі еталонної 

моделі є те, що вони можуть бути застосовані до різних класів керованих 

процесів. 

Регулятор з прогнозом 

Регулятор з прогнозом, реалізований в Neural Network Toolbox, 

використовує модель нелінійного керованого процесу у вигляді нейронної 

мережі для того, щоб передбачати його майбутню поведінку. Крім того, 

регулятор обчислює сигнал управління, який оптимізує поведінку об'єкта на 

заданому інтервалі часу. 

Ідентифікація керованого процесу. Схема підсистеми ідентифікації 

показана на рис. 5.2. Вона включає модель керованого процесу у вигляді 

нейронної мережі, яка повинна бути навчена в автономному режимі так, щоб 

мінімізувати помилку між реакціями процесу і моделі e = y p - y m на 

послідовність пробних сигналів u. 
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Рис. 5.2. Схема підсистеми ідентифікації 

 

Нейронна мережа регулятора керованого процесу представлена на рис. 5.3; 

вона має 2 шари нейронів і використовує лінії затримки (ЛЗ), щоб запам'ятати 

попередні значення входів і виходів процесу з метою передбачити майбутні 

значення виходу. 

Налаштування параметрів цієї мережі виконується автономно методом 

групового навчання, використовуючи дані, отримані при випробуваннях 

реального об'єкта. Для навчання мережі може бути використаний будь-який з 

навчальних алгоритмів для нейронних мереж. 

 

 

 

               Входи  Шар 1    Шар 2 

 

 

Рис. 5.3. Нейронна мережа регулятора керованого процесу 

 

Принцип управління з прогнозом. Управління з прогнозом використовує 

принцип ам удаляющегося горизонту [ 40], коли нейромережева модель 

керованого процесу передбачає реакцію об'єкта управління на певному інтервалі 

часу в майбутньому. Пророцтва використовуються програмою чисельної 
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оптимізації для того, щоб обчислити керуючий сигнал, який мінімізує наступний 

критерій якості управління:  

 

2

1

2 2

1

(y (t j) y (t j)) (u (t j 1) u (t j 2)) ,
uNN

r m

j N j

J 
= =

 = + − + + + − − + −  (5.1) 

 

де константи N1, N2 і Nu задають межі, всередині яких обчислюються помилка 

стеження і потужність сигналу, що управляє. Змінна u' Описує пробний 

керуючий сигнал, yr - бажана, а ym - справжня реакція моделі керованого процесу. 

величина ρ визначає внесок, який вносить потужність управління в критерій 

якості. 

 

Рис. 5.3. Структурна схема 

Структурна схема на рис. 5.3 ілюструє процес управління з прогнозом. 

Регулятор складається з нейросетевой моделі керованого процесу і блоку 

оптимізації. Блок оптимізації визначає значення u ', які мінімізують критерій 

якості управління, а відповідний керуючий сигнал управляє процесом. 
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Реалізація регулятора з передбаченням. Як Приклад досліджується 

процес управління ємністю з безперервним перемішуванням (Continous Stirred 

Tank Reactor - CSTR), схема якого показана на рис. 5.4. 

 

Рис. 5.4. Управління каталітичним реактором з безперервним 

перемішуванням 

Динамічна модель керованого процесу Описується наступними 

звичайними нелінійними диференціальними рівняннями: 
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де h - рівень рідини в резервуарі; w 1 ( t) - швидкість потоку продукту з 

концентрацією Cb1; w2(t) - швидкість потоку розведеного продукту з 

концентрацією Cb2; Cb - концентрація продукту на виході об'єкта. 

Вихідні концентрації прийняті рівними Cb1 = 29.4 та Cb2 = 0.1. константи 

швидкості витрати дорівнюють k1 = k2 = 1. 

Мета регулювання полягає в підтримці концентрації продукту шляхом 

регулювання швидкості потоку w2(t). Для простоти прийнято w1(t) = 0.1. У цьому 

Прикладі рівень розчину в резервуарі не регулюється. 

Нелінійна динамічна модель каталітичного реактора, відповідна рівнянням 

(5.2), показана на рис. 5.5 
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Рис. 5.5. Нелінійна динамічна модель каталітичного реактора 

 

Виконати запуск демонстраційного Прикладу можна декількома 

способами: 

• у вікні запуску додатків Launch Pad вибрати опцію Demos для ППП 

Neural Network Toolbox; 

• ввести команду predcstr, використовуючи командне вікно.  

У будь-якому випадку відкривається вікно системи Simulink з наступною 

структурою системи управління (рис. 5.6). 

 

 

Рис. 5.6. Вікно системи Simulink 

 

Ця структура включає блок керованого процесу Plant і блок контролера 

NN Predictive Controller, а також блоки генерації еталонного ступеневої сигналу 

з випадковою амплітудою Random Reference, відліку часу Clock, побудови 

графіків Graph. Особливість цієї структури полягає в тому, що вона виконує не 

тільки функції блок-схеми системи Simulink, але і функції графічного інтерфейсу 

користувача GUI [53]. 
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Для того щоб почати роботу, необхідно активізувати блок NN Predictive 

Controller подвійним клацанням лівої кнопки миші. З'явиться вікно, показане на 

рис. 5.7. 

 

Рис. 5.7. Блок NN Predictive Controller 

 

Воно виконує функції графічного інтерфейсу користувача. Зверніть увагу 

на інформацію, яка керує вашими діями і вказана в області фрейма у вигляді 

повідомлення Перш ніж встановити параметри контролера, побудуйте модель 

керованого процесу. Це означає, що перш за все необхідно виконати 

ідентифікацію керованого процесу, тобто побудувати його нейромережевому 

модель, скориставшись спеціальною процедурою Plant Identification. 

Вид вікна Plant Identification наведено на рис. 5.8. Це вікно універсальне 

і може бути використано для побудови нейромережевих моделей для будь-якого 

динамічного об'єкта, який Описаний моделлю Simulink. В даному випадку такою 

моделлю є нелінійна динамічна модель каталітичного реактора CSTR. 

Процедура ідентифікації дозволяє побудувати нейронну мережу, яка буде 

моделювати динаміку керованого процесу. Якщо модель повинна 

використовуватися при налаштуванні контролера, то її слід створити перш, ніж 

почнеться розрахунок контролера. Крім того, вам може знадобитися створення 

нової моделі об'єкта, якщо спроектований контролер буде функціонувати 

незадовільно. 
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Рис. 5.8. Вид вікна Plant Identification 

 

Процедура ідентифікації вимагає завдання наступних параметрів: 

• параметри архітектури: 

Size of the Hidden Layer. Розмір прихованого шару визначається кількістю 

використовуваних нейронів; 

Sampling Interval. Такт дискретності в секундах визначає інтервал між 

двома послідовними моментами знімання даних; 

No. Delayed Plant Inputs. Кількість елементів запізнювання на вході 

моделі; 

No. Delayed Plant Outputs. Кількість елементів запізнювання на виході 

моделі; 

Normalize Training Data. Вікно контролю нормування навчальних даних 

до діапазону [0 1]; 

• параметри навчальної послідовності: 

Training samples. Довжина навчальної вибірки (кількість точок знімання 

інформації); 

Maximum Plant Input. Максимальне значення вхідного сигналу; 

Minimum Plant Input. Мінімальне значення вхідного сигналу; 

Maximum Interval Value (sec). Максимальний інтервал ідентифікації в 

секундах; 

Minimum Interval Value (sec). Мінімальний інтервал ідентифікації в 

секундах; 
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Limit Output Data. Вікно контролю, що дозволяє обмежити обсяг 

вихідних даних; тільки при включеному вікні контролю будуть доступні 2 

наступних вікна редагування тексту; 

Maximum Plant Output. Максимальне значення вихідного сигналу; 

Minimum Plant Input. Мінімальне значення вихідного сигналу; 

Simulink Plant Model. Завдання моделі Simulink із зазначенням вхідних і 

вихідних портів, використовуваних при побудові нейромережевої моделі 

керованого процесу. За допомогою кнопки Browse ви можете вибрати будь-яку 

модель з числа доступних; в даному випадку це модель каталітичного реактора 

CSTR; 

Generate Training Data. Кнопка запуску процесу генерації навчальної 

послідовності; 

Import Data. Імпорт навчальної послідовності з робочою області або 

файлу даних. Для розглянутого Прикладу ці дані накопичені в MAT-файлах cstr1, 

cstr2, cstr3; 

Export Data. Експорт згенерованих даних в робочу область або MAT-

файл; 

• параметри навчання: 

Training Epochs. Кількість циклів навчання; 

Training function. Завдання навчальної функції; 

Use Current Weights. Вікно контролю, що дозволяє підтвердити 

використання поточних ваг нейронної мережі; 

Use Validation / Testing for Training. Вибір цих вікон контролю 

означатиме, що по 25 % Даних з навчальної послідовності буде використано для 

формування контрольного і тестового підмножин відповідно.  

Отже, вибір процедури Generate Training Data призведе до того, що буде 

запущена програма генерації навчальної послідовності на інтервалі 1600 с для 

моделі каталітичного реактора cstr.mdl. Програма генерує навчальні дані шляхом 

впливу ряду випадкових східчастих сигналів на модель Simulink керованого 

процесу. Графіки вхідного і вихідного сигналів об'єкта управління виводяться на 

екран (рис. 5.9). 
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Рис. 5.9. Графіки вхідного і вихідного сигналів об'єкта управління 

 

По закінченю генерації навчальної послідовності користувачеві 

пропонується або прийняти згенеровані дані ( Accept Data), або відмовитися від 

них ( Reject Data). 

Якщо ви приймаєте дані, додаток повертає вас до недавно зміненого вікна 

Plant Identification ( Рис. 5.10). 

Тут частина вікон недоступні, а кнопка Generate 

Training Data замінена на кнопку Erase Generated Data, що дозволяє 

видалити згенеровані дані. 

 

Рис. 5.10. Вікна Plant Identification 
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У вікні фрейму міститься повідомлення Навчальна послідовність 

складається з 8000 вимірів. Можна починати навчання нейронної мережі. 

Для цього слід скористатися кнопкою Train Network ( Навчити мережу). 

Розпочнеться навчання нейромережевої моделі. Після завершення навчання його 

результати відображаються на графіках, як це показано на рис. 5.11, а і б, де 

побудовані відповідно результати навчання і тестування на контрольній 

множині. 

  

а     б 

Рис. 5.11.Результати навчання 

 

Поточний стан відзначено в вікні Plant Identification (Рис. 5.12) 

повідомленням: Навчання завершено. Ви можете згенерувати або імпортувати 

нові дані, продовжити навчання або зберегти отримані результати, вибравши 

кнопки OK або Apply. 

В результаті параметри нейромережевої моделі керованого процесу будуть 

введені в блок NN Predictive Controller системи Simulink. 

Після цього ми знову повертаємося до вікна Neural Network Predictive 

Control (Рис. 5.13) і можемо встановити параметри оптимізації: 

Cost Horizon (N2). Верхня межа підсумовування в показнику якості   N2 = 

7, нижня межа N1 фіксований і дорівнює 1; 

Control Horizon (Nu). Верхня межа підсумовування при оцінці потужності 

управління Nu = 2; 

Control Weighting Factor (ρ). Коефіцієнт ваги для складової потужності 

управління ρ = 0.05; 

Search parameter (α). Параметр одновимірного пошуку, що задає поріг 

зменшення показника якості, α= 0.001; 
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Minimization Routine. Вибір процедури одновимірного пошуку; обрана 

процедура csrchbac; 

Iterations Per Sample Time. Число ітерацій на 1 такт дискретності 

дорівнює 2.  

 

Рис. 5.12. Вікно Plant Identification 

 

Як тільки параметри оптимізації встановлені, слід підтвердити це 

натисканням кнопок OK або Apply. В результаті параметри регулятора будуть 

введені в блок NN Predictive Controller системи Simulink. 

Повертаємося до моделі Simulink і починаємо моделювання, вибравши 

опцію Start з меню Simulation. 

В процесі моделювання виводяться графіки входу і виходу керованого 

процесу (рис. 5.13). 

 

 

Рис. 5.13. Графіки входу і виходу керованого процесу 
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З аналізу отриманих даних випливає, що реакція системи на ступінчасті 

впливи з випадковою амплітудою цілком задовільна, має коливальний характер 

з досить швидким загасанням; на інтервалі 20 з всі дії ефективно 

відпрацьовуються. Таким чином, регулятор з прогнозом, реалізований у вигляді 

нейронної мережі, можна використовувати для управління каталітичним 

реактором з безперервним перемішуванням. 

Регулятор NARMA-L2. Нейромережевий регулятор, використовує в 

якості моделі керованого процесу модель нелінійної авторегресії з ковзним 

середнім (Nonlinear Autoregressive-Moving Average - NARMA-L2). Схема 

демонстраційного прикладу управління магнітною подушкою показана на рис. 

5.14. 

  

Рис. 5.14. Схема демонстраційного Прикладу управління магнітною 

подушкою 

 

Вікно Model Browser в лівій частині малюнка містить перелік всіх блоків, 

що входять до складу системи управління, представленої у вигляді моделі 

системи Simulink. 

Керованим об'єктом є магніт, який рухається тільки у вертикальному 

напрямку в електромагнітному полі, як це схематично показано на рис. 5.15. 
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Рис. 5.15. Магніт, який рухається тільки у вертикальному напрямку в 

електромагнітному полі 

Рівняння руху цієї системи має вигляд: 

 

2 2

2

y(t) (t) dy(t)
,

y(t)

d i
g

dt M M dt

 
= − + −    (5.3) 

де y (t) - відстань рухомого магніту від електромагніту; g - прискорення сили 

тяжіння;×- постійна магнітного поля, що залежить від числа витків обмотки і 

намагніченості електромагніту; i (t) - керуючий струм електромагніта; M - маса 

магніту; β- коефіцієнт в'язкого тертя. 

Відповідна динамічна модель, реалізована в системі Simulink, показана на 

рис. 5.16. Точно таку ж модель, але з конкретними числовими даними ви зможете 

побачити на екрані терміналу, якщо активізуєте блок Plant (Magnet Levitation) 

у вікні Model Browser. 

 

Рис. 5.16. Динамічна модель 

 

Зауважимо, що розглянута динамічна система є нелінійною, і ми будемо 

будувати її дискретну нелінійну модель як авторегресійну модель зі змінним 

середнім, або NARMA-модель, в формі: 
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 (k d) N (k), (k 1),... (k n 1),u(k),u(k 1),...u(k 1 1) ,y y y y+ = − − + − − + (5.4) 

 

де y (k) - вихід моделі; d - число тактів передбачення; u (k) - вхід моделі. На етапі 

ідентифікації необхідно побудувати нейронну мережу для NARMA-моделі виду 

(5.4). Ця процедура аналогічна Описаній вище процедурі ідентифікації для 

регулятора з передбаченням. 

Якщо потрібно спроектувати систему, що стежить, яка забезпечує рух по 

заданій траєкторії: 

 

y (k + d) = yr ( k+d),   (5.5) 

 

то це означає, що необхідно сформувати нелінійний регулятор наступного 

загального вигляду: 

 

 u(k) (k), (k 1),... (k ),u(k 1),...u(k 1) ,rG y y y d m= − + − − +  (5.6) 

 

Хоча такий регулятор за допомогою нейронної мережі і може бути 

сформований, проте в процесі мінімізації середньоквадратичної помилки він 

вимагає надмірних обчислень, оскільки використовує динамічний варіант 

методу зворотного поширення помилки [16]. Для практичного вирішення 

завдання стеження Нарендра (Narendra) і Макхопадхаі (Mukhopadhyay) [31] 

запропонували наближену NARMA-модель з виділеної складової управління. 

Така модель регулятора, іменована моделлю NARMA-L2, має вигляд: 

 

 

 

y(k d) (k), (k 1),... (k n 1),u(k 1),...u(k 1)

(k), (k 1),... (k n 1),u(k 1),...u(k 1) (k).

f y y y m

g y y y m u

+ = − − + − − + +

− − + − − +
 (5.7) 

 

Перевага цієї форми полягає в тому, що тепер поточне управління можна 

безпосередньо обчислити, якщо відома бажана траєкторія y r, передісторія 

управління { u (k - 1), ..., u (k - m + 1)}, а також попередні і поточний значення 

виходу { y (k), ..., y (k - n + 1)}: 
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 
 

(k d) f (k), (k 1),... (k n 1),u(k 1),...u(k 1)
u(k) .

(k), (k 1),... (k n 1),u(k 1),...u(k 1)

ry y y y m

g y y y m

+ − − − + − − +
=

− − + − − +  (5.8) 

 

Безпосереднє застосування цього співвідношення для реалізації 

регулятора є складним, оскільки управління u(k) залежить від поточного 

значення виходу y (k). Тому управління (5.4) модифікується в такий спосіб:  

 

 
 

(k d) f (k), (k 1),... (k n 1),u(k 1),...u(k 1)
u(k 1) .

(k), (k 1),... (k n 1),u(k 1),...u(k 1)

ry y y y m

g y y y m

+ − − − + − − +
+ =

− − + − − +  (5.9) 

 

але при цьому параметр передбачення повинен задовольняти умові d≥2.  

Блоки затримки здійснюють запам'ятовування відповідних послідовностей 

входу і виходу, а потім використовуються двошарові нейронні мережі, які 

формують оцінки нелінійних операторів і обчислюють сигнал управління в 

формі (5.9). 

Загальна структурна схема системи з регулятором NARMA-L2 показана на 

рис. 5.17. • 

 

Рис. 5.17. Структурна схема системи з регулятором NARMA-L2 

 

На схемі явно виділена еталонна модель, яка задає бажану траєкторію для 

виходу керованого процесу. 

Виконати запуск демонстраційного Прикладу можна декількома 

способами: 
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• у вікні запуску додатків Launch Pad вибрати опцію Demos для ППП 

Neural Network Toolbox; 

• ввести команду narmamaglev в командному вікні системи.  

Для того щоб почати роботу, необхідно активізувати блок NARMA-L2 

Controller подвійним клацанням лівої кнопки миші. З'явиться вікно, показане на 

рис. 5.18. 

Зверніть увагу, що це вікно дає можливість навчити модель NARMA-L2. 

Окремої вікна для навчання регулятора немає, так як регулятор NARMA-L2, на 

відміну від регулятора з передбаченням, визначається безпосередньо по моделі. 

Це вікно працює так само, як і інші вікна ідентифікації об'єкта управління, 

тому повторно докладно процес навчання розглядати не будемо. 

 

 

Рис. 5.18. Блок NARMA-L2 Controller 

 

Після закінчення навчання натиснути на клавішу OK для введення даних 

регулятора в модель Simulink. Повертаємося до моделі Simulink і починаємо 

моделювання, вибравши опцію Start з меню Simulation. Графіки що задають 

сигнал і виходу системи наведені на рис. 5.19. 
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Рис. 5.19. Графіки що задають сигнал і виходу системи 

 

З аналізу отриманих даних випливає, що реакція системи на ступінчасті 

впливу з випадковою амплітудою цілком задовільна, має коливальний характер 

з досить швидким загасанням; на інтервалі 5 з все уставки ефективно 

відпрацьовуються. Таким чином, регулятор NARMA-L2, реалізований у вигляді 

нейронної мережі, можна використовувати для управління магнітною 

подушкою.  
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ТЕМА 6. МОДЕЛЮВАННЯ СИСТЕМ КЕРУВАННЯ БАГАТО 

ЄМНІСНИМИ ОБ’ЄКТАМИ СІЛЬСЬКОГОСПОДАРСЬКИХ 

ВИРОБНИЦТВ 

 

6.1. Постановка задачі та математичні моделі багатовимірних систем. 

 

Приймається, що об’єкт має m входів і m виходів (m каналів). Через об’єкт 

ці канали зв’язані між собою, є неавтономними. 

Центральна проблема при синтезі регуляторів в класі багатовимірних 

систем –«розв’язка» каналів, що на наступних етапах дає можливість 

використовувати методи синтезу регуляторів у класі одновимірних систем. 

Багатовимірними називаються системи, в яких вхід і вихід – вектор-функції. 

Для керування кожною змінною конструюється свій канал (рис.6.1). Для цієї 

структури 

Хзд(t)=(Хзд1(t),Хзд2(t)…),                                    (6.1) 

Y(t)=(Y1(t), Y2(t)…),                                        (6.2) 

 

де: Y(t), Yзд(t) – відповідно векторний вихідний сигнал та сигнал завдання. 

 

Рис.6.1 Загальна структура багатовимірної системи. 

 

 Рис.6.2 Структурна схема двохвимірної системи. 

На рис.6.2 показані основні канали ОК1 і ОК2 (відповідно: Yзд1(t) Y1(t) та 

Yзд2(t) →Y2(t)) і перехресні зв’язки ПЗ1 та ПЗ2, КП1 і КП2 –корегуючі пристрої 

(регулятори). 

При синтезі таких систем необхідно виключити взаємний зв’язок між 

каналами.  

xзд1(t) 

xзд2(t) 

КП1 

КП2 

X1 

(t) 

X2 

(t) 

OKOK

ПЗ2 

ПЗ1 

OK
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В добре спроектованій системі канали Yзд1(t) Y1(t) та Yзд2(t) →Y2(t) 

незалежні, тобто вихід Y1(t) керується лише сигналом Yзд1(t), а Y2(t) – сигналом 

Yзд2(t), тобто сигнал Yзд1(t) не впливає на Y2(t), а Yзд2(t) не впливає на Y1(t). В 

реальних системах ці канали зв'язані. Задача полягає в  тому, щоб за рахунок 

додаткових зв'язків усунути взаємний вплив каналів (ПЗ1 та ПЗ2 –  відсутні). 

Передбачається, що об’єкт керування об’єднує незмінну частину системи: 

технологічний об’єкт, виконавчий механізм, пристрій вимірювання. 

Об’єкт описується рівняннями стану та виходу: 

                                                     (6.3) 

 

де:  –координати стану об’єкта, U –сигнал керування, Y –вектор виходу, 

А, В, С –матриці коефіцієнтів диференціальних рівнянь об’єкта. 

 

Рис. 6.3. Структура багатовимірної системи з регулятором 

На рисунку виділено: X є Rn – стан об'єкта; U(t) – сигнал управління; Yзд(t) 

– завдання; 

е(t)=(е1(t),…еm(t)) – похибка управління, компоненти якої ek(t)= Yздk(t)- 

Yk(t), k=1,m. 

В задачах синтезу приймається, що об'єкт об'єднує всю незмінювану 

частину: сам об'єкт, виконавчий механізм з регулювальним органом, 

вимірювальну частину. 

Для об'єкта приймемо математичну модель в координатах стану та виходу:      

         X(t)=AX(t)+BU(t) 

  Y(t)=CX(t),                       (6.4) 

або: 

  Y(S)=W(S)Yзд(S),              (6.5) 

де: 
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 (6.6) 

На відміну від одноконтурних систем у багатовимірних системах не існує 

єдиного критерія, який би повно та однозначно характеризував якість системи 

(на зразок часу регулювання, динамічної похибки і т.д.). В ідеальній 

багатовимірній системі контури розв’язані і існує m входів та m виходів, тобто 

розмірності  та  одинакові. В цьому випадку багатовимірну систему 

можна розглядати як квадратну (рис. 3) 

 

 

Рис.6.4  Квадратна система. 

В квадратній системі існує m2 одновимірних каналів, які відповідають 

можливим парам . При такому підході m паралельних каналів 

Yзд1(t) Y1(t), … Yздm(t) Ym(t) є власне каналами керування, а перехресні канали 

–збурення.  

В цьому випадку динамічна точність і якість багатовимірної системи буде 

оцінюватись так: 

необхідно, щоб за кожною вихідною змінною Yі(t),  якомога 

точніше відпрацьовувався свій сигнал завдання Yзді(t) і по можливості не 

впливали інші входи (перехресні зв'язки були мінімальними). 

Доцільно використовувати для оцінки якості (або поведінки) 

багатовимірних систем такий критерій: 

динамічна якість багатовимірної системи тим вища, чим точніше вона 

відпрацьовує сигнал Yзді(t) для кожної вихідної змінної Yі(t),  і чим 

менше при цьому вплив на інші вихідні змінні . Для оцінки показників 

Y3g2(t

) 
Y3gm(t) 

Y2(t) 

Y3(t) 
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якості використовується матриця перехідних характеристик  

шляхом завдання областей допустимих значень вихідних змінних. (Рис. 6.5)  

а –для прямого, б –перехресного каналу. 

 

Рис.6.5 До визначення критерія якості багатовимірних систем. 

Структурна схема багатовимірної системи показана на рис. 4.7. 

 

Рис.6.6. Структурна схема багатовимірної системи 

автоматичного керування. 

Синтезована система повинна бути стійкою та забезпечувати вимоги (6.3). 

В такій постановці задача може бути вирішена за умов: 

- об'єкт повинен бути керованим за виходом; 

- розмірність виходу не перевищує розмірності входу; 

- передаточна матриця об'єкта має повний ранг; 

- модель об'єкта не має правих нулів. 

Структурна схема системи (рис. 6.6) доповнюється пристроєм стабілізації 

ПС, компенсатором (або пристроєм розв'язки каналів) К (рис. 4.8), спостерігачем 
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С. В такій схемі стабілізується об'єкт, забезпечується динамічна розв'язка 

контурів керування, а регулятор підтримує функціонування об'єкта з виконанням 

корекції динамічної якості контурів регулювання. 

 
Рис.6.7 Структурна схема багатовимірної системи з компенсатором. 

 

4.3. Задача аналітичного конструювання оптимальних регуляторів для 

об’єктів з зосередженими параметрами. 

 

Нижче подані алгоритми оптимального управління для виділеного класу 

систем в просторі параметрів стану. 

Задача оптимального управління. Дано клас об’єктів управління 

(підсистеми ДУ та ВУ), збурений рух яких описується диференціальним 

матричним рівнянням 

,0;)();()(
)(

000 ==+= txtxtButAx
dt

tdx
   (6.7) 

де А, В – задані матриці коефіцієнтів математичних моделей розмірності 

n×n, n×m відповідно, в загальному випадку можуть залежати від часу; x(t) – 

вектор координат стану системи розмірності n; u(t) – вектор управління 

розмірності m. 

Необхідно знайти матрицю R (розмірність m×n) рівняння регулятора 

),()( tRxtu =      (6.8) 

таку, щоб на асимптотичних стійких рухах системи, що збурені випадковими 

початковими відхиленнями x0, мінімізувався функціонал 
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0

 +=
k
t

t

TT dttDututPxtxuI    (6.9) 

Перша складова мінімізує відхилення реальної траєкторії від заданої 

(нульової), а друга – енергетичні витрати. Матриці P, D – задані додатньо-

визначені матриці розмірності n×n та m×m відповідно(P>0, D0). В загальному 

випадку ці матриці залежать від часу, а їх значення визначають вплив кожної 

складової векторів координат стану та управління на критерій.  Матриці P, D 

можуть задаватися самостійно розробником оптимальної системи управління, на 

основі апріорної інформації від експертів або їх визначення може відповідати 

цілі окремої опти-мізаційної підзадачі. Для даних підсистем ВУ та ДУ ці матриці 

будуть змінюватися при моделюванні оптимальних регуляторів та визначені 

найкращі їх значення з точки зору якості перехідних процесів. 

Матрицю R закону управління іноді називають матрицею коефіцієнтів 

підсилення регулятора. 

Для розв’язання даної задачі можна використати принцип максимуму 

Понтрягіна або метод динамічного прог-рамування Белмана.  

Розв'язок на нескінченому інтервалі часу. При tk→∞ коефіцієнт підсилення 

регулятора  для системи (6.3) має вигляд  

,1 SBDR T−−=      (6.10) 

причому матриця R не залежить від часу. Матриця S – симетрична матриця чисел 

розмірності n×n, яка визначаєть-ся з алгебраїчного рівняння Ріккаті виду 

.01 =+−+ − PSBSBDSASA TT     (6.11) 

Дане рівняння розв'язується за допомогою методів матричної алгебри. 

Розв'язок на скінченому інтервалі часу. Ця задача виникає, коли необхідно 

перевести систему зі стану x(t0) в x(tк)=0 за визначений час, тобто при t > T 

незакінчений перехідний процес веде до значних втрат якості одержуваного 

напівпродукту або значних енергетичних втрат. А коли енергетичні витрати під 

час перехідного процесу при (tk - t0) → T  не перевищують витрат при (tk - t0) → ∞ 

або їх перевищення виправдане задача зводиться до нескінченого інтервалу часу) 

При (tk - t0) = Т функціонал якості доповнюється так званою термінальною 

складовою і має вигляд  

,))()()()((5.0)()(5.0)(

0

 ++=
k
t

t

TTT dttDututPxtxTGxTxuI  (6.12) 
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де G – задана симетрична матриця чисел розмірності n×n (G ≥ 0), що визначає 

середньо-квадратичне відхилення  координат стану або їх комбінації від 

нульових значень в кінцевий момент часу. 

Матриця підсилення регулятора R(t) (в даному випадку залежна від часу, 

набуде вигляду 

),()( 1 tSBDtR T−−=     (6.13) 

де S(t) – симетрична додатньо-визначена матриця розмір-ності n×n визначається 

з диференціального рівняння типу Ріккаті виду 









=

−−+−= −

;)(

,)()()()(
)( 1

GTS

PtSAtSBBDtSAtS
dt

tdS TT

  (6.14) 

Відмітимо, що всі складові вектора стану повинні бути досяжними.  

На рис.6.8 показана структурна схема пристрою, що реалізує отримане 

рішення даної задачі. 

 

R 

x(t) 

A 

B 
u(t) 

s 
1 dx/dt 

об'єкт 

управління 

 

Рис.6.8. Оптимальна система управління з лінійним регулятором 

(s – комплексна змінна). 

Відмітимо, що суттєвим є виконання умови керованості.  

Задача оптимального сумісного оцінювання та управління. Іншим підходом 

до синтезу оптимального регулятора є лінійно-квадратична задача з 

гаусівськими збуреннями (LQG). В цьому випадку об'єкт розглядають як 

систему, на яку діють випадкові збурення, що за природою є стохас-тичними, 

спостереженням доступні лише спотворені шумами деякі змінні стану об’єкта. 

Тут побудова оптимального управління складається з двох етапів: на першому – 

оцінюється стан системи, на другому – розробляється регулятор зі зворотним 

зв’язком від оцінки стану. В цьому випадку обидві операції – оцінка стану та 

управління можуть бути ввімкнені в єдиний процес прийняття рішення.  

Об'єкт описується рівняннями виду 
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),()()()(

);()()(

tvtHwtDutCxy

tGwtButAxx

v
+++=

++=    (6.15) 

де yv(t) – вектор вимірювань;  w(t), v(t) – випадкові процеси відповідно в 

каналах управління та вимірювання, що є білими гаусівськими шумами з 

математичними сподіваннями М(w)=М(v)=0, М(wwT)=Q1, М(vvT)=R1, 

М(wvT)=N1; C, D, H, G – постійні матриці відповідних розмірностей 

(стаціонарний випадок). Для побудови оптимального управління мінімізуємо 

інтегрально-квадратичний критерій 

,min)2()(

0

222

u
dtuNyuRuyQyuI

t

TTT → ++=


  (6.16) 

де матриці Q2, R2, N2 – вагові матриці відповідних розмірностей (Q2≥0, R2>0, 

N2≥0). Оцінку вектора )(tx


 визначають з мінімізації похибки оцінки (

)))(((lim
T

t

xxxxM


→

−− ). 

 Використовуючи принцип максимуму Понтрягіна, а також фільтр 

Калмана, лінійно-квадратичний регулятор набуває вигляду 

),()(

,)()(
)(

txKtu

LytxKLDBLCA
dt

txd
v













−=

+−−−=    (6.17) 

де K, L – матриці підсилення відповідно регулятора та фільтра, що 

визначаються шляхом розв’язання алгебраїчних рівнянь типу Ріккаті. 

Об'єкт

управління

Фільтр

Калмана
-К

w(t)

х(t)

u(t)

yv(t)

y(t)

v(t)

u(t)

Лінійно-квадратичний регулятор
 

Рис.6.9. Структура системи управління. 

Структура системи управління показана на рис.6.9. 

Задача оптимального сумісного оцінювання та управління для 

нестаціонарного випадку. Розглянемо систему, що описується лінійними 

диференціальними рівняннями виду 
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),()()(

);()()()()()(

tvtxtCy

twtGtutBtxtAx

v
+=

++=    (6.18) 

де yv(t) – r-вимірний вектор спостережень, w(t) – q-вимірний вектор зовнішніх 

збурень, що є гаусівським випадковим процесом типу "білий шум" з нульовим 

математичним сподіванням та заданою коваріаційною матрицею Q1(t)0; v(t) – r-

вимірний вектор завад (шумів), який також є процесом типу "білий шум" з 

нульовим математичним сподіванням та коваріаційною матрицею R1(t)>0; 

випадковий вектор початкових значень x(t0) вважаємо гаусівським з відомими 

середнім значенням )( 0tx  та кореляційною матрицею R00 (початкові умови, 

зовнішні збурення та завади вимірювань незалежні (не корельовані)); A(t), B(t), 

G(t), C(t) - задані нестаціонарні матриці відповідних розмірностей. 

Необхідно знайти управління u(t), що залежить від вектора спостережень 

y(t) таке, щоб критерій 

 ,
0

22 ))()()()()()(()()()(  ++=
T

t
dttutRtutytQtyTGxTxMuI TTT

 (6.19) 

де Q2(t)0 та R2(t)>0 вагові матриці відповідних розмірностей, приймав 

найменше значення. 

При такій постановці задачі спостерігач описується рівнянням 

 ,)()()()()()()()( txtCtytKtutBtxtAx
 −++=   (6.20) 

при початковій умові  

)()( 00 txtx =


,     (6.21) 

де 

)()()()( 1

11 tRtCtPtK T −= ,     (6.22) 

що визначається з умови мінімізації функціоналу 

 ))()()(())()((1 txtxttxtxMI T 
−−= ,   (6.23) 

де )(t  - задана додатньо-визначена матриця, а  P1(t) - nn матриця визначається 

з диференціального рівняння типу Рікатті 
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−

−

+

+−+=
 (6.24) 

з початковою умовою 

 .)( 001 RtP =      (6.25) 
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Відмітимо, що коваріаційна матриця вектора похибок оцінювання P1(t) не 

залежить від реалізації результату спостереження та прийнятого закону 

управління та є детермінованою функцією. 

Структура системи регулювання приведена на рис.6.10. 

B(t)

B(t)

w(t)

1/s

A(t)

С(t) K1(t) 1/s

C(t)

K2(t)

v(t)

x(t)y(t)x(t)

A(t)

G(t)

u(t)

 

Рис.6.10. Структурна схема системи управління для нестаціонарного об'єкта. 

Оптимальне управління визначається за формулою 

 ))()()(())()((1 txtxttxtxMI T 
−−= ,  (6.26) 

де 

)()( 00 txtx =


     (6.27) 

з кінцевою умовою 

.)(1 GTP =     (6.28) 

Відмітимо, що необхідно забезпечення умови керованості за виходами. 

 

4.4. Управління автоматизованими технологічними комплексами 

харчових виробництв на основі сценарного підходу та принципів 

синергетики 

Складні об'єкти управління є нелінійними, динамічними, множинними, 

складаються з великої кількості елементів, які взаємодіють між собою та 

зовнішнім середовищем. Нелінійні динамічні рівняння не мають аналітичних 

розв'язків, тому управління складними об'єктами передбачає застосування 

числових методів, а також не лише формального, а й змістовного опису 

внутрішніх процесів, його структури та зовнішніх процесів обміну енергією та 

речовиною. При цьому використовуються також принципи фізичного 

(енергетичного) та хіміко-біологічного (структурного) підходів. 

Теорія динамічних систем розвивалась в різних областях науки за трьома 

основними напрямами підходу до математичного опису об'єктів: 
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- детермінованому; 

- стохастичному; 

- множинному. 

Ці підходи мають концептуальні та аксіометричні відмінності, але тісно зв'язані 

між собою і відображають єдність різних властивостей об'єкта. 

Ключовими поняттями нелінійної динаміки є: 

- нелінійність; 

- нерівноважність; 

- нестійкість; 

- хаотичність; 

- взаємодія; 

- стохастичність; 

- самоорганізація; 

- різноманітність. 

Найбільш важливі результати, отримані з позицій синергетики: 

- динамічні процеси описуються у вигляді стохастичних диференціальних 

рівнянь, які відображають єдність і взаємодію детермінованих та випадкових 

складових; 

- хаотичні процеси можуть виникати в нелінійних динамічних системах як 

часові впорядковані структури за умови біфуркаційної нестійкості і за 

відсутності зовнішніх випадкових діянь; 

- нестійкі компоненти (моди) використовуються як параметри порядку при 

нерівноважних фазових переходах в нові структурні стани динамічної системи; 

- дисипативні структури виникають в нерівноважних процесах в результаті 

взаємодії між компонентами системи, наприклад при просторово-часових 

кореляціях; 

- залежність між компонентами системи відіграє важливу роль в різних 

процесах обміну, взаємодії і самоорганізації. 

Синергетика – не лише загальна наукова платформа при вивченні складних 

процесів нелінійної динаміки, але й дозволяє конструювати такі технічні 

системи, в яких динамічні процеси протікають у повній відповідності і 

узгодженні з природніми, тому що в них використані принципи і механізми 

організації та самоорганізації, які близькі до природніх. 

Приклад постановки задачі синергетичного управління і самоорганізації. 

- Рівняння об'єкта 

, (6.29) 
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де:  - вектор стану;   - керування;  - вектор випадкових збурень; (•) – 

нелінійна функція;  - просторова змінна. 

- Рівняння керування 

, (6.30) 

де:  - необхідний стан системи; (•) – нелінійна функція; С – управляючий 

параметр;  – параметр порядку. 

- Ймовірнісні характеристики випадкового збурення ; 

- критерії точності, швидкодії та втрат у вигляді функціоналів Фт(U,X,Z,t), 

Фш(U,X,Z,t), Фвт(U,X,Z,t) на інтервалі управління . 

Задача управління: знайти таку структуру рівнянь управління, за якої 

управління U переводить систему в новий стан Z за умови мінімізації втрат на 

інтервалі . 

Задача самоорганізації: знайти таку структуру взаємодії між компонентами 

системи, за якої система в процесі біфуркаційної нестійкості переходить в новий, 

стійкий стан з мінімальним рівнем вільної енергії. 

Основна ідея синергетичного підходу до розв'язання поставленої задачі 

полягає у виборі такої структури управління та процедур самоорганізації, щоб 

необхідний стан системи був одним із стійких станів, і в організації потім руху 

(фазового перехода) в цю точку фазового простору. Такий підхід до застосування 

самоорганізації і взаємодії в системах управління аналогічний адаптивному 

підходу до параметричного і структурного синтезу, але додатково передбачає 

використання процесів самоорганізації при рухові у фазовому просторі в умовах 

сильної нелінійності. 

В основі процесів самоорганізації лежать різні процедури взаємодії між 

детермінованими та стохастичними складовими в умовах нерівно важності, 

нестійкості, розузгодження та зовнішніх потокових впливів. 

До механізмів самоорганізації та взаємодії в фізиці, хімії, біології можна 

віднести: 

- цілеспрямоване узгодження та координація дій елементів у колективній 

системі відповідно до загальної задачі; 

- використання параметрів порядку, загальних правил, полів та середовищ 

для впорядкування колективної поведінки; 

- явище вибіркової нестійкості в нерівноважних фазових переходах за 

схемою "біфуркація – нестійкість – хаос – упорядкована структура"; 

- конкуренція, конфлікти, конфронтація та компроміси, консолідація; 
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- просторова та часова кореляція, синхронність та когерентність; 

- флюктуація, мутація, відбір; 

- семантичний зв'язок та асоціативна дія; 

- само збирання, самовідтворення і генерація структур. 

Біотехнологічні об’єкти за показниками функціонування, структурою, 

методами  управління та оцінками техніко-економічних показників відносяться 

до складних організаційно-технічних (технологічних) систем. 

Організаційно-технологічні процеси (ОТП) мають риси як технічних, так і 

організаційних систем: 

- багатовимірність; 

- складність та змінюваність структури; 

- наявність та зміна багатьох цілей; 

- недетермінованість; 

- активність та інш. 

Наявність особи, що приймає рішення (ОПР) у  системах управління ОТП 

має позитивні аспекти: 

- адаптивність, толерантність до зміни структури; 

- суб’єктивна оптимізація рішень, які приймаються. 

Але не можна не враховувати суттєві недоліки: 

- нездатність до переробки значних масивів інформації; 

- зниження надійності в зв’язку із втомлюваністю ОПР;  

- недостатня кваліфікація персоналу;  

- запізнювання у прийнятті рішень. 

Серед багатьох проблем, пов’язаних з управлінням ТК, головними є 

формування ефективних управлінь (прийняття рішень) в умовах високого рівня 

невизначеностей, ідентифікація ситуацій та прогнозування їх розвитку з 

урахуванням множини цілей та існуючих ресурсів. 

Для ефективного функціонування ТК необхідна оперативна достовірна 

інформація як технологічного, так і техніко-економічного характеру, що 

реалізується в рамках ієрархічних систем управління з розподілом функцій та 

задач між рівнями та підсистемами. 

В технічній літературі останніх років виділяються різні підходи до 

управління організаційно-технічними (технологічними) системами: 

-    структурний; 

-    системний; 

-    директивний; 
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-    процесний; 

-    ситуаційний. 

Структурний підхід орієнтований на створення ієрархічних систем, які 

відповідають ієрархії об’єкта (ТК, підприємства) та задач управління, але існує 

множина структур, в рамках кожної з яких можна забезпечити виконання певних 

функцій. Віддати перевагу будь-якій структурі або визначити оптимальну 

структуру практично неможливо. 

Процесний підхід орієнтований безпосередньо на кінцевий результат, тому 

можна оперативно оцінювати показники техніко-економічних ефектів. При 

цьому в загальному випадку процеси відображають шляхи досягнення 

результатів, і до стандартних процесів відносяться: 

- процес управління; 

- процес закупок (сировини, матеріалів, послуг інших організацій); 

- процес  збуту, тобто реалізації продукції і отримання прибутку; 

- процес виробництва, тобто створення продукції (товарів і послуг). 

Названі процеси є стратегічними і поділяються на ключові процеси, 

наприклад, управління ТК або підприємством включає: 

- управління технологічними процесами; 

- управління ресурсами; 

- фінансовий менеджмент; 

- облік (бухгалтерський, податковий); 

- юридичну експертизу і супроводження. 

Процесний підхід в управлінні дає можливість досягти таких результатів: 

- всі  процеси можна оцінювати за їх ефективністю, визначаючи «вузькі 

місця»; 

- структура систем управління стає більш простою, скорочуються зайві 

потоки інформації на верхні рівні, підвищується відповідальність 

виконавців, скорочується кількість проміжних ланок керування; 

- спрощується взаємодія між підрозділами, а часом стираються межі між 

ними; 

- стає можливим оцінювати діяльність підрозділів та окремих 

співробітників за збалансованою системою показників, передавати їх на 

верхні рівні та отримувати безпосередньо відомості про стратегію 

системи в цілому. 

В рамках сучасних структур комп’ютерно-інтегрованих систем управління  

створюються можливості поєднання позитивних сторін структурного та 
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процесного підходів на основі сценарно-ситуаційного управління. При цьому 

управління ТК в основних експлуатаційних режимах передбачає використання 

систем прийняття рішень в класі «ситуація - дія» або «ситуація – стратегія – дія», 

у тому числі на основі нечітких моделей з використанням нечітких когнітивних 

карт. 

Найбільшою практичною проблемою в сучасних умовах є управління 

складноорганізованими системами  в умовах невизначеності, які в різних 

проявах характерні  для харчових виробництв (не можна достовірно передбачити 

реакцію об’єкта управління на зовнішні дії; різноманітні конфлікти, що 

виникають в процесі управління, не можуть бути розв’язані однозначно на 

користь тих чи інших складових систем (необхідні компромісні варіанти 

організацій стратегій управління; досягнення цільового стану повинно 

здійснюватись по ефективній траєкторії). Виходячи із принципу еквіфінальності, 

розв’язання задач управління в умовах невизначеності теоретично повинно 

дозволити здійснити опис  всієї допустимої множини станів об’єкта, що, звісно, 

приводить до недопустимого рівня багатомірності варіантів стратегій 

управління. Тому, доцільно застосувати сучасні підходи до організації 

ефективних управлінь: синергетичне управління і сценарний підхід. Загальна 

постановка задачі управління складними організаційно-технічними об’єктами 

при таких підходах полягає в наступному.  Визначаються описи структур 

системи управління у вигляді початкового атрактора, який визначається як певна 

стабільна просторово-часова структура. Далі задається на основі досліджень  

деяка послідовність кроків (дій) переходу від попередніх структур – атракторів 

до цільових атракторів (історія переходу), а також опис умов цих переходів та їх 

часових параметрів. Експертним опитуванням встановлюються відносно стійкі 

структури – атрактори у фазовому просторі середовища, а також області їх 

притягування. Необхідно визначити: як виконати послідовність дій, щоб 

здійснити перехід від початкової до спланованої структури – атрактора; які 

умови і часові параметри такого переходу; яким чином можна оцінити 

достовірність кожного послідовного кроку такого переходу; яка ймовірність та 

можливість попадання із початкової структури в область притягування 

запланованої структури – атрактора;  яка ймовірність стійкості системи при її 

атрактивній поведінці і за допомогою яких параметрів порядку можна описати 

області притягування системи в фазовому просторі середовища; яким чином 

можна оцінити ефективність, послідовність та подолання конфліктності при 

міжатрактивних переходах з урахуванням встановлених обмежень (часові, 
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ресурсні, критеріальні, інформаційні); який кінцевий ефект всіх дій при варіанті 

переходу в цільовий стан системи. Подібні визначення задач управління 

потребують відповідного функціонального забезпечення (моніторинг, 

діагностика, планування, реконструкція, прогнозування, прийняття рішень) у  

вигляді спеціальних схем – алгоритмів. 

Загальна задача прийняття рішень по управлінню в умовах невизначеності 

Z(S,R)   полягає в тому, що для будь-якої ситуації S необхідно знайти таке 

рішення rR, яке є найкращим в деякому розумінні. Вся допустима множина 

ситуацій і безпосередньо зв’язаною з нею множиною рішень, що приймаються, 

можна визначити через S=(I, L, P), де  I – множина інформації, L – множина 

об’єктів, P – множина  предикатів. Конкретні ситуаційні стани об’єктів 

представляються із множини варіацій вище наведених базових елементів. 

Особливість формування сценаріїв управління біотехнологічними 

процесами вимагає всесторонього розгляду можливих підходів формування 

самоорганізаційних структур з урахуванням ризику та невизначеності. 

Важливим чинником формування стратегії  управління з урахуванням 

ситуаційної невизначеності є включення механізмів синтезу управляючих 

сценаріїв  поведінки параметрів біотехнологічних процесів. Врахування такого 

роду характеру поведінки біотехнологічних процесів  дозволяє побудувати 

множину стратегічних сценаріїв управління. 

При цьому розглядаються система моделей, що описує процеси зміни 

параметрів та умов функціонування біотехнологічних процесів, дискретно 

фіксуючи принципові  з точки зору розробника системи управління 

біотехнологічними процесами моменти переходу на новий якісний рівень 

функціонування та режимів роботи. При розробці інтелектуальної підсистеми 

слід розрізняти сценарії управління і сценарії поведінки об’єкта. Перший 

формується в залежності від цілі управління і правил вибору управляючих дій,  в 

той час коли інший орієнтується на дескриптивне дослідження об’єкта 

управління. Основна різниця між ними полягає в тому, що в сценарії управління 

присутня ОПР, приймаючи активну участь в досягненні поставленої цілі 

управління. 

Формування сценарію управління біотехнологічними процесами будується 

за суб’єктивно-об’єктивною схемою, яка застосовується в процесі аналізу та 

прийняття рішень, тобто спочатку із множини входів Х  та множині виходів Y 

формуємо розширений фазовий простір , в якому здійснюється 

дослідження поведінки параметрів біотехнологічного процесу. На наступному 

YXZ =
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етапі розбиваємо простір  на підмножини, які характеризують якісно експертно 

значущі властивості біотехнологічних процесів.. При цьому експертним шляхом 

визначаємо робочу область , в якій розглядається функціонування 

об’єкта. 

В основі експертного опису поведінки біотехнологічних процесів  лежить 

поняття експертно значущої розбивки (ЕЗР)  простору  та експертно 

значущих подій (ЕЗП) ,  що проходять в послідовності, вказаній в системі 

впорядкування , яка визначається об’єктивними законами природи (фізикою 

проходження самого процесу). 

Представивши ЕЗР заданим набором показників (характеристик 
p

S ), 

встановлюється центр елементарної розбивки, який задає нормальний стан 

виділених показників об’єкта, формуємо як стандартний стан деякої векторної 

згортки розширених фазових координат (наприклад, фазовий простір зміни 

координат системи). 

Наступним кроком генерування сценарію є визначення зв’язків між 

елементами ЕЗР. Процедура розвитку ЕЗП може бути оцінена з різних точок зору 

[8]. Виділяють дві крайні можливості: 

-    слідування екзогенним шляхом (синергетичний підхід); 

-   слідування ендогенним шляхом, що ґрунтується на детальному описі 

перехідних процесів (в окремому випадку це можуть бути процеси управління 

з бажаною  ціллю), які лежать в основі атрактивного підходу. 

Між цими точками зору лежить цілий спектр можливих варіантів моделей. 

Для побудови сценарію формально пропонується використання двох часових 

шкал: 

-шкала , за допомогою якої описуються динамічні траєкторії ОУ 

розширеного    фазового простору Z (як правило, це шкала безперервного часу); 

-   шкала  дискретного часу, у відповідності з якою проходять всі події 

сценарію, що формується. 

При формуванні сценарію послідовно виділяються фактори невизначені 

 і випадкові . Далі визначаються  умовне рішення 

, очікувана подія (  в момент часу ,   

образ ситуації , образ обстановки  в момент часу . 

Ефективним методологічним прийомом при визначенні елементів сценарію 

поведінки біотехнологічних процесів (БТП) може слугувати магістральний 

підхід до аналізу проблеми, зміст якого полягає в тому, що визначаються окремі 
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спеціальні багатообрази (зони стійкості фазових портретів) фазового простору, 

які описують ефективні з точки зору заданих цільових функцій траєкторії 

розвитку системи. Визначення таких елементів дозволяє здійснити синтез 

оптимального управління і вказати відповідні оптимальні траєкторії 

проходження біотехнологічних процесів. 
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