NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

AGROBIOLOGICAL FACULTY DEPARTMENT OF ANALYTICAL AND BIOINORGANIC CHEMISTRY & WATER QUALITY

"APPROVED"

Dean of the Faculty of Plant Protection, Biotechnology and Ecology Dr.Agr.Sc., Prof._____M.M. Doliia "___"_ ___2015

REWIED AND APPROVED

At the meeting of the department of Analytical and Bioinorganic Chemistry & Water Quality Protocol # 5 "<u>23</u>"<u>November</u> 2015 Head of the Department Dr.Chem.Sc., Prof._____V.A. Kopilevich

SYLLABUS

Academic Discipline <u>"ANALYTICAL CHEMISTRY"</u> For EQL "Bachelor" <u>6.090105</u> Specialty - Plant protection

Syllabus compiled by : Associate Professor <u>N. Prokopchuk</u>, PhD in Chemistry

working program	Analytical Chemistry	
students of direction	6.090105 – Plant protection.	

<u>23</u> "<u>November</u>_2015

<u>The developers</u>: <u>N.M. Prokopchuk, Associated Professor of the Department of Analytical and Bioinorganic Chemistry & Water Quality, PhD in Chemistry</u> (вказати авторів, їхні посади, наукові ступені та вчені звання)

The working program was approved at the meeting of the Department of Analytical and Bioinorganic Chemistry & Water Quality _____-____

Protocol # 5 "<u>23</u>"<u>November</u>2015 Head of the Department of <u>Analytical and Bioinorganic Chemistry &</u> Water Quality, Dr.Chem.Sc., Prof.

•	"	20

Approved by the Scientific Council of Plant Protection, Biotechnology and Ecology Faculty

(підпис)

_____ Protocol # ____" ____20___. "___" ____20___ р. Неаd _____ (підпис) (прізвище та ініціали)

© N. Prokopchuk 2016

_(_V.A. Kopilevich _)

(прізвище та ініціали)

_for

1. Academic discipline description

Analytical Chemistry (Ha3Ba)

Field of knowledge, direction, specialty, education and qualification level							
Educational and Qualification level	bachelor						
qualification							
Direction	6.090105 - P	lant protection					
Area of training	0401 – natu	aral sciences					
Characteris	tics of training programme						
Туре	ordi	nary					
The total number of academic hours	90)					
Number of ECTS credits allocated	S credits allocated <u>3</u>						
Number of modules	_2						
Forms of control	Т	est					
Indicators of academic discipline for	or full-time and part-time f	forms of training course					
	Full-time	Part-time					
Year (course)	1						
Semester	2						
Number of lectures	15						
Number of seminars, practical classes							
Laboratory sessions (activities)	45						
Independent study	30						
Individual lessons							
Number of weekly in-class academic							
hours for full-time forms of training	3						

1. Goal and objectives of academic discipline

Analytical Chemistry is a fundamental subject, obligatory to studding for students of agricultural specialties of Higher Educational Agrarian Universities of

III-IV accreditation levels. This program was developed on the base of Educational Program of Subject "Chemistry" for specialty "Plant Protection" (direction "Plant Protection").

In the modern society Analytical Chemistry is a powerful source of productive powers. In particular, intensification of scientific-technical progress in agricultural production requires a rational use of chemical science achievement, Intensification of ecological control of economy activity.

The main tasks of analytical chemistry are:

- A studding of it as a transition from fundamental to special subjects of training of specialists theoretical and experimental foundations for a studding of professional-oriented and special subjects (Agrochemistry, Soil Sciences, Plant growing, Agrochemical Analysis, Soil Science, Agroecology, Chemical Plant Protection et al.);
- Assimilation of the main skills of qualitative and quantitative chemical analyses and mathematical calculations of their results.

Requirements of knowledge and skills acquired during studying the subject.

In the result of studding of analytical chemistry a student of Bachelor Course in Plant Protection must:

To know foundations of main methods of qualitative and quantitative chemical analyses, traditional laboratory equipment, and chemical dishes, materials and reagents for an analytical determinations;

To know how use an educational, methodical and reference literature sources in the field of analytical chemistry, to prepare equipment, dishes, reagents for a analysis; to do qualitative and quantitative chemical analyses according to methodical rules; to carry out a mathematical processing of quantitative analyses, to estimate a inaccuracy of analysis; to present results of experimental exercises in the form of protocol in the field of agronomy, plant protection;

Control of knowledge and skills is realized in the form of defense of laboratory exercises in oral form, written control tests of theoretical knowledge and final written exam.

Teaching of subject is organized according to module-rating principle for more objective and ranked an estimation of student's knowledge.

1. CONTENT OF SUBJECT

Titles, contents and extents of lectures.

<u>Змістовий модуль 1.</u> Principles and methods of Qualitative Analysis of Cations and Anions.

Lecture # 1. Introduction. Subject and tasks of Analytical Chemistry. Principles of Qualitative Analysis and its terminology. Methods of analytical reactions doing.

Analytical chemistry as the branch of chemistry. Separation and analysis of chemical substances. Qualitative and quantitative analysis. Semimicro techniques. Dispensing reagent solutions. Stirring rods. Adjusting pH. Precipitation. Centrifuging. Analytical techniques.

Lecture # 2. Classification of cations of the main bio-active metals and toxic metals according to phosphate-ammonium method. Qualitative reactions.

General ideas of qualitative analysis. Analytical reagents, group reagents, specific reagents, selective reagents. The sensitivity of the reactions, detectible minimum (m), concentration limit (c), maximum dilution (MD). Principles of amino-phosphate classification of cations. Qualitative analysis of cations. Classification of anions. Qualitative analysis of anions. Analysis of unknown substances. Identifying a simple salt by logistics way. Identifying a simple salt by step-by-step way.

<u>Змістовий модуль 2.</u> Theoretical and experimental foundations of Quantitative chemical analysis. Gravimetry and neutralization method. Red Ox methods and complexing methods.

Lecture # 3. Quantitative chemical analysis as a branch of analytical chemistry. Quantitative chemical analysis as a branch of analytical chemistry. The major types of chemical methods as gravimetric analysis (q.v.) and volumetric, or titrimetric, analysis. The basic tools in all quantitative analyses. Units of concentration: Percent by Mass (mass concentration, percent concentration, parts per million (ppm), parts per billion (ppb), parts per trillion (ppt)), Molarity (molar concentration) (M), Mole Fraction (X), Molality (m), Normality (normal concentration). Dilutions.

Lecture # 4. Chemical equilibrium in heterogeneous systems.

Chemical equilibrium in heterogeneous systems. Precipitation reactions. The solubility product. Ionic product. Molar solubility and solubility. Predicting precipitation reactions. The common ion effect and solubility.

Lecture # 5. Chemical equilibrium in homogeneous systems. Chemical equilibrium in homogeneous systems. Law on mass action in reversible reactions. Constant of chemical equilibrium. Osvald's delusion law. Hydrogen power. Buffer solutions and their application. Titrimetry. Neutralization method.

Lecture # 6. Theoretical notions of RedOx titration methods (Redoxmetry).

General principles of Redoxmetry. Half-reactions. Quantitative characteristic of direction and completeness of passing of Oxidation-Reduction reaction. Standard redox potentials. Curves of redoxmetry. Titrating solutions and indicators in methods of redoxmetry.

Lecture #7. Theoretical notions of Complexonometry and Argentometry. Helators. Determination of titration endpoint.

4. Subject Structure

					Ki	лькіст	гь годин					
Назви змістових		ден	на	форма	a		Заочна форма					
модулів і тем	усього		У	гому ч	числі		усього		У	тому ч	числі	
		Л	П	лаб	інд	c.p.		Л	П	лаб	інд	c.p.
1	2	3	4	5	6	7	8	9	10	11	12	13
Змістовий модуль 1	. Princip	les a	nd 1	metho	ods of	Qual	itative A	naly	ysis (of Cat	ions a	and
		-		Ani	ons	-	-		-	-	-	
Тема 1.		2		2								
Introduction. Subject												
and tasks of												
Analytical												
Chemistry. Security												
techniques.												
Principles of												
Qualitative Analysis												
and it terminology.												
Methods of												
analytical reactions												
doing.												

3. PROGRAM AND STRUCTURE OF THE SUBJECT

Тема 2	1	1	1			
C_{1}	1	4	7			
Classification of						
Cations of the main						
bio-active metals						
and toxic metals						
according to						
phosphate-						
ammonium method.						
Qualitative reactions						
and methods for						
distribution of I						
$(\mathbf{NH}^+, \mathbf{K}^+, \mathbf{No}^+)$ and						
$(\Pi\Pi_4, \mathbf{K}, \Pi\Lambda_4)$ and $(\Pi_4, \mathbf{K}, \Pi\Lambda_4)$						
III (Cu; Zn)						
analytical groups of						
cations.						
Тема 3. Qualitative		4	2			
reactions and						
methods for						
distribution of II						
group of cations						
$(M\sigma^{2+})$ Ca^{2+} Sr^{2+}						
Mn^{2+} , Ee^{2+} , Ee^{3+} .						
$(\Delta 1^{3+})$						
Ai). Taxa 4 Control tast:		2				
Ouglitative reactions		2				
Qualitative reactions						
and methods for						
distribution of I - III						
groups of cations.	1	4	•			
Тема 5. Qualitative	1	4	2			
reactions and						
methods for						
distribution of I - III						
groups of anions						
$(SO_4^{2-}; SO_3^{2-}; CO_3^{2-};)$						
PO_4^{2-} ; Cl^- ; Br^- ; J^- ;						
NO_3^- ; NO_2^- ;						
CH ₃ COO ⁻).						
Тема 6.		4	2			
Experimental tests:						
Qualitative Analysis						
of three unknown						
compounds (salts or						
acide or ovides with						
different colubility in						
unierent solubility in						
water).		-				
тема /. Control test:		2				
Qualitative Analysis						
of three unknown						
compounds.						
of three unknown compounds.						

Разом за змістовим		4		22		10						
модулем 1												
Змістовий модуль	2. Theo	retic	al a	nd ex	perin	nental	foundat	ion	s of (Quant	itativ	e
chemical analysis.	Gravime	etry a	and	neut	raliza	tion n	nethod. H	Red	Ox	metho	ds an	d
		co	mp	lexing	g met	hods.						
Teмa 1. Methods of		4		4		4						
qualitative analysis:												
weighting, using of												
measuring dishes,												
filtration,												
desiccation, heating												
of precipitates.												
Features of												
gravimations in												
example of barium												
content analysis in												
polluted barium												
chloride.												
		-										
Тема 2. Techniques		2		4		4						
of Qualitative												
Analysis. Initial and												
working solutions in methods												
titrimetric analysis												
Standard tubes												
fiksanals).												
Calculations in												
titrimetric analysis.												
Preparation of												
chemicals for												
neutralization												
method.												
Тема 3		2		4		4						
Experimental tests:		-				•						
neutralization												
method:												
Analysis of alkali												
solution and												
calculation of its												
concentration;												
temporary hardity of												
water determination.				_								
Тема 4. Control test:				2								
neutralization												
method and												
concentration of												
solutions.												
Тема 5. Theoretical		2		3		4						

foundations and						
experimental using						
of permanganate						
method.						
Experimental test:						
permanganate						
method:						
- determination of						
iron (II) content in						
More salt.						
Тема 6. Theoretical	1	4	4			
foundations and						
experimental using						
of EDTA method.						
Experimental test:						
EDTA method:						
- determination						
of calcium content in						
soil solution;						
- determination of						
total hardity of						
water.						
Разом за змістовим	11	23	20			
модулем 2		 	 			
Усього годин	15	45	30			

5. Теми лабораторних робіт

N⁰	Назва теми	Кількість
3/П		годин
1	Introduction. Subject and tasks of Analytical Chemistry. Lab. Safety	2
	rules. Principles of Qualitative Analysis and it terminology. Methods	
	of analytical reactions doing.	
2	Classification of Cations of the main bio-active metals and toxic metals	4
	according to phosphate-ammonium method.	
	Qualitative reactions and methods for distribution of I $(NH_4^+; K^+; Na^+)$	4
	and III $(Cu^{2+}; Zn^{2+})$ analytical groups of cations.	
3	Qualitative reactions and methods for distribution of II group of	4
	cations $(Mg^{2+}; Ca^{2+}; Sr^{2+}; Mn^{2+}; Fe^{2+}; Fe^{3+}; Al^{3+}).$	
4	Control test: Qualitative reactions and methods for distribution of I -	2
	III groups of cations.	
5	Qualitative reactions and methods for distribution of I - III groups of	4
	anions (SO ₄ ²⁻ ; SO ₃ ²⁻ ; CO ₃ ²⁻ ; PO ₄ ²⁻ ; Cl ⁻ ; Br ⁻ ; J ⁻ ; NO ₃ ⁻ ; NO ₂ ⁻ ; CH ₃ COO ⁻).	
6	Experimental tests: Qualitative Analysis of three unknown compounds	4
	(salts or acids or oxides with different solubility in water).	
7	Control test: Qualitative Analysis of three unknown compounds.	2
0		2
8	Methods of qualitative analysis: weighting, using of measuring dishes,	2
	filtration, desiccation, heating of precipitates. Features of calculations in	

	gravimetry on the example of barium content analysis in polluted barium chloride.	
9	Techniques of Qualitative Analysis. Initial and working solutions in methods of titrimetric analysis. Standard tubes fiksanals). Calculations in titrimetric analysis. Preparation of chemicals for neutralization method.	2
10	Experimental tests: neutralization method:	4
	Analysis of alkali solution and calculation of its concentration; temporary hardity of water determination.	
11	Control test: neutralization method and concentration of solutions.	2
12	Theoretical foundations and experimental using of permanganate method.	2
	Experimental test: permanganate method:	3
	determination of iron (II) content in More salt.	
13	Theoretical foundations and experimental using of EDTA method.	2
	Experimental test: EDTA method:	
	- determination of calcium content in soil solution;	2
	determination of total hardity of water.	

5. Independent study

#	Name of theme	Number of hours
		of nours
1	Molar ratios, molar masses, balancing and interpreting equations, conversions between grams and moles.	1
2	The electronic arrangements and dots-and-crosses diagrams.	2
3	Atomic number as the basis for the Periodic Law. Long form periodic table.	2
4	Lewis Structures. Exceptions to Regular Lewis Structures - resonance structures	5
5	Catalysts and catalysis. Dynamic equilibria.	1
6	Colligative properties of solution.	1
7	Dilute concentrations units: ppm, ppb,ppt.	1
8	Use of Hydrolysis in the "Real World".	3
9	Lewis Acid-Lewis base approach to bonding in complexes.	2
10	Half-reactions. Nernst Equation.	2
11	Metal halides. Interhalogen compounds.	2

	Totally	30
14	Properties of alkali and alkali-earth elements.	2
13	Occurrence of pnictogens.	2
12	Allotropes of Oxygen and Sulfur.	4

6. Test questions for final assessment

	Екзаменаційні питання						
1. Ato	mic structure. Quantum numbe	rs of e	lectrons in atoms.				
	Write complete electron configu	ration	of the Sulfur atom and draw all				
possib	le exited states. Note valences, n	naxim	um and minimum oxidation				
numb	ers of this element.						
2.	Bases. Classification, preparatio	n and	examples of bases.				
	Which substances may react wit	h eacl	n other: P ₂ O ₅ , NaOH, ZnO, HF,				
CaO?	Write corresponding reactions.						
	Тестов	і завд	ання				
1. Wh	ich formula contains error?						
A.	CaHSO ₄	C.	NH ₄ HSO ₄				
B.	$(NH_4)_2SO_4$	D.	CaHPO ₄				
2. Poi	int the correspondence between	n forr	nula of compound and type of a				
chemi	cal bond:						
A.	. BaCl ₂ 1. A metallic bond						
B.	Zn	2.	An ionic bond				
C.	O_2	3.	A non-polar covalent bond				
D.	NH ₃	4.	A polar covalent bond				
	A, B	_, C	, D				
3. Per	cent by mass of solution contain	ned 15	5 g of $(NH_4)_2SO_4$ in 250 g of water,				
is:							
A.	3,9%	С.	4,8%				
B.	1,5%	D.	5,7%				
4. Wh	at is it necessary to add to K ₃ PO	94, so t	hat K ₂ HPO ₄ can be formed:				
A.	КОН	C.	H_2SO_4				
B.	KCl	D.	H ₃ PO ₄				
5. Write all possible reactions between $Ba(OH)_2$ and H_2SO_4 (taking into							
account the possibility of neutral, acidic and basic salts forming).							
6. Note oxidation number and coordination number of the central atom in the							
compl	ex compound - [Cr(NH ₃) ₅ Br]SO	4•					
A.	+2, 4	D.	+3,6				

B. +2, 6	E. +4, 6			
C. +3, 4				
7. Complete Redox reaction. Write electron balance. Determine oxidizing and				
reducing agents calculate sum of coefficients in equation:				
$Ca + H_2SO_{4(conc.)} \rightarrow$				
A. 16	C. 17			
B. 18	D. 10			
8. Calculate a sum of coefficients in the molecular equation for 1^{st} step				
hydrolysis of Zinc Sulfate and write molecular, complete ionic, and net-ionic				
reactions.				
A. 8	C. 6			
B. 4	D. 7			
9. What substances are strong electrolytes?				
Zn(OH)2 2. HNO3 3. HClO 4.	HF 5. CH ₃ COOH 6. CaCl ₂			
A. 1i4	D. 3i5			
B. 2 i 6	E. 2 i 3			
C. 3 i 4				
10. Bonds of central atom with ligands in complex compounds are realized due				
to:				
A. Ionic bond;	C. Covalent bond;			
B. Donor-acceptor covalent bond;	D. Metallic bond.			

7. Teaching Methods

A **teaching method** comprises the principles and methods used for teaching. Commonly used teaching methods for studying subject Water Resources Management include class participation, demonstration, recitation, memorization, or combinations of these. The choice of teaching method or methods to be used depends largely on the information or skill that is being taught, and it may also be influenced by the aptitude and enthusiasm of the students.

Explaining, or lecturing, is the process of teaching by giving spoken explanations of the subject that is to be learned. Lecturing is often accompanied by visual aids to help students visualize an object or problem.

Demonstrating is the process of teaching through examples or experiments. For example, a science teacher may teach an idea by performing an experiment for students. A demonstration may be used to prove a fact through a combination of visual evidence and associated reasoning.

Demonstrations are similar to written storytelling and examples in that they allow students to personally relate to the presented information. Memorization of a list of facts is a detached and impersonal experience, whereas the same information, conveyed through demonstration, becomes personally relatable. Demonstrations help to raise student interest and reinforce memory retention because they provide connections between facts and real-world applications of those facts. Lectures, on the other hand, are often geared more towards factual presentation than connective learning.

Collaboration allows students to actively participate in the learning process by talking with each other and listening to other points of view. Collaboration establishes a personal connection between students and the topic of study and it helps students think in a less personally biased way. Group projects and discussions are examples of this teaching method. Teachers may employ collaboration to assess student's abilities to work as a team, leadership skills, or presentation abilities.

Collaborative discussions can take a variety of forms, such as fishbowl discussions. After some preparation and with clearly defined roles, a discussion may constitute most of a lesson, with the teacher only giving short feedback at the end or in the following lesson.

Learning by teaching is the method, when students assume the role of teacher and teach their peers. Students who teach others as a group or as individuals must study and understand a topic well enough to teach it to their peers. By having students participate in the teaching process, they gain self-confidence and strengthen their speaking and communication skills.

7. Forms of control

The main forms of knowledge control are control at the lectures at seminars and workshops, outside the classroom, at the consultations, tests and exams. I. Control of the lectures can be conducted as a selective oral questioning of students or tests using the previously laid material, particularly in sections of the course that are necessary for the understanding of the lecture topics, read, or to establish a degree of mastery of the material lectures (held by the manner of the late first early second hour lectures). or Testing during lectures designed to teach students to systematic elaboration covered material and prepare for the upcoming lectures, establish the degree of assimilation theory to identify the most difficult students to read chapters from the following explanation of them. Control of the lectures has to subtract time. By spending time to control oral examination yields control, programmable for cards.

II. Current control on practical, seminar and laboratory studies conducted to elucidate ready students for employment in the following forms:

1. Writing (45 min.) Control work.

2. Colloquium on separate sections of theoretical courses (modules or themes).

III. Credits. Some subjects (theoretical courses, practical training) is applied differential test of performance appraisal on a five point scale. In a lecture course or its individual parts, which are not accompanied by laboratory or practical classes, the teacher may conduct interviews or colloquium, offer oral or written

(with tickets) questions. TeacherUseful browse the students' notes. Often, students are subject to crediting as minor, insignificant and do not give enough time to prepare for it. Of the major courses before credit of Colloquium useful.

Term papers are the product of many days of work. They include elements of scientific research. Protecting course work - a special form of offset in the commission of two or three teachers. Best of coursework submitted for scientific student conference.

IV. Examinations. Exam is the final step in the study of the whole or part of the discipline and are designed to test students' knowledge on the theory and identify the skills apply the acquired knowledge in solving practical problems, as well as independent work skills with educational and scientific literature.

Student's rating of knowledge of an academic discipline consists of training work rating -70 points and attestation rating -30 points. Thus, rating of content modules, that are constituents of an academic discipline, makes 70 points. Rating of content modules as well as attestation rating are also measured by 100-point-scale.

Evaluation and grading

National grade	Оцінка ECTS	Grade according to national system	Percentage score
passed	Α	Excellent	90 - 100
	В	Very good	82-89
	С	Good	74-81
	D	Satisfactory	64-73
	E	Satisfactory enough	60-63
Not-passed	FX	Unsatisfactory	35-59
	F	Unsatisfactory– serious work is needed	0-34

Grading system: National and ECTS

9. Technology and methodological requirements

- Analytical Chemistry. Manual. Voytenko L., Kosmatiy V., Kopilevich V., - Kyiv: NAU Publish., 2014. - 199 pp.
- Workbook on Analytical Chemistry. Voytenko L., Kosmatiy V., Kopilevich V., Prokopchuk N. - Kyiv: NAU Publish., 2014. - 1 pp.

10. Required and recommended literature

Basic

- 1. Introduction in General, Organic and Biochemistry, 7th Edition, by Morris Hein, Leo R. Best, Scott Pattison and Susan Arena, Brooks/Cole Publishing Co., 2001, 872 pp.
- 2. Chemistry: the Molecular Nature of Matter and Change, 2nd ed. Martin S. Silberberg, McGraw-Hill Companies, 2000, 1086 pp.
- 3. Chemistry. Raymond Chang, 6th ed., McGraw-Hill Companies, 1998, 993 pp.

- 4. Inorganic Chemistry, second edition, D. F. Shriver, P. W. Atkins, and C.H. Langford; W. H. Freeman and Co., New York, 1994, 913 pp.
- 5. Glinka N.N. General Chemistry. Moscow: Nauka, 1966, 432 pp.

Supplemental

- Concepts and Models of Inorganic Chemistry, third edition, B. E. Douglas, D. H. McDaniel and J. J. Alexander; John Wiley & Sons, Inc., New York, 1994. 993 p.
- 2. Inorganic Chemistry, A Modern Introduction, T. Moeller; John Wiley & Sons, New York, 1982. 846 p.
- 3. Chemistry of the Elements, N. N. Greenwoo and A. Earnshaw; Pergamon Press, New York, 1984. 1542 pp.

11. Normative literature

- ISO 6353-2:1983 Reagents for chemical analysis -- Part 2: Specifications

 First series.
- ISO 6058:1984, Water quality Determination of calcium content -EDTA titrimetric method ISO 6058:1984, Water quality - Determination of calcium content - EDTA titrimetric method.
- 3. ISO 6059 1984 Water quality Determination of the sum of calcium and magnesium EDTA titrimetric method.

12. IT resources

- 1. http://www.informika.ru/text/database/chemy/Enu/Data/Ch1-7.html
- 2. http://dbhs.wvusd.k12.ca.us/AcidBase/Kw.html
- 3. http://dbhs.wvusd.k12.ca.us/AcidBase/Hydrolysis.html
- 4. http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html
- 5. http://chemlab.pc.maricopa.edu periodic/triangletable.html
- 6. http://www.pc.chemie.uni-siegen.de/pci/versuche/english/kapite14. html