NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of Higher and Applied Mathematics

"APPROVED"

Dean of the Haculty of Agricultural

Managoment

Anatolii OSTAPCHUK

20 29

OR

"APPROVED"

at the meeting of the Department of Higher and Applied Mathematics

Minutes №13 of 06.05.2024

Head of the Department

Yuliia MEISH

"REVIEWED"

Guarantor of the AP "Marketing"

Violeta HERAIMOVYCH

CURRICULUM OF ACADEMIC DISCIPLINE

HIGHER MATHEMATICS

Field of knowledge: 07 "Management and administration"

Specialty: 075 "Marketing"

Academic programme: Marketing

Faculty of Agricultural Management

Author(s): Associate Professor Artemchuk L.M., Candidate of Pedagogy, Associate Professor,

Professor Shydlich A.L., Doctor of Science (Physics & Mathematics), Senior research fellow

(position, academic degree, academic rank)

Kyiv - 2024

Description of the discipline Higher mathematics

(name)

Academic degree, specialty, a	cademic programme				
Academic degree	Bachelor				
Field of knowledge	07 "Management an	d administration"			
Specialty	075 "Marketing"				
Academic programme	Marketing				
Character	istics of the discipline				
Type	con	npulsory			
Total number of hours		120			
Number of ECTS credits		4			
Number of modules	2				
Course project (work) (if any)	_				
Form of assessment	Exam				
	ors of the discipline				
for full-time and par	t-time forms of unive	rsity study			
	Full-time	Part-time			
Year of study	1	1			
Semester	1	1			
Lectures	15 hours	4 hours			
Practical classes and seminars	45 hours	2 hours			
Laboratory classes	_	_			
Self-study	60 hours	114 hours			
Number of hours per week for full-time students	4 hours	_			

1. Aim, objectives, competences and expected learning outcomes of the discipline

The **aim** of the educational discipline "Higher Mathematics" is to form students' personalities, develop their intelligence and abilities to logical and algorithmic thinking, master mathematical methods for solving managerial problems in the economic sphere.

The main **objectives** of the discipline "Higher Mathematics" are as follows: students acquire knowledge of the main sections of higher mathematics, prove basic theorems, form initial skills: performing actions on vectors, matrices, calculating determinants; solving systems of linear equations; studying the forms and properties of lines and planes, curves and surfaces of the second order; finding the limit of power-exponential functions.

As a result of studying the discipline, the student should acquire the following **competencies**:

Integral competences (IC):

The ability to solve complex specialized tasks and practical problems in the field of marketing activities or in the learning process, which involves the application of relevant theories and methods and is characterized by complexity and uncertainty of conditions.

General competences (GC):

- GC 8. Ability to conduct research at the appropriate level.
- GC 9. Skills in the use of information and communication technologies.

Special (professional) competences (SC):

- SC3. Ability to use the theoretical provisions of marketing to interpret and predict phenomena and processes in the marketing environment.
- SC6. Ability to conduct marketing research in various areas of marketing activities.
- SC7. Ability to determine the impact of functional areas of marketing on the results of economic activity of market participants.
- SC14. Ability to propose improvements to the functions of marketing activities.

Expected Learning Outcomes (ELO):

ELO 14. To perform functional duties in the group, to offer reasonable marketing solutions.

2. Programme and structure of the discipline for:

full-time (part-time) form of study

	Number of hours											
			l-time					part-time				
and topics	in total	1	includi				in total	1		cludi	_	4
1	2.	3	р 4	lab 5	ind 6	s.st	8	9	p 10	lab 11	ind 12	s.st
Module 1: Linear and vector algebra.											10	
Topic 1. Determinants.	6	1	2			3						
Topic 2. Matrices.	10	1	4			5						
Topic 3. Systems of	16	2	6			8						
linear equations, their												
application in solving												
economic and												
management tasks.												
Topic 4. Linear	16	2	6			8						
economic models:												
 Leontiev model 												
(balance analysis).												
 Model of equilibrium 												
prices.												
• Linear model of												
equilibrium trade.												
Total for module 1	48	6	18			24	2	1				45
Module	2. Diffe	erent	ial an	ıd in	teg	ral (calculu	IS.				
Topic 1 . Application of	6	1	2			3						
functions in economic												
theory.	10											
Topic 2 . The limit of a	10	1	4			5						
function. Continuity of												
function.	0	1	4			2						
Topic 3 . The derivative of a	8	1	4			3						
function. Differential												
function. Topic 4 . Application of the	10	1	4			5						
derivative for the study of	10	1	•									
the function when solving												
problems of an economic												
and managerial nature.												
Topic 5. Definition of	14	1	6			7						
antiderivative and indefinite												
integral.				L					L			L.
Topic 6 . The definite	12	1	5			6						
integral. Application of the												

definite integral to geometric and economic problems.										
Topic 7. Definition of DE of the 1st order.	6	1	2	3	3					
Topic 8 . Linear DEs of the 2nd order with constant coefficients.	6	1	2		3					
Total for module 2	72	9	27	3	6	72	2	1		69
Total hours	120	15	45	6	0	_	4	2		114

3. Topics of practical classes

No	Topic title	Hours
1	Topic 1. Determinants.	2
2	Topic 2. Matrices.	4
3	Topic 3 . Systems of linear equations, their application in	6
	solving economic and management tasks.	
4	Topic 4. Linear economic models.	6
5	Topic 5 . Application of functions in economic theory.	2
6	Topic 6 . The limit of a function. Continuity of function.	4
7	Topic 7 . The derivative of a function. Differential function.	4
8	Topic 8 . Application of the derivative for the study of the	4
	function when solving problems of an economic and	
	managerial nature.	
9	Topic 9. Definition of antiderivative and indefinite integral.	6
10	Topic 10 . The definite integral. Application of the definite	5
	integral to geometric and economic problems.	
11	Topic 11. Definition of DE of the 1st order.	2
12	Topic 12 . Linear DEs of the 2nd order with constant	2
	coefficients.	

4. Topics for self-study

No s/n	Topic title	Hours
1	Topic 1 . Determinants.	3
	Determinants of the nth order.	
2	Topic 2. Matrices.	3
	Rank of a matrix. Inverse matrix.	
3	Topic 3. Systems of linear equations, their application in	8
	solving economic and management tasks.	
	Gauss method. SLAE compatibility. Homogeneous SLAE	
4	Topic 4. Linear economic models.	8
	Leontiev's model of n-branches.	

5	Topic 5 . Application of functions in economic theory.	3
	Graphs of functions.	
6	Topic 6 . The limit of a function.	5
	Continuity of function.	
7	Topic 7 . The derivative of a function. Differential function.	7
	Derivative of higher orders. Differential of a function.	
8	Topic 8. Application of the derivative for the study of the	6
	function when solving problems of an economic and	
	managerial nature.	
9	Topic 9. Definition of antiderivative and indefinite integral.	5
	Integration methods.	
10	Topic 10 . The definite integral.	6
	Application of the definite integral.	
11	Topic 11 . Linear DE of the 1st order.	3
12	Topic 12. Linear DEs of the 2nd order with constant	3
	coefficients.	

Tasks for individual work of students

- I. Students perform individual work on the following topics during the course of the discipline:
 - 1. Application of linear algebra in management.
 - 2. Study of the function.
 - 3. The integral

5. Tools for assessing expected learning outcomes:

- exam.

6. Teaching methods:

- verbal method (lecture, discussion, interview, etc.);
- practical method (practical classes);
- visual method (illustration, demonstration);
- processing learning resources (note-taking, summarising, reviewing, writing an abstract);
- video method (remote, multimedia, web-based, etc.);
- self-study (completing assignments);
- individual research work (completion of tasks);
- individual research work of higher education students.

7. Assessment methods:

- exam;
- oral or written assessment;
- module tests;
- team projects;
- essays and reports;
- presentation of practical works;
- presentations and speeches at scientific and practical events.

8. Distribution of points received by students

The assessment of students' knowledge and skills is conducted by means of a 100-point scale and is converted into national grades according to Table 1 of the current *Exam and Credit Regulations at NULES of Ukraine*.

Student's rating,	National grading of exams and credits				
points	exams	credits			
90-100	excellent				
74-89	good	pass			
60-73	satisfactorily				
0-59	unsatisfactorily	fail			

To determine a student's rating in the discipline **RDIS** (up to 100 points), the received assessment rating $\mathbf{R_A}$ (up to 30 points) is added to the academic performance raiting $\mathbf{R_{AP}}$ (up to 70 points): $\mathbf{R_{DIS}} = \mathbf{R_{AP}} + \mathbf{R_{A}}$.

9. Teaching and learning aids

- 1. E-learning course of the discipline "Higher Mathematics" on the educational portal of National University of Life and Environmental Sciences of Ukraine eLearn. URL: https://elearn.nubip.edu.ua/course/view.php?id=3832.
- 2. Lecture notes and their presentations in electronic form. URL: https://elearn.nubip.edu.ua/course/view.php?id=3832.
- 3. Yeremina T.O., Povarova O.A. Higher Mathematics. Elements of linear algebra and analytical geometry: a textbook. Igor Sikorsky Kyiv Polytechnic Institute; Kyiv: Igor Sikorsky Kyiv Polytechnic Institute, 2021. 115 pp. URL:

https://ela.kpi.ua/handle/123456789/41267

4. Pasichnyk Y.A. Higher mathematics: a textbook. Ostroh: Publishing House of the National University of Ostroh Academy, 2021. 432 pp.

10. Recommended sources of information

1. Panchenko N.G. Rezunenko M.E. Higher mathematics: a textbook. Part 1 - Kharkiv: UkrDUZT, 2022. 232 pp. URL:

http://lib.kart.edu.ua/handle/123456789/10149

- 2.Batechko N.G., Pantalienko L.A., Shostak S.V., Tsypiy T.I., Ruzhylo M.Y. Higher mathematics. Collection of tasks. K.: NUBiP Publishing House, 2021 352 pp.
- 3. Batechko N.G., Pantalienko L.A., Khaidurov V.V., Tsyupiy T.I., Shostak S.V. Mathematics textbook for students of preparatory courses. Kyiv: FOP Yamchynskyi O.V., 2020. 248 pp.