

Syllabus

« Geoinformation systems and databases »

Educational-qualification level - Bachelor **Specialty** 193. Geodesy and Land Management

Educational program «Geodesy and Land management»

Year of study 3, semester 5

Mode of study: full **ECTS hours** – 7,0 **Language:** English

Instructor Antonina Moskalenko, PhD, Associate Professor

Oleg Drozdivskiy, PhD, Associate Professor

Contacts Department Geoinformatics and Aerospace Research of the Earth

Build#6, room.129

(e-mail) moskalenko_a@nubip.edu.ua

eLearn webpage https://elearn.nubip.edu.ua/course/view.php?id=158

Course Overview:

The course "Geoinformation systems and databases" consists of topics related to fundamentals of GIS technologies and concepts of database theory; their architecture and stages of construction. The features of the hierarchical, network, relational and object-oriented database models are considered. The design of relational databases, relational algebra, functional dependencies and normalization, the basic elements of SQL and the use of ER-diagrams and UML for building database structures are studied.

Students get practical experience in designing conceptual, logical and physical data models, attribute input into database, constructing spatial components of the vector-based topological model and queries application to the spatial components.

Aim of the discipline: The course "GIS and Database" provides the opportunity to use in program-technical complex for automated recording, storing, displaying, analyzing, modeling of spatially coordinated information and creating databases.

Tasks of discipline is forming as the specialist and subsequent practical use of technologies of GIS and databases is the task of study of discipline, in particular, geodatabase knowledge and practical skills of work on a computer in database environment, and basic receptions of development and work, with the databases in database.

Acquisition of competencies:

Integrated competency (IC)

IC. The ability to solve complex specialized problems of geodesy and land management

- general competencies:

- GK 01. Ability to learn and master modern knowledge.
- GK 02. Ability to apply knowledge in practical situations.
- GK 05. Ability to communicate in a foreign language.
- GK 06. Ability to use information and communication technologies.
- GK 07. Ability to work autonomously.
- GK 08. Ability to work in a team.
- GK 13. Ability to preserve, multiply moral, cultural, scientific values and achievements of society based on understanding of history, patterns of development of the subject area, its place in the general system of knowledge about nature and society, as well as in the development of society, technology and technology. activities for recreation and healthy living

- professional (special) competencies (PC):

SC 01. Ability to apply fundamental knowledge to analyze phenomena of natural and man-made origin in the performance of professional tasks in the field of geodesy and land management.

- SC 03. Ability to apply regulations, regulatory and technical documents, reference materials in professional activities.
- SC 04. Ability to choose and use effective methods, technologies and equipment for professional activities in the field of geodesy and land management.
- SC 05. Ability to use modern information, technical and technological support to address complex issues of geodesy and land management.
- SC 06. Ability to perform remote, ground, field and in-house research, engineering calculations for processing research results, prepare research results, prepare reports in solving problems of geodesy and land management.
- SC 07. Ability to collect, update, process, critically evaluate, interpret, store, publish and use geospatial data and metadata on objects of natural and man-made origin.
- SC 08. Ability to carry out professional activities in the field of geodesy and land management, taking into account the requirements of professional and civil safety, labor protection, social, environmental, ethical, economic aspects.
- SC 09. Ability to use tools, instruments, equipment, facilities in the performance of geodetic and land management tasks.
 - SC 10. Ability to monitor and evaluate land.

Program learning outcomes (PLO)

- LR 1. Fluent in oral and written forms in state and foreign languages on professional matters.
 - LR 2. Organize and manage the professional development of individuals and groups.
- LR 3. Communicate information, ideas, problems, solutions, personal experience and arguments to specialists and non-specialists.
- LR 4. To know and apply in professional activity normative-legal acts, normative-technical documents, reference materials in the field of geodesy and land management and related branches.
- LR 9. Collect, evaluate, interpret and use geospatial data, metadata on objects of natural and man-made origin, apply statistical methods of their analysis to solve specialized problems in the field of geodesy and land management.
- LR 10. Choose and apply tools hardware, hardware and software supplies needed for remote, ground, field and in-house research in in the field of geodesy and land management.
- LR 11. Organize and execute remote, ground, field and camera works in the field of geodesy and land management, draw up the results of work, prepare relevant reports.
- LR 13. Plan and execute geodetic, topographic and cadastral surveys, process the results in geographic information systems.
- LR 14. Plan a complex professional activity, develop and implement projects in the field of geodesy and land management under conditions resource and other constraints.
- LR 15. Develop and adopt effective decisions on professional activities in the field geodesy and land management, including under conditions uncertainty.

The course Program and Structure

Topic	Hrs (lectures /laboratory/ individual)	Education result	Tasks Grade	
5 semestr				
SEMANTIC	SEMANTIC MODULE I. INTRODUCTION AND CONCEPTUAL MODELING			
Theme 1.	2/4/10	Know basics of the	Submitting in eLearn 25	
Introduction to		geoinformation systems	Laboratory works:	
Geoinformation		Understand the	Creation of layers of	
science		possibilities of organization	geospatial data	
		of Information in a GIS	Determination of the	
		Recognize differences	design boundary of the	
		between types of	geospatial data base	
		Information in a GIS		

	T	T	T = T	
			Individual work:	
			Analysis of	
			publications on the	
			basics of	
			geoinformation systems	
			and technologies	
Theme 2.	2/6/15	Know the objects used in	Submitting in eLearn	30
Model of spatial		digital plans and maps	Laboratory works:	
data: vector and		Be able to ArcGIS-ArcMap	Vectorization. Part 1	
object data		tools for creating vector	Vectorization. Part 2	
models		topological model	Vectorization. Part 3.	
11100015		topological model	Individual work:	
			Creating geospatial data	
			layers in QGIS	
Theme 3.	2/4/15	Know data formats and be	Submitting in eLearn	25
	2/4/13		Ü	25
Model of spatial		able to use them correctly	•	
data. Mosaic		Apply ArcGIS-ArcMap	Editing vector layers.	
models		tools for editing vector	Individual work:	
		topological model	Raster base	
36 3 3			vectorization in QGIS	20
Module control		T	Test	30
Total module 1	6/14/40			100
		LE II. MODERN TECHNOI		
Theme 4. Basic	1/2/10	Know basic concepts and	Submitting in eLearn	15
concepts and		determination of database	Laboratory work:	
determination		theory	Forming a technical	
of database		Analyze possibilities and	task for designing a	
theory		application of geodatabase	geospatial database	
		in land management	Individual work:	
			Overview of database	
			design software	
Theme 5.	1/2/0	Know basic stages of	Submitting in eLearn	20
Stages of		database design	Laboratory work:	
database design		Be able to model basic	Entering attribute data.	
		stages of planning,	Part 1	
		conceptual design, logical	Entering attribute data.	
		planning and physical	Part 2	
		planning of database		
		Analyze sources of		
		information and their quality		
		to create database		
Theme 6.	2/0/30	Know database system	Submitting in eLearn	10
Database	_, ,, ,, ,	Concepts and Architecture	Individual work:	
system concepts		Be able to explain Extended	Installation of software	
and architecture		model	for working with	
and architecture		Highlight to classification	databases	
		of database management	Setting up software for	
		systems	working with databases.	
Theme 7. Data	2/2/0	Know basic stages of data	Submitting on eLearn	10
modeling using	41 41 V	modeling using the entity-	Laboratory work:	10
•			l	
the entity-		relationship model Be able to creating		
relationship			conceptual model of the	
model		conceptual data models	database	

	1	T	Г	
		Use ER-diagrams for		
		creating conceptual data		
		models		
Theme 8.	3/4/0	Know basic of relation	Submitting on eLearn	15
Relational		database design	Laboratory work:	
database design		Be able to creating logical	Creating a logical	
		data models	database model. Part 1	
		Use Domains, relationships,	Creating a logical	
		corteges, attributes for	database model. Part 2	
		database design		
Module control			Test	30
Total module 2	8/12/40			100
		TIC MODULE III. DATABA	SE DESIGN	
Theme 9.	2/2/18	Know functional	Submitting on eLearn	30
Normalization	2/2/10	Dependencies and	Laboratory work:	30
		Normalization for	Normalization. Part 1	
as way to control of		Relational Databases.	Individual work:	
database		Be able to fill the	NoSQL database	
			~	
structure.		normalization Liga Functional	technologies	
Normal forms		Use Functional		
1-3		dependencies in		
		normalization		
Theme 10.	2/2/0	Know basic stages of	Submitting on eLearn	20
Normalization.		normalization	Laboratory work:	
The heist		Be able to fill the	Normalization. Part 2	
normal forms		Normalization (next steps)		
Theme 11.	2/2/0	Know basic stages of	Submitting on eLearn	20
Modern		infological design	Submitting on eLearn	
database		Highlight infological design	Laboratory work:	
methodology		for land management	Normalization. Part 3	
infological		_		
design				
Module control	•		Test	30
Total module 3	6/4/20			100
		MODULE IV. OPERATIO	N WITH DATA	
Theme 12.	4/6/20	Know relational Algebra	Submitting on eLearn	25
Relational	4/0/20		Laboratory works:	20
		I and Relational Calcillic		
algenra		and Relational Calculus Re able to realizing physical	•	
algebra		Be able to realizing physical	Creating a physical	
aigeora		Be able to realizing physical data model for land	Creating a physical database model	
aigeora		Be able to realizing physical data model for land management	Creating a physical database model SQL query language.	
aigeora		Be able to realizing physical data model for land management Use MS Access to	Creating a physical database model SQL query language. Part 1	
aigeora		Be able to realizing physical data model for land management Use MS Access to development of forms and	Creating a physical database model SQL query language. Part 1 Individual work:	
aigeora		Be able to realizing physical data model for land management Use MS Access to	Creating a physical database model SQL query language. Part 1 Individual work: Procedural	
aigeora		Be able to realizing physical data model for land management Use MS Access to development of forms and	Creating a physical database model SQL query language. Part 1 Individual work: Procedural programming	
aigeora		Be able to realizing physical data model for land management Use MS Access to development of forms and	Creating a physical database model SQL query language. Part 1 Individual work: Procedural programming languages when	
		Be able to realizing physical data model for land management Use MS Access to development of forms and queries	Creating a physical database model SQL query language. Part 1 Individual work: Procedural programming languages when working with SQL	
Theme 13.	6/7/17	Be able to realizing physical data model for land management Use MS Access to development of forms and queries Know SQL-Schema	Creating a physical database model SQL query language. Part 1 Individual work: Procedural programming languages when working with SQL Submitting on eLearn	45
Theme 13. Operation and	6/7/17	Be able to realizing physical data model for land management Use MS Access to development of forms and queries Know SQL-Schema Definition, Constraints, and	Creating a physical database model SQL query language. Part 1 Individual work: Procedural programming languages when working with SQL Submitting on eLearn Laboratory works:	45
Theme 13.	6/7/17	Be able to realizing physical data model for land management Use MS Access to development of forms and queries Know SQL-Schema Definition, Constraints, and Queries	Creating a physical database model SQL query language. Part 1 Individual work: Procedural programming languages when working with SQL Submitting on eLearn Laboratory works: SQL query language.	45
Theme 13. Operation and	6/7/17	Be able to realizing physical data model for land management Use MS Access to development of forms and queries Know SQL-Schema Definition, Constraints, and	Creating a physical database model SQL query language. Part 1 Individual work: Procedural programming languages when working with SQL Submitting on eLearn Laboratory works:	45
Theme 13. Operation and	6/7/17	Be able to realizing physical data model for land management Use MS Access to development of forms and queries Know SQL-Schema Definition, Constraints, and Queries	Creating a physical database model SQL query language. Part 1 Individual work: Procedural programming languages when working with SQL Submitting on eLearn Laboratory works: SQL query language.	45
Theme 13. Operation and	6/7/17	Be able to realizing physical data model for land management Use MS Access to development of forms and queries Know SQL-Schema Definition, Constraints, and Queries Be able to use GIS and	Creating a physical database model SQL query language. Part 1 Individual work: Procedural programming languages when working with SQL Submitting on eLearn Laboratory works: SQL query language. Part 2	45

		1		
		Use ArcGIS-ArcMap to	Creation of new object	
		combining database and	classes	
		vector topological model	Client-server	
			architecture in the	
			formation of requests to	
			the database	
			Individual works:	
			Functions used in SQL	
			databases	
Module control			Test	30
Total module 4	10/13/25			100
Total 5 semester				70
Final test			Final exam	30
Total course				100

THE COURSE POLICY

Deadline and	Deadlines are defined in e-learn course. Works being submitted	
rearrangement policy:	after deadlines without a reason are evaluated at a lower grade.	
	Rearrangement of module tests takes place with the permission of	
	the lecturer in case of a specific reasons (for example, illness).	
Policy of Academic	Copying other materials during individual works, tests and final	
Plagiarism:	test (including the use of mobile devices) are forbidden. Abstracts	
	must have correct text references to the literature used.	
Policy of Attendance:	: Attendance of lessons is mandatory. According to objective reason	
	(for instance, illness, international internship) training can take place	
	individually (in distance form (on-line) by agreement with the dean	
	of the faculty)	

STUDENT'S RATING SCALE

Student's rating	The Ukrainian National Grades		
points	exams	final tests	
90-100	"Excellent"	passed	
74-89	"Good"		
60-73	"Satisfactory"		
0-59	"Unsatisfactory"	fail	

RECOMMENDED SOURCES OF INFORMATION

- 1. Кохан С.С., Москаленко А.А., Іванюта О.О. Geoinformation systems and databases (a series of lectures) для студентів напряму підготовки «Геодезія, картографія та землеустрій» К.: ЦК «КОМПРИНТ»,2014.
- 2. Кохан С.С., Москаленко А.А., Іванюта О.О. Geoinformation systems and databases (methodological guideline for laboratory classes) для студентів напряму підготовки «Геодезія, картографія та землеустрій» К.: ЦК «КОМПРИНТ», 2014.
 - 3. Allen Taylor. SQL For Dummies, 9th edition. 2020 544p.
- 4. Database Systems: A Practical Approach to Design, Implementation, and Management Third Edition / Thomas Connolly, Carolyn Begg. 2014-1440 p.
- 5. Ekmasri, R. and Navatane, S.B. Fundamentals of Database Systems, 7th ed., Addison-Wesly, Reading, Boston, MA, 2017
- 6. Geographic information systems / M. Van Meirvenne, Svitlana Kokhan, roman Ananchenko, NAUU, 2003
- 7. Геоінформаційні системи і бази даних: монографія / В. І. Зацерковний, В. Г. Бурачек, О. О. Железняк, А. О. Терещенко. Ніжин: НДУ ім. М. Гоголя, 2014. 492 с.

- 8. Інформатика та комп'ютерна техніка: Навч.-метод. посібник / За заг. ред. О.Д. Шарапова. К.: КНЕУ, 2002.
- 9.Sikha Bagui, Richard Earp. Database design using Entity-Relationship Diagrams, CRC Press, RBoca Raton, Florida, 2000.
- 10. A Moskalenko (2021) GIS support of forming spatial decisions on land use.
- Mechanization in agriculture & Conserving of the resources 67 (3), 79-81.
 - 11. ISO/TS 19104:2008 «Geographic information Terminology».
 - 12. ISO 19107:2003 «Geographic information Spatial schema».
 - 13. ISO 19108:2002 «Geographic information Temporal schema»
 - 14. ISO 19110:2005 «Geographic information Methodology for feature cataloguing»
 - 15. ISO 19115 «Geographic information Metadata»
 - 16. eLearn webpage https://elearn.nubip.edu.ua/course/view.php?id=1554
 - 17. eLearn webpage https://elearn.nubip.edu.ua/course/view.php?id=158
- 18. Мулеса О.Ю. Інформаційні системи та реляційні бази даних. Навч. посібник. Електронне видання, 2018. –118 с.
- 19. Геоінформаційні системи (ГІС). Портал знань. Електронні навчальні курси. Дистанційне навчання. Режим доступу http://www.znannya.org/?view=gis
- 20. Стандарти та специфікації відкритого геопросторового консорціуму ОСС, http://www.opengeospatial.org/standards