Appx 2

to the Order of March 23, 2023 № 244

NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of Genetics, Breeding and Seed Rising named after Professor Zelensky M.O.

CONFIRMED" Dean of the Agrobiological Faculty OAKYINT O. Tonkha Protocol № dated 197005 2023 p.

"APPROVED"

at the meeting of the department of Genetics, Breeding and Seed Rising named after Professor Zelensky M.O Protocol N<u>10 "11" 05</u> 2023 p. Head of Department O. Makarchuk

"REVIEWED"

Program Coordinator EP «Agronomy» Program Coordinator ______M_O. Tonkha

PROGRAM OF THE COURSE

GENETICS

Specialization	201 Agronomy	
Educational program _	Agronomy	
Faculty (Institute)	Agrobiological	
Developers: Zaika Ye	.V., Candidate of Agri	cultural Sciences, senior lecturer

Kyiv – 2023 p.

1. Description of the course Genetics

Field of knowledge, specialization, educational program, educational degree Educational degree Bachelor's Specialization 201 Agronomy Educational program Agronomy Characteristics of the course Type Compulsory Total number of hours 120 Number of ECTS credits 4 3 Number of content modules Course project (work) (if applicable) -Form of assessment Exam Indicators of the course for full-time and part-time forms of study Full-time form of study Part-time form of study Course (year of study) 2 _ 1 Semester -Lecture classes 30 hr. _ Practical, seminar classes 30 hr. _ Laboratory classes _ Self-study 60 hr. _ Individual assignments _ Number of weekly classroom hours for the 4 hr. full-time form of study

2. Purpose, objectives, and competencies of the course

Purpose the formation of students' modern ideas about the laws of heredity and variability at different levels of the organization of living matter, ways of their practical use in breeding and seed production.

Objectives expansion of knowledge about the main modern genetic concepts and processes, which are necessary for practical selection work and scientific work in research institutions, formation of skills that allow obtaining theoretical and practical knowledge in the analysis of genetic tasks and problems.

Acquisition of competencies:

Integrated competency (IC):

the ability to solve complex specialized tasks and practical problems in agronomy, which involves the application of theories and methods of the relevant science and is characterized by complexity and compliance with zonal conditions.

General competencies (GC):

GC 3. Ability to abstract thinking, analysis and synthesis;

GC 6. Knowledge and understanding of the subject area and understanding of professional activity;

GC 8. Skills of performing safe activities.

Professional (special) competencies (PC):

PC 3. Knowledge and understanding of basic biological and agrotechnological concepts, rules and theories related to the cultivation of agricultural and other plants;

PC 5. The ability to evaluate, interpret and synthesize theoretical information and practical, production and research data in the fields of agricultural production;

PC 6. Ability to apply methods of statistical processing of experimental data related to technological and selection processes in agronomy.

Program learning outcomes (PLO):

PLO 3. Discuss and explain the basics that contribute to the development of general political culture and activity, the formation of national dignity and patriotism, socialization of the individual, inclination to ethical values, knowledge of economics and law. (GC 3, GC 6)

PLO 5. Conduct a literature search in Ukrainian and foreign languages and analyze the received information. (GC 6)

PLO 6. Demonstrate knowledge and understanding of fundamental disciplines to the extent necessary to possess relevant skills in the field of agronomy. (GC 6)

PLO 7. Demonstrate knowledge and understanding of the principles of physiological processes of plants to the extent necessary for mastering fundamental and professional disciplines. (PC 5)

PLO 8. To have statistical methods of data processing in agronomy. (PC 3)

PLO 11. Initiate prompt and expedient solutions to production problems in accordance with zonal conditions. (GC8, PC 6)

PLO 12. To design and organize the technological processes of growing seed material of agricultural crops in accordance with the established requirements. (GC 8, PC 6)

PLO 16. Organize effective and safe working conditions. (PC 3)

3. Program and structure of the course for:

– complete full-time (part-time) form of study;

- shortened full-time (part-time) form of study.

	Number of hours												
Names of content	Full-time form						Part-time form						
modules and topics	weeks	total			inclu	ling		tot including			ing		
modules and topies			1	р	lab	ind	self	al	1	р	lab	in	sel
												d	f
1	2	3	4	5	6	7	8	9	1	1	12	13	14
									0	1			
Content Module 1.													
LECTURE 1.	1	13	2	2			5						

	1	1	1	, ,					1	1			
Subject, methods													
and history of													
genetics													
LECTURE 2 - 3.	2,3	13	4	4			5						
Molecular genetic													
bases of heredity													
LECTURE 4-5.	4,5	13	4	4			5						
Genes and													
chromosomes. DNA													
damage and repair													
LECTURE 6-7.	6,7	13	4	4			5						
Regularities of traits													
inheritance													
Total for content	7	48	14	14			20						
module 1													
		•	Cor	itent	Mod	ule 2.		•	•	•		•	
LECTURE 8-9.	8,9	18	4	4			10						
Variability in													
genetics													
LECTURE 10.	10	14	2	2			10						
Genetics of	_						-						
Populations													
Total for content	10	32	6	6			20						
module 2													
			Cor	tent	Mod	ule 3.	1						
LECTURE 11-12.	11,	13	4	4			5						
Inbreeding and	12	_					_						
heterosis in plant													
breeding													
LECTURE 13.	13	9	2	2			5						
Polyploidy and		-					-						
remote hybridization													
LECTURE 14.	14	9	2	2			5						
Genetics plant	1.	-	-	-			5						
immunity													
LECTURE 1.	15	9	2	2			5						
Genetic engineering	10	-	-	-			5						
Total for content	15	40	10	10			20						
module 3	15	40	10	10			20						
Course project													
(work) on													
			-	_	-		_		-	-	-		_
(if included in the curriculum)													
Total hours		120	30	30			60						

4. Seminar topics

N⁰	Topic title	Number of hours
1	not provided	

5. Practical class topics

N⁰	Topic title	Number of hours
1	Morphological identification of chromosomes. The study of	2
	karyotypes of rural and urban plants. cultures	
2	Nucleic acid structure, DNA replication	2
3	Mechanisms of implementation of genetic information	2
4	Mechanisms of regulation of gene activity	2
5	Solving problems in molecular genetics	2
6	Distribution of nuclear hereditary information in the cell.	2
	Mitosis.	
7	The main regularities of the distribution of genetic material	2
	during meiosis	
8	Inheritance of traits in mono- and dihybrid crossing	2
9	Inheritance of traits in the interaction of non-allelic genes.	2
	Complementary interaction of genes	
10	Inheritance of traits in the interaction of non-allelic genes.	2
	Epistatic interaction of genes (epistasis)	
11	Inheritance of traits in the polymeric type of gene interaction	2
12	Linked inheritance of genes	4
13	Genetic structure of populations	2
14	Male sterility and its use in heterosis plant selection.	2
15	Morphological identification of chromosomes. The study of	
	karyotypes of rural and urban plants. cultures	

6. Laboratory class topics

№	Topic title	Number of hours
1	not provided	

7. Independent work topics

Nº	Topic title	Number of hours
	Genetics, the history of its development and its place in the	2
1	system of natural sciences.	2
2	Cell organelles and their importance in heredity.	2
3	Morphological and molecular structure of chromosomes.	2
4	Concept of karyotype. Chromosome numbers of plants.	2
5	Mitosis, endomitosis, polythenia.	2
6	Meiosis.	4
7	Micro- and macrogametogenesis in flowering plants.	2
	DNA carrier of hereditary information (direct and indirect	2
8	evidence). The structure of DNA and its replication.	2

9	Structure and functions of RNA.	2
	Genetic code of heredity. Explain the essence of the	2
10	universality of the code and the meaning of stop codons.	2
	Protein synthesis in the cell. Relationship of DNA with	2
11	messenger, transport and ribosomal RNA.	Z
	Modern ideas about the structure of a gene: promoter,	
12	operator, content part, terminator.	2
	The structure of prokaryotic and eukaryotic genes. What is	2
13	exon, intron. Alternative splicing.	L
	Laws of inheritance. Laws of uniformity of hybrids of the	
	first generation, splitting of hybrids of the second	2
14	generation.	
	Polyhybrid crossing. The law of independent inheritance of	
	traits. Determine the formulas of cleavage by genotype and	2
15	phenotype.	
	Reversible crosses. Use of analyzing crosses in genetic	2
16	analysis.	Z
	Inheritance of traits in the interaction of non-allelic genes.	
	Complementarity, epistasis. Inheritance of traits during	2
17	polymerization.	
18	Chromosomal theory of heredity.	2
19	Inheritance of traits controlled by linked genes.	2
20	Cytoplasmic heredity, its molecular bases, features.	2
21	Modification variability.	2
	Mutations, classify mutations according to their different	2
22	types.	2
23	Physical mutagens and their effect on living organisms.	2
24	Chemical mutagens and their effect on living organisms.	2
25	Polyploids, their classification and genetic features.	4
26	Inbreeding and heterosis, their genetic essence, features.	2
27	Ontogeny, its main stages.	2
28	Genetics of populations. Hardy-Weinberg law.	2
29	Genetics of resistance against pathogens and pests.	2
	Genetics, the history of its development and its place in the	2
30	system of natural sciences.	2

8. Samples of control questions, tests for assessing the level of knowledge acquisition by students.

Modul I

Variant I

Task	1. Pleas	e describe DNA, its structure and functions? Wh	at is th	he significance of DNA for living organisms?
TTTC What	CTAAC amino	One of the DNA strands included in the GGCTAAATTTCGA acid sequence is encoded in this chain? How ma tino acids) if radiation knocked out the fourth nuc	ny cha	anges will occur in the polypeptide chain (orde
		Arrange in accordance with the nucleic acids of	Qu	uestion 6. DNA replication is a process:
the te A.		louble-stranded spiral	1.	Formation of an identical DNA molecule
DN/		ingle-chain molecule	2.	
		contains a thymine nucleotide	3.	
B.		piral chains are antiparallel	4.	
RN/		There are several types	5.	-
		s in the nucleus		Doubling of DIVA su ands
	tion 2	. Which of the scientists and when	Qı	uestion 7. Replication of DNA are:
	IA repli	ly confirmed the semi-conservative mechanism ication?	1.	both chains
1.	1943,.	J. Watson and F. Crick	2.	lagging one - in fragments.
2.		Rosalind Franklin	3.	fragmentary on both chains
3.	-	Meselson, Stahl		
4.		J. Watson and F. Crick		
5.		G. Meller, F. Crick		
		select all types of RNA that are in the cell:	_	uestion 8. Arrange sequentially the processes o
	nsport	1. Transport	tra	ansfer of genetic information to eukaryotes:
2. Nu	clear	2. Nuclear	1.	Splicing
3. Ribos	omal	3. Ribosomal	2.	Intron cutting
4. Bas	ic	4. Basic	3.	Transcription on mRNA
5. Inform	nation	5. Information	4.	Translation in the formation of the ribosoma complex
Quest	tion 4. T	The diploid organism has:	5.	Amino acid transport
1	Cells	with half a set of chromosomes	Qu	uestion 9. Select all the basic properties of th
2	Cells	with a double set of chromosomes	ge	enetic code:
3	Cells	with a triple set of chromosomes	1.	Triplet
		s DNA polymerase able to start the replication	2.	
pro ce	ss on it:	s own?	3.	
1.	Yes			Non-overlapping
-				Universal
2.	No			uestion 10. Genetic code is a way to record formation about the structure of (insert word

9. Teaching methods.

The study of the discipline involves the complex use of various methods of organization and implementation of educational and cognitive activities of students and methods of stimulating and motivating their learning, which contributes to the development of the creative foundations of the personality of the future specialist, taking into account the individual characteristics of the participants in the educational process and communication. To form professional competencies, innovative teaching methods are widely implemented, which provide a comprehensive update of the traditional pedagogical process, namely, computer support of the educational process, the introduction of interactive teaching methods (elaboration of discussion questions, etc.).

10.Forms of assessment

Writing tests, oral interviews, conducting discussions, listening to reports, analyzing independent work.

11.Distribution of grades received by students.

Evaluation of student knowledge is carried out on a 100-point scale and is converted to national grades according to Table 1 "Regulations and Examinations and Credits at NULES of Ukraine" (order of implementation dated 26.04.2023, protocol №10)

Student nating points	National grade based on exam results							
Student rating, points -	Exams	Credits						
90-100	Excellent							
74-89	Good	Passed						
60-73	Satisfactory							
0-59	Unsatisfactory	Not passed						

In order to determine the rating of a student (listener) in the discipline \mathbf{R}_{dis} (up to 100 points), the rating from the exam \mathbf{R}_{ex} (up to 30 points) is added to the rating of a student's academic work \mathbf{R}_{aw} (up to 70 points): $\mathbf{R}_{dis} = \mathbf{R}_{aw} + \mathbf{R}_{ex}$.

12. Educational and methodological support

Electronic training course «Genetics». Zaika Ye.V., Shpakovich I.V. https://elearn.nubip.edu.ua/course/view.php?id=4045

13. Recommended sources of information

1. Brooker R. Genetics. Analisys and Principles. Second Edition. – McGraw-Hill, 2005. – 842.

2. Anthony J.F. Griffiths, Susan R. Wessler, Richard C. Lewontin, Sean B. Carroll: Introduction to Genetic Analysis (Introduction to Genetic Analysis Ninth (9th) Edition, 2007. – 800 p.

3. Michael Goldberg, Janice Fischer, Leroy Hood, Leland Hartwell, Charles (Chip) Aquadro, Lee Silver and Ann E. Reynolds Genetics: From Genes to Genomes, 7th Edition, 2021.

4. Acquaah, George.Principles of plant genetics and breeding / George Acquaah. — 2nd ed., 2012, 732 p.