

SYLLABUS OF AN ACADEMIC DISCIPLINE «Higher mathematics»

Academic degree: Bachelor's Specialty: 073 "Management"

Academic program: Management of international business

Year of study: I, semester: I Form of study: full-time **Number of ECTS credits: 4 Languages of instruction: English**

Lecturer of the discipline

Lecturer's contact artemchuklm@gmail.com, shidlich@gmail.com

URL of the e-learning course on the NULES elearning portal

information (e-mail)

Lyudmila Mykolaivna Artemchuk, Andrii Lyubomyrovych Shydlich

https://elearn.nubip.edu.ua/course/view.php?id=2.109

ACADEMIC DISCIPLINE DESCRIPTION

"Higher Mathematics" is a basic discipline necessary for the development of students' intellect and the development of their abilities to logical and algorithmic thinking, selflearning skills. The purpose of teaching the discipline is to master the mathematical apparatus necessary for the analysis, modeling and solution of theoretical and practical problems in the management activities of a future manager.

The main **objectives** of the discipline "Higher Mathematics" are as follows:

- mastery of the basics of the mathematical apparatus necessary for solving theoretical and practical management problems in the economic sphere;
- development of skills in mathematical research of applied problems, namely, the ability to translate a specific economic problem into mathematical language with the subsequent construction of its mathematical model;
- development of the ability to research the constructed mathematical models of certain management processes.

Competences of the discipline:

Integral competence (IC):

The ability to solve complex specialized tasks and practical problems characterized by complexity and uncertainty of conditions in the field of management or in the learning process, which involves the application of theories and methods of social and behavioral sciences.

General competence (GC):

GC 8. Skills in the use of information and communication technologies.

Special (professional) competences (SC):

SC 2. Ability to analyze the results of the organization's activities, compare them with the factors of influence of the external and internal environment.

- SC 10. Ability to evaluate the work performed, ensure its quality and motivate the staff of the organization.
- SC 12. Ability to analyze and structure the problems of the organization, to formulate to formulate reasonable solutions.

Expected Learning Outcomes (ELO):

ELO 6. To demonstrate skills in searching, collecting and analyzing information, calculating indicators to justify management decisions.

ACADEMIC DISCIPLINE STRUCTURE

Topic	Hours (lectures/laboratory, practical, seminars)	Learning outcomes	Tasks	Assessment
	practical, semmars)	1 semester		
		Module 1		
Topic 1. Determinants.	1/2	To know and to be able to calculate determinants of the 2nd and 3rd order.	C.W. Determinant of the fourth order	10
Topic 2. Matrices.	1/4	To know the definition and properties of matrices. To apply matrices to to solve problems.	C.W. Matrix multiplication	20
Topic 3. Systems of linear equations, their application in solving economic and management tasks.	2/4	To use SLAE to solve economic and management problems	C.W. Systems of linear equations	30
Topic 4. Linear economic models: -Leontiev model (balance analysis) - model of equilibrium prices -linear model of equilibrium trade.	2/4	To apply elements of linear algebra to solve economic problems.	C.W. Module No.1	40
Total for the				100
module		Module 2		
Topic 1. Application of functions in economic theory.	1/1	To know: definition of a function, domains of definition, methods of defining functions; inverse, composite, even, odd, periodic functions.	C.W. Function	5
Topic 2. The limit of a function. Continuity of function.	3/3	To know the basic theorems about limits. To apply the first and second excellent limits. To understand breakpoints and their classification.	C.W. Limit	10

		To use local and global		
		properties of functions		
Topic 3. The	2/2	To know the table of	C.W.	10
derivative of a		derivatives, geometric,	Derivative	
function.		economic, and		
Differential		mechanical meaning of		
function		a derivative. To be		
		able to find the		
		derivatives of a		
		composite, inverse,		
		implicit function. To		
		use the logarithmic		
		differentiation.		
Topic 4. The	2/2	To be able to study	C.W.	10
application of the		functions and build	Function research	
derivative for the		their graphs.		
study of the		To analyze the		
function when		company's indicators		
solving problems		company s maicators		
of an economic and				
managerial nature.				
Topic 5. Definition	2/4	To know the	C.W.	10
of antiderivative	2/4	definitions, properties,	Integral	10
and indefinite		and table of integrals.	megrai	
		_		
integral.		To know the simplest		
Tonia (The	4/4	methods of integration.	I.W.	20
Topic 6. The	4/4	Use the definite		20
definite integral.		integral to calculate the	Integral	
Application of the		average values of		
definite integral to		functions of economic		
geometric and		content, to determine		
economic problems		the capital gains from		
T . T . S . C	2/2	known investments	C ***	_
Topic 7. Definition	2/2	To know the problem	C.W.	5
of DE of the 1st		· · · · · · · · · · · · · · · · · · ·	DEs of the 1 st order	
order.		three types of DEs of		
		the first order: with		
		separable variables,		
		homogeneous, linear.		
Topic 8. Linear	2/2	To know and	C.W.	30
DEs of the 2nd		understand linear	Module	
order with constant		second-order DEs	No. 2	
coefficients				
Total for				100
Module 2				
((M1+M2)/2)*0.7				70
Examination				30
				400
Total for the				100

ASSESSMENT POLICY

Deadlines and	Assignments submitted after the deadline without valid reasons will be		
Rescheduling Policy:	graded lower. Modules can be rearranged with the permission of the		
	lecturer if there are good reasons (for example, sick leave).		
Academic Integrity	Cheating during tests and exams is strictly prohibited (including the use		
Policy:	of mobile devices).		
Attendance Policy:	Class attendance is mandatory. In case of objective reasons (such as		
	illness or international internships), individual learning may be		
	allowed (in online format by the approval of the dean of the faculty).		
Deadlines and exam	EXAMPLE		
retaking policy:	Works that are submitted late without valid reasons will be assessed		
	with a lower grade. Module tests may be retaken with the		
	permission of the lecturer if there are valid reasons (e.g. a sick		
	leave).		
Academic integrity	EXAMPLE		
policy:	Cheating during tests and exams is prohibited (including using		
	mobile devices). Term papers and essays must have correct		
	references to the literature used		
Attendance policy:	EXAMPLE		
	Attendance is compulsory. For good reasons (e.g. illness,		
	international internship), training can take place individually (online		
	by the faculty dean's consent)		

SCALE FOR ASSESSING STUDENTS 'KNOWLEDGE AND SKILLS

Student's rating,	National grading of exams and credits			
points	exams	credits		
90-100	excellent	pass		
74-89	good	1		
60-73	satisfactorily			
0-59	unsatisfactorily	fail		

RECOMMENDED SOURCES OF INFORMATION

- 1. Yeremina T. O., Povarova O. A. Higher mathematics. Elements of linear algebra and analytic geometry: a textbook. Kyiv: Igor Sikorsky Kyiv Polytechnic Institute, 2021. 115 pp. URL: https://ela.kpi.ua/handle/123456789/41267
- 2. Higher mathematics: a textbook. Ostroh: Publishing House of the National University of Ostroh Academy, 2021. 432 pp.
- 3. Higher mathematics: a textbook. P.1. Kharkiv: UkrDUZT, 2022. 232 pp. URL: http://lib.kart.edu.ua/handle/123456789/10149.
- 4. Batechko N.G., Pantalienko L.A., Shostak S.V., Tsypiy T.I., Ruzhylo M.Y. Higher mathematics. Collection of tasks. Kyiv: NUBiP Publishing House, 2021. 352 pp.
- 5. Batechko N.G., Pantalienko L.A., Khaidurov V.V., Tsyupiy T.I., Shostak S.V. Mathematics textbook for students of preparatory courses. Kyiv: FOP. Yamchynskyi O.V., 2020. 248 pp.