NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of Geoinformatics and Aerospace Research of the Earth

"CONFIRMED"

Dean of the Faculty of Land management _______ T.O. Ievsiukov «<u>18</u>» <u>May</u> 2023

"APPROVED"

at the meeting of the department of Geoinformatics and Aerospace Research of the Earth Protocol № 11 from 14 April 2023 A.i. head of Department ______O. P. Drozdivskyi

"REVIEWED "

Program Coordinator ______I.P. Kovalchuk.

PROGRAM OF THE COURSE

GEOINFORMATION SYSTEMS AND DATABASES

Specialization	193. Geodesy and Land management
Educational program	"Geodesy and Land Management"
Faculty	Land Management
Developers	Associate prof., PhD, Drozdivskyi O.P.

Associate prof., PhD, Moskalenko A.A.

1. Description of the discipline

Branch of knowledge, direction of educa	tion, specialty, educatior EQL)	al-qualification level		
Educational qualification level	Bac	helor		
Specialty	193 Geodesy and	Land management		
Educational program	Geodesy and L	and management		
Characteris	tics of the course			
Туре	Nori	native		
Total hours	2	210		
ECTS credits		7,0		
Thematic modules 4				
Course project (work) (if exist)				
type of examination	E	kam		
Indicators of the course for ful	l-time and part-time for	ms of study		
	full-time study	by correspondence		
year of training	3			
semester	5			
lectures	30 hours			
practical, seminar	- hours			
laboratory	45 hours			
self-dependent work	135 hours			
individual work	- hours			
amount of inclass work per week, hours				
	5 hours			

2. Purpose, objectives, and competencies of the course

Purpose of the discipline: The course "GIS and Database" provides the opportunity to use in program-technical complex for automated recording, storing, displaying, analyzing, modeling of spatially coordinated information and creating databases.

Objectives of course is forming as the specialist and subsequent practical use of technologies of GIS and databases is the task of study of discipline, in particular, geodatabase knowledge and practical skills of work on a computer in MS Access environment, and basic receptions of development and work, with the databases in MS Access.

Acquisition of competencies:

Integrated competency (IC)

IC. The ability to solve complex specialized problems of geodesy and land management

- general competencies:

GK 01. Ability to learn and master modern knowledge.

GK 02. Ability to apply knowledge in practical situations.

GK 05. Ability to communicate in a foreign language.

GK 06. Ability to use information and communication technologies.

GK 07. Ability to work autonomously.

GK 08. Ability to work in a team.

GK 13. Ability to preserve, multiply moral, cultural, scientific values and achievements of society based on understanding of history, patterns of development of the subject area, its place in the general system of knowledge about nature and society, as well as in the development of society, technology and technology. activities for recreation and healthy living

- professional (special) competencies (PC):

SC 01. Ability to apply fundamental knowledge to analyze phenomena of natural and manmade origin in the performance of professional tasks in the field of geodesy and land management.

SC 03. Ability to apply regulations, regulatory and technical documents, reference materials in professional activities.

SC 04. Ability to choose and use effective methods, technologies and equipment for professional activities in the field of geodesy and land management.

SC 05. Ability to use modern information, technical and technological support to address complex issues of geodesy and land management.

SC 06. Ability to perform remote, ground, field and in-house research, engineering calculations for processing research results, prepare research results, prepare reports in solving problems of geodesy and land management.

SC 07. Ability to collect, update, process, critically evaluate, interpret, store, publish and use geospatial data and metadata on objects of natural and man-made origin.

SC 08. Ability to carry out professional activities in the field of geodesy and land management, taking into account the requirements of professional and civil safety, labor protection, social, environmental, ethical, economic aspects.

SC 09. Ability to use tools, instruments, equipment, facilities in the performance of geodetic and land management tasks.

SC 10. Ability to monitor and evaluate land.

Program learning outcomes (PLO)

LR 1. Fluent in oral and written forms in state and foreign languages on professional matters.

LR 2. Organize and manage the professional development of individuals and groups.

LR 3. Communicate information, ideas, problems, solutions, personal experience and arguments to specialists and non-specialists.

LR 4. To know and apply in professional activity normative-legal acts, normative-technical documents, reference materials in the field of geodesy and land management and related branches.

LR 9. Collect, evaluate, interpret and use geospatial data, metadata on objects of natural and man-made origin, apply statistical methods of their analysis to solve specialized problems in the field of geodesy and land management.

LR 10. Choose and apply tools hardware, hardware and software supplies needed for remote, ground, field and in-house research in the field of geodesy and land management.

LR 11. Organize and execute remote, ground, field and camera works in the field of geodesy and land management, draw up the results of work, prepare relevant reports.

LR 13. Plan and execute geodetic, topographic and cadastral surveys, process the results in geographic information systems.

LR 14. Plan a complex professional activity, develop and implement projects in the field of geodesy and land management under conditions resource and other constraints.

LR 15. Develop and adopt effective decisions on professional activities in the field geodesy and land management, including under conditions uncertainty.

3. Program and structure of the course for: – complete full-time (part-time) form of study;

						Но	ours					
Modules and topics		fu	ll-tin	ne s	tudy			(correspondence			
		total		i	nclud	ing		total		incl	uding	
			1	р	lab	ind	s.w.		1	р	lab	ind
1	2	3	4	5	6	7	8	9	10	11	12	13
SEMANTIC MODULE I. I	Basics o		oinfo	rm	ation	syst		and te	cnolo	gies		
Theme 1. Introduction to	1	16	2		4		10					
Geoinformation science												
Theme 2. Model of spatial data:	2	23	2		6		15					
vector and object data models												
Theme 3. Model of spatial data.	3	21	2		4		15					
Mosaic models												
Total by Semantic module 1		60	6		14		40					
SEMANTIC MOD			lern	tec		ogy o		abase	S		1	1
Theme 4. Basic concepts and	4	14	1		2		10					
determination of database theory												
Theme 5. Stages of database design	4	6	1		4							
Theme 6. Database system concepts	5	30	2				30					
and architecture												
Theme 7. Data modeling using the	6	4	2		2							
entity-relationship model												
Theme 8. Relational database design	7	6	2		4							
Total by Semantic module 1		60	8		12		40					
SEMANTI	C MOD	ULE	III.	Da	tabas	e de	sign	•				
Theme 9. Normalization as way to	8	22	2		2		18					
control of database structure. Normal												
forms 1-3												
Theme 10. Normalization. The heist	9	4	2		2							
normal forms												
Theme 11. Modern database	10	4	2		2							
methodology infological design												
Total by Semantic module 1		30	6		6		18					
SEMANTIC	MODU	LE I	V. O	per	ation	witl	n data	a				
Theme 12. Relational algebra	11-12	21	4	[6		20					
Theme 13. Operation and query	13-15	39	6		7		17					
languages												
Total by Semantic module 2		60	10		13		37					
Усього годин		210	30		45		135					

4. Seminar topics

N⁰	Торіс	Hours

5. Practical class topics

N⁰	Торіс	Hours

6. Laboratory class topics

N⁰	Торіс	Hours
1	Creation of layers of geospatial data	2
2	Determination of the design boundary of the geospatial data base	2
3	Vectorization. Part 1	2
4	Vectorization. Part 2	2
5	Vectorization. Part 3.	2
6	Editing vector layers.	4
7	Forming a technical task for designing a geospatial database	2
8	Entering attribute data. Part 1	2
9	Entering attribute data. Part 2	2
10	Creation of a conceptual model of the database	2
11	Creating a logical database model. Part 1	2
12	Creating a logical database model. Part 2	2
13	Normalization. Part 1	2
14	Normalization. Part 2	2
15	Normalization. Part 3	2
16	Creating a physical database model	4
17	SQL query language. Part 1	2
18	SQL query language. Part 2	2
19	Calculation of secondary attributes of subject area objects. Creation of new	2
	object classes	
20	Client-server architecture in the formation of requests to the database	3
Total		45

7. Independent work topics

N⁰	Торіс			
1	Analysis of publications on the basics of geoinformation systems and	10		
	technologies			
2	Creating geospatial data layers in QGIS	15		
3	Raster base vectorization in QGIS	15		
4	Overview of database design software			
5	Installation of software for working with databases.			
6	Setting up software for working with databases.			
7	NoSQL database technologies			
8	Procedural programming languages when working with SQL			
9	Functions used in SQL databases			
Total		135		

8. Samples of control questions, tests for assessing the level of knowledge acquisition by students.

- 1. What is GIS?
- 2. How to relate information using GIS?
- 3. Define the elements of a GIS.
- 4. What is Raster Method?
- 5. Define GIS and other information systems.
- 6. Define Data Representation and Projection in GIS.
- 7. What is a Database?
- 8. What is a Database Management System (DBMS)?
- 9. Define the classification of databases.

- 10. What is data models?
- 11. What is a Database System Concepts?
- 12. What is a Schema construct?
- 13. Define the Categories of Data Model.
- 14. What is Database languages and interfaces?
- 15. What is a Database design?
- 16. What is a Conceptual Database Design?
- 17. Define the Basic stages of planning of database.
- 18. What is Physical Database Design?
- 19. Define the Steps in Database Design.
- 20. What is a Relational model concepts?
- 21. What is a Constraints?
- 22. Define the Relational model constraints and relational DB schemas.

23. Discuss each of the following concepts in the context of the relational data model: (a) relation; (b) attribute; (c) domain; d) tuple; (e) intension and extension; (f) degree and cardinality.

24. Describe the relationship between mathematical relations and relations in the relational data model.

25. Describe the differences between a relation and a relation schema. What is a relational database schema?

26. Discuss the properties of a relation.

27. Discuss the differences between the candidate keys and the primary key of a relation. Explain what is meant by a foreign key. How do foreign keys of relations relate to candidate keys? Give examples to illustrate your answer.

28. What is data model? What is attribute?

- 29. What are structural constraints?
- 30. What kind of information does the cardinality ratio give us?

31. In how many different ways can two entities be involved in a cardinality relationship? Give examples.

32. What kind of information does the participation constraint give us?

33. Is it always necessary to have cardinality ratios as well as participation constraints in the same ER diagram? Why? Explain.

34. Define the five basic relational algebra operations. Define the Join, Intersection, and Division operations in terms of these five basic operations.

35. Discuss the differences between the five Join operations: Theta join, Equijoin, Natural join, Outer join, and Semi join. Give examples to illustrate your answer.

36. Compare and contrast the tuple relational calculus with domain relational calculus. In particular, discuss the distinction between tuple and domain variables.

37. What is the difference between a procedural and a non-procedural language? How would you classify the relational algebra and relational calculus?

38. What are the advantages and disadvantages of SQL?

39. Explain the function of each of the clauses in the SELECT statement. What restrictions are imposed on these clauses?

40. What restrictions apply to the use of the aggregate functions within the SELECT statement? How do nulls affect the aggregate functions?

- 41. Explain how the GROUP BY clause works.
- 42. What is functional dependency?
- 43. What does the term unnormalized relation refer to?

44. How did the normal forms develop historically from first normal form up to Boyce-Codd normal form?

- 45. Define first normal form.
- 46. Define second normal form.
- 47. Define third normal form.
- 48. Define Boyce-Codd normal form.

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ БІОРЕСУРСІВ І ПРИРОДОКОРИСТУВАННЯ УКРАЇНИ									
ОС «Бакалавр»		федра	Екзаменаційн				ТВЕРДЖУЮ		
спеціальність		орматики	білет №1		Т.в.о. зав.кафедри		1 1		
193.Геодезія та		осмічних					······································		
землеустрій	-	кень Землі	з дисципліни				(підпис)		
землеустри	досліди			«GIS and databases»			вський О.П.		
	2022/20/	24	«OIS and datab	ases»	· · ·				
	2023/202	24 н.р.			« 1	4» I	квітня 2023р.		
Екзаменаційні питання									
1. Define the five basic relational algebra operations. Define the Join, Intersection, and Division									
operations in terms of these five basic operations.									
2. How to relate information using GIS?									
3. Discuss each of the follow	wing cond	cepts in the	context of the rela	ational	data	ı mo	del: (a) relation;		
(b) attribute; (c) domain; d)									
				0			<u> </u>		
Тестові завдання різних ті									
Question # 1. What are compon		Geographic I	formation System?						
1 Hardware			Inormation Oystern:						
2 Software									
3 Requirements									
4 Data									
5 People									
6 Analysis									
Question # 2. Combine correctly	1								
1 Logical Database Design				А	1 st	tep			
2 Requirement Analysis				В	nor				
3 Physical Database design	ו			С	2 st	tep			
4 Prototyping				D	4 st				
5 Conceptual Database De	sign (ER-Di	iagram)		E	3 st	tep			
Question # 2 Which turns an area	ion of volati	ian algebra ia	ahaura an tha figura (
Question # 3. Which type operat	1	Intersection							
	2	Projection	1						
	3	Selection							
	4	Set Differe	nce						
	5	Union							
Question # 4 Combine correctly									
Question # 4. Combine correctly 1 String types				А	DAT	F			
2 String types				B			TER		
3 Numeric types				C	FLO				
4 Numeric types				D	NUN	/IBEF	{		
5 Numeric types				E	LON				
6 Date/time type				F	INTE	EGEF	२		
Question # 5 M/bet is the smalle)						
Question # 5. What is the smalle	est unit of ve	ector formats	<u>{</u>						
2 pixel									
3 lines/arcs/routes									
4 areas/polygons/regions									
5 behavior									
Question # 6. Combine corre									
1 piece of information colle						<u>A</u>	Data element		
2 the smallest unit of infor	mation that	at can be ur	derstood (or perceiv	/ed) by	an	В	Data Model		
end user			o and constraints -	rovided	by a	<u> </u>	Dete		
3 the logical data structure			s and constraints p	ovided	υу	С	Data		
the DBMS to effectively	process d	ิสเส							
Question # 7. Specify the cor		ance of data	hase design proces	\$					
1 First step			iceptual Database D						
2 Second step			sical Database desi						
3 Third step		,	ical Database Desig						
4 Fourth step		5	uirement Analysis	,· ·					

Que	estion # 8. Choose KEY ATTRIBUTE in the figure						
	E A F B C D						
Que	estion # 9. Attributes can be:						
1	Simple						
2	Composite						
3	Single						
4	Foreing						
5	Derived						
Que	estion # 10. What is the smallest unit of raster formats?						
1	pixel						
2	point						
3	lines/arcs/routes						
4	areas/polygons/regions						
5	behavior						

9. Teaching methods

In conducting lectures appropriate to use verbal teaching methods: explanation, narration, discussion, educational debate, with a combination of visual learning methods: illustration, showing.

In carrying out laboratory work should be used such as verbal learning method of instruction on the combination of visual learning methods of illustration and demonstration, the aspect of these studies is that they facilitate communication theory and practice, providing students acquiring skills using standard and specialized software, application of information technology to cadastral and form students' initial skills of research activities. Laboratory work in the laboratory are equipped computers.

Module number	Module name	Theme Lecture	Theme of laboratory lesson	Form of control		
	Basics of Geoinform	Theme 1. Introduction to Geoinformation science	Creation of layers of geospatial data Determination of the design boundary of the geospatial data base	Protection of laboratory		
Ι	ation systems and tecnologie	Theme 2. Model of spatial data: vector and object data models	Vectorization. Part 1 Vectorization. Part 2 Vectorization. Part 3.	work / assessment of modular		
	s	Theme 3. Model of spatial data. Mosaic models	Editing vector layers.	control work		
П	Modern technolog y of databases	Theme 4. Basic concepts and determination of database theory Theme 5. Stages of database design Theme 6. Database system concepts and architecture Theme 7. Data modeling using the entity-relationship model Theme 8. Relational database design	Forming a technical task for designing a geospatial database Entering attribute data. Part 1 Entering attribute data. Part 2 Creation of a conceptual model of the database Creating a logical database model. Part 1 Creating a logical database model. Part 2	Protection of laboratory work / assessment of modular control work		
III	Database design	Theme 9. Normalization as way to control of database structure. Normal forms 1-3 Theme 10. Normalization. The heist normal forms Theme 11. Modern database methodology infological design	Normalization. Part 1 Normalization. Part 2 Normalization. Part 3	Protection of laboratory work / assessment of modular control work		

10. Forms of assessment

IV Operation with data		Theme 12. Relational algebra	Creating a physical database model	Protection
		SQL query language. Part 1	of	
			SQL query language. Part 2	laboratory
	Operation	Theme 13 Operation and query	Calculation of secondary attributes of	work /
	with data		subject area objects. Creation of new	assessment
			object classes	of modular
			Client-server architecture in the formation	control
			of requests to the database	work

The main methods of control of knowledge and skills students have to study the subject "Geoinformation systems and databases" are: oral examination, written and practical test, standardized control in the form of modular test papers, assessment for individual learning task, the final test.

The total value of these methods is to make the best possible to ensure timely and comprehensive feedback between students and teachers, by which establishes how students perceive and learn the material.

The purpose determines the choice of control methods, it should be borne in mind that these methods can be applied in all kinds of control - only complete applications allows regularly and objectively identify the dynamics of the formation of knowledge and skills of students. Each control method has its advantages and disadvantages, scope of application, none of them can not be the only one able to diagnose all aspects of the learning process. So:

- to control the absorption of lectures: oral questioning, written modular test papers, current testing score for an individual learning task, the final test.

- for the monitoring and evaluation of laboratory work: practical test and evaluation of each laboratory work.

11. Distribution of grades received by students

Evaluation of student knowledge is carried out on a 100-point scale and is converted to national grades according to Table 1 "Regulations and Examinations and Credits at NULES of Ukraine" (order of implementation dated 26.04.2023, protocol №10)

Student rating, points	National grade based on exam results			
	Exams	Credits		
90-100	Excellent			
74-89	Good	Passed		
60-73	Satisfactory			
0-59	Unsatisfactory	Not passed		

In order to determine the rating of a student (listener) in the discipline \mathbf{R}_{dis} (up to 100 points), the rating from the exam \mathbf{R}_{ex} (up to 30 points) is added to the rating of a student's academic work \mathbf{R}_{aw} (up to 70 points): $\mathbf{R}_{dis} = \mathbf{R}_{aw} + \mathbf{R}_{ex}$.

	Kating evaluations syst		Modu		substal	Course		
	Type of work	point by	percent by			percent by		
		work	work	module	total	modules	total	
Module # 1	Laboratory work #1	100	10 %	70 %	100	20 %	100	
	Laboratory work #2	100	10 %					
	Laboratory work #3	100	5 %					
	Laboratory work #4	100	10 %					
	Laboratory work #5	100	10 %					
	Laboratory work #6	100	10 %					
	Independent work #1	100	5 %					
	Independent work #2	100	5 %					
	Independent work #3	100	5 %					
	Module test / control	100	30 %	30 %				
Module # 2	Laboratory work #7	100	10 %	70 %	100	20 %		
	Laboratory work #8	100	10 %					
	Laboratory work #9	100	10 %					
	Laboratory work #10	100	10 %					
	Laboratory work #11	100	5 %					
	Laboratory work #12	100	10 %					
	Independent work #4	100	5 %					
	Independent work #5	100	5 %					
	Independent work #6	100	5 %					
	Module test / control	100	30 %	30 %				
Module # 3	Laboratory work #13	100	20 %	70 %	100	10 %		
	Laboratory work #14	100	20 %					
	Laboratory work #15	100	20 %					
	Independent work #7	100	10 %					
	Module test / control	100	30 %	30 %				
	Laboratory work #16	100	10 %	70 %	100	20 %		
Module # 4	Laboratory work #17	100	10 %					
	Laboratory work #18	100	15 %					
	Laboratory work #19	100	10 %					
	Laboratory work #20	100	15 %					
	Independent work #8	100	5 %					
	Independent work #9	100	5 %					
	Module test / control	100	30 %					
	Final test	100				30 %		

Rating evaluations system of educational work for the substance modules

12. Educational and methodological support

1. Кохан С.С., Москаленко А.А., Іванюта О.О. Geoinformation systems and databases (a series of lectures) для студентів напряму підготовки «Геодезія, картографія та землеустрій» - К.: ЦК «КОМПРИНТ»,2014.

2. Кохан С.С., Москаленко А.А., Іванюта О.О. Geoinformation systems and databases (methodological guideline for laboratory classes) для студентів напряму підготовки «Геодезія, картографія та землеустрій» - К.: ЦК «КОМПРИНТ», 2014.

13. Recommended literature Recommended sources of information Basic:

1. Allen Taylor. SQL For Dummies, 9th edition. 2020 – 544p.

2. Database Systems: A Practical Approach to Design, Implementation, and Management Third Edition / Thomas Connolly, Carolyn Begg. 2014 – 1440 p.

3. Ekmasri, R. and Navatane, S.B. Fundamentals of Database Systems, 7th ed., Addison-Wesly, Reading, Boston, MA, 2017

4. Geographic information systems / M. Van Meirvenne, Svitlana Kokhan, roman Ananchenko, NAUU, 2003

5. Геоінформаційні системи і бази даних: монографія / В. І. Зацерковний, В. Г. Бурачек, О. О. Железняк, А. О. Терещенко. – Ніжин: НДУ ім. М. Гоголя, 2014. – 492 с.

Additional:

6. Інформатика та комп'ютерна техніка: Навч.-метод. посібник / За заг. ред. О.Д. Шарапова. – К.: КНЕУ, 2002.

7.Sikha Bagui, Richard Earp. Database design using Entity-Relationship Diagrams, CRC Press, RBoca Raton, Florida, 2000.

8. A Moskalenko (2021) GIS support of forming spatial decisions on land use. Mechanization in agriculture & Conserving of the resources 67 (3), 79-81.

9. ISO/TS 19104:2008 «Geographic information – Terminology».

10. ISO 19107:2003 «Geographic information - Spatial schema».

11. ISO 19108:2002 «Geographic information - Temporal schema»

12. ISO 19110:2005 «Geographic information - Methodology for feature cataloguing»

13. ISO 19115 «Geographic information - Metadata»

14. Information resources:

1. eLearn webpage - <u>https://elearn.nubip.edu.ua/course/view.php?id=1554</u>

2. eLearn webpage - <u>https://elearn.nubip.edu.ua/course/view.php?id=158</u>

3. Мулеса О.Ю. Інформаційні системи та реляційні бази даних. Навч. посібник. – Електронне видання, 2018. –118 с.

4. Геоінформаційні системи (ГІС). Портал знань. Електронні навчальні курси. Дистанційне навчання. Режим доступу - <u>http://www.znannya.org/?view=gis</u>

5. Стандарти та специфікації відкритого геопросторового консорціуму OGC, <u>http://www.opengeospatial.org/standards</u>