<u>ì</u>	COURSE SYLLABUS « <u>INORGANIC AND ANALYTICAL CHEMISTRY</u> »
	Degree of higher education - Bachelor Specialization <u>202 Plant protection and Quarantine</u>
	Educational programme«202 Plant protection and Quarantine» Academic year <u>1</u> , semester <u>1</u> Form of study <u>full-time</u> (full-time) Number of ECTS credits <u>4</u>
	Language of instruction English _(Ukrainian, English, German)
Lecturer of the course	Ph. D. LavrikRuslan
Contact information of the	_ ruslanlavrik@nubip.edu.ua
lecturer (e-mail)	
Course page on eLearn	https://elearn.nubip.edu.ua/course/view.php?id=1185

COURSE DESCRIPTION

(up to 1000 printed characters)

Inorganic and AnalyticalChemistry is a fundamental discipline, obligatory for teaching students received the specialties in the field of Plant protection and Quarantine of Higher Educational Agrarian Universities of III-IV accreditation levels. This program was developed on the base of Educational Program of Subject "Inorganic and Analytical Chemistry" for specialty (field) "Plant protection and Quarantine".

In modern society Inorganic and Analytical Chemistry is powerful source of productive powers. In particular, intensification of scientific and technological progress in agricultural and food production requires a rational use of chemical science achievement, intensification of ecological monitoring of economic activity.

So, the main goal of presented discipline is the study of properties, preparation methods and use of chemical elements and their compounds, acquiring the skills for execution.

The main objectives of Inorganic chemistry are:

- Study the bases for subjects as the part of fundamental training for specialties in the field of Agronomy;

- Creation of a scientific basis for study of professional-oriented and special subjects (Organic Chemistry, Biochemistry, Phytopathology, etc.);

- Assimilation of general ideas of chemical experiments using semi-micromethod.

In the result of study the student should:

To know: the classification of inorganic substances and ideas about genetic relationships between them; modern ideas on atomic structure and molecules; nature and characteristics of chemical bonds; general laws of chemical kinetics and chemical equilibrium; nature of solution formation and processes in solutions (electrolytic dissociation, hydrolysis); basic ideas of RedOx processes; nature, structure, chemical properties of coordination (complex) compounds: structure of electronic shells, chemical properties, methods of isolation, biogeochemical functions, using in human life and, in particular, in agricultural production, macro-, micronutrients, and toxic chemical elements and their compounds; chemical models of biological processes; to receive the knowledge about classical and modern methods of chemical analyses, formation of skills of chemical analysis using the modeling objects, which will be increased on the real objects of Plant protection and Quarantine fields (plants, fertilizers, water, pesticides, foods etc.): Competencies of the educational programme:

Integrative competency (IC): Ability to solve complex specialized problems and practical problems of professional activity with protection and quarantine of plants and apply theoretical knowledge and methods of phytosanitary monitoring, review, analysis, expertise, which are characterized complexity and uncertainty of conditions______

General competencies (GC):

- 1. Ability to abstract thinking, analysis and synthesis
- 2. Ability to apply knowledge in practical situations_____
- Professional (special) competencies (PC):_

Program learning outcomes (PLO) of the educational programme: _

4_Have knowledge of the fundamental sections of higher mathematics, biophysics, chemistry (analytical, organic, inorganic, physical and colloid), botany andagrozoology to the extent necessary for understanding the processes of the specialty protection and plant quarantine

COURSE STRUCTURE

Торіс	Hours (lecture/labora tory, practical/ self)	Learning outcomes	Tasks	Assessment
	Мо	dule1. Theoretical Foundations of Inorganic Ch	emistry.	
Topic#1.Introduction.GeneralNotions,StoichiometricalLaws andTypes of Chemical Reactions.	1/8/0	Understand general notions of chemistry and laws of Stoicheometry. Analise and differentiate various types of chemical reactions. Express chemical reaction through a chemical equation. Provide examples for different types of chemical reactions. Predict products of chemical reactions.	Laboratory training CLASSIFICATION OF INORGANIC SUBSTANCES. Control test "CLASSIFICATION OF INORGANIC SUBSTANCES".	5 30
Topic # 2. Atomic structure of chemical elements.	3/6/0	Understand the historic development of atomic models, from Democritus to Bohr. Construct and use graphic descriptions of an atom consisting of protons, electrons and neutrons. Explain atomic properties using models of atomic structure that show locations and/or energies of sub-atomic particles.	LaboratorytrainingATOMICSTRUCTURE.CHEMICALBONDINGControltest"ATOMICSTRUCTURE.ELECTRONCONFIGURATIONS OF ATOMS.CHEMICAL BONDING"	5 10
Topic # 3. The Periodic Law and Periodic Table of chemical elements.	2/-/5	<i>Arrange</i> elements according to their atomic number. <i>Understand</i> that electron arrangement in an atom is related to its position in the periodic table and that number of electron shells is determined by period number or name of shells: K, L,M,N <i>Explain</i> reactivity of elements as a consequence of the electron arrangement in the outer shell:	Independent Study for Module#1	13

		<i>Recall</i> the name and location of the following		
		groups in the periodic table: alkali metals,		
		alkaline-earth metals, halogens and noble gases		
		Group elements according to physical and		
		chemical properties;		
		<i>Connect</i> properties of elements to their position in		
		the periodic table.		
Topic # 4. Chemical bonding	4/4/0	<i>Use</i> the octet rule to explain the formation of ions	Laboratory training. THEORY OF	5
and structure of molecules.		and covalent bond formation.	ELECTROLYTIC	
Chemical kinetics and		Understand that ionic bond is the electrostatic	DISSOCIATION	
equilibrium.		attraction between ions of opposite charge;		
		Being able to draw a schematic representation of		
		a covalent bond, showing one or more pairs of		12
		electrons between the atoms.	Control test THEORY OF	
		Give examples of molecules formed through	ELECTROLYTIC DISSOCIATION!"	
		covalent, ionic, metallic bond(s);	DISSOCIATION	
		<i>Describe</i> a chemical reaction in terms of energy		
		and mass conservation;		
		Discuss and explain activation energy as the		
		process of breaking and forming bonds;		
		<i>Explain</i> the difference between an exothermic and		
		an endothermic reaction.		
		<i>Discuss and being able to predict</i> how the factors		
		(concentration, temperature and active surface)		
		affect the rate of reaction.		
Total hours (module 1)	10/18/5			
Total points of lab work for	r the first mo	dule		80
Control test for Module #1				20
Total points for module # 1				100
Module 2. Theoretical Foundations of Inorganic Chemistry.				
Theme 5. Solutions, their	2/0/5	Define what a solution is. Illustrate the different	Independent Study for Module # 2	13
nature and properties.		properties (conductivity) between molecular and		

		ionic solutions. <i>Define</i> concentration		
		(mass/volume).		
Theme 6. Electrolytes and	2/6/0	Define acids, and bases and salts in terms of	Laboratory training	5
reactions in their solutions.		Electrolytic dissociation. <i>Describe</i> the meaning of	OXIDATION-REDUCTION	
		weak and strong electrolytes. Write the	<u>REACTIONS</u>	
		dissociation reactions in molecular, ionic and net-		
		ionic form.	Control Test #1 "OXIDATION-	10
			REDUCTION REACTIONS "	
				10
			Control Test #2 "OXIDATION-	12
			REDUCTION REACTIONS"	_
Theme 7. Hydrolysis of salts.	2/6/0	<i>Explain</i> the pH-scale as a measure of the	Laboratory training.	5
Ionic product of water. pH		concentration of H^+ ions in aqueous solutions.	HYDROLYSIS OF SALTS	
concept.		Link pH with the acidic, neutral or basic		
		properties of aqueous solutions. Use acid/base		
		indicators, universal indicator (liquid or paper)	Control test "HYDROLYSIS OF	20
		and pH meter to determine the pH of aqueous	<u>SALTS"</u>	
		solutions. Explain the impact of dilution on the		
		pH-values. Write the hydrolysis reactions in		
		molecular, ionic and net-ionic form.		
Theme 8.Coordination	2/5/0	Identify properties and characteristics of	Laboratory training #5.	5
compounds.		coordination compounds such as oxidation	COMPLEX (COORDINATION)	
		number, coordination number, and so on. Give	<u>COMPOUNDS.</u>	
		proper naming and chemical formula of		
		coordination compounds. <i>Identify</i> the structure of		
		coordination compounds based on their	Control Test "COMPLEX	
		coordination numbers. Determine isomers (both	(COORDINATION)	10
		optical and structural) of coordination	COMPOUNDS"	
		compounds.		
Total hours (module 2)	8/17/5			
Total points of lab work for	the module	Nº2		80
Control test for Module #2			20	
Total points for module # 2				100

Module 3. Redox reactions. Chemistry of the elements.				
Theme 9. Redox reactions.	2/0/5	<i>Define</i> redox reactions as the loss and gain of electrons. <i>Illustrate</i> the redox reaction as the exchange of electrons at atomic level. <i>Define</i> oxidation as a loss of electrons and reduction as a gain of electrons. Understand that reduction and oxidation occur simultaneously. <i>Assign</i> oxidation numbers. <i>Identify</i> the oxidizing agent and the reducing agent. <i>Write</i> half-equations and balance the complete reaction using half-equations. <i>Compare</i> the reactivity of common metals (activity series) <i>Predict</i> the reaction products using the activity series.	Independent Study for Module # 3	10
Theme 10. Elements of VII- A sub-group.	2/4/0	<i>Describe</i> the halogens properties, chlorine, bromine and iodine in Group VII-A, as a collection of diatomic non-metals showing a trend in color and density and state their reaction with other halide ions. <i>Identify</i> trends in Groups, given information about the elements concerned.	Laboratory training. THE FIRSTGROUP OF CATIONSLaboratorytraining.THESECOND GROUP OF CATIONS	10 10
Theme 11. Elements of VI-A sub-group.	2/6/0	<i>Describe</i> the chalcogens properties, oxigen, sulfur and selenium in Group VI-A. <i>Predict</i> the properties of the elements in Group VI-A, given data where appropriate. <i>Identify</i> trends in Groups, given information about the elements concerned.	Laboratory training. THE THIRD GROUP OF CATIONS	10
Theme 12. Elements of V-A sub-group.	2/6/0	Describe the pnictogens properties, nitrogen, phosphorus, and arsenic in Group V-A. Predict the properties of the elements in Group V-A, given data where appropriate. Identify trends in Groups, given information about the elements concerned.	Laboratorytraining.THEFOURTH GROUP OF CATIONSControl Test "Analysis of Cations"	10 30
Total hours (module 3)	8/16/5			

Total points of lab work for the module №3			80		
Control test for Module #3			20		
Total points for module # 3			100		
			Module 4. Analytical Chemistry		
Theme 13. analysis	Qualitative	2/12/0	<i>Predict</i> why cations of the I st and anions of the 3 ^d analytical groups have no group reagent. <i>Perform</i> characteristic reactions of cations and anions. <i>Determine</i> of elements or ions which are part of	Laboratory training. THE FIRST GROUP OF ANIONS	5
			investigated substance.	SECOND GROUP OF ANIONS Laboratory training. THE THIRD	5
				GROUP OF ANIONS Control Test "Anions. ANALYSIS	15
				OF UNKNOWN SUBSTANCE"	
Theme 14. analysis	Quantitative	2/12/5	<i>Determine</i> of the amount or percentage of one or more compounds of a sample. <i>Know</i> and use variety methods for quantitative analyses.	Laboratorytraining#15.Determination of alkali solutionnormalityControlTest"Units ofConcentration"Independent Study # 2 for Module4	10 20 20
Total hours (m	odule 4)	4/24/5			
Total course he	ours	30/75/15			
Total points of lab work for the module Nº4			80		
Control test for Module #4			20		
Total points for module # 4			100		
Educatiolnal work			70		
Exam			30		
Total for course			100		

ASSESSMENT POLICY

Policy regarding	Assignments submitted after the deadline without valid reasons		
deadlines and resits:	will be graded lower. Resitting of modules will be allowed with the		
	permission from the lecturer and in the presence of valid reasons		
	(e.g. medical reasons).		
Academic honesty	Cheating during tests and exams is strictly prohibited (including		
policy:	the use of mobile devices). Coursework and research papers must		
	contain correct citations for all sources used.		
Attendance policy:	Class attendance is mandatory. In case of objective reasons (such		
	as illness or international internships), individual learning may be		
	allowed (in online format by the approval of the dean of the		
	faculty).		

SCALE OF ASSESSMENT OF STUDENT KNOWLEDGE

Student rating,	National grade based on exam results		
points	exams	credits	
90-100	excellent	passed	
74-89	good		
60-73	satisfactory		
0-59	unsatisfactory	not passed	

Technology and methodological requirements

- Methodological guidelines "Inorganic and analytical chemistry for bachelor students' specialty 202 – "Plant Protection". Voitenko L.V., Kopilevich V.A., Prokopchuk N.M. Lavryk R.V. – Куіv: Експо-Друк., 2023. - 213 р.
- 2. Laboratory manual on Inorganic and Analytical Chemistry. Savchenko D.A., Voytenko L.V., Prokopchuk N.M.- Kyiv: Експо-Друк., 2020. 217 р.

Required and recommended literature

- General and Inorganic Chemistry: textbook / V.O. Kalibabchuk, V.V. Ohurtsov, V.I. Halynska et al.; edited by V.O. Kalibabchuk. — Kyiv: AUS Medicine Publishing, 2019. — 456 p.
- 2. Introduction in General, Organic and <u>Biochemistry</u>, 7th Edition, by Morris Hein, Leo R. Best, Scott Pattison and Susan Arena, Brooks/Cole Publishing Co., 2021, 872 pp.
- 3. Inorganic Chemistry, second edition, D. F. Shriver, P. W. Atkins, and C.H. Langford; W. H. Freeman and Co., New York, 2004, 913 pp.

Supplemental

- 1. Concepts and Models of Inorganic Chemistry, third edition, B. E. Douglas, D. H. McDaniel and J. J. Alexander; John Wiley & Sons, Inc., New York, 2014. 993 p.
- 2. In<u>organic Chemistry</u>, A Modern Introduction, T. Moeller; John Wiley & Sons, New York, 2008. 846 p.

3. Chemistry of the Elements, N. N. Greenwoo and A. Earnshaw; Pergamon Press, New York, 2004. 1542 pp.

IT resources

- 1. Introduction to inorganic chemistry: <u>https://bit.ly/3IAEddt</u>;
- 2. Khan Academy about Chemical Reactions: <u>https://bit.ly/3IDtn6u</u>
- 3. Analytical chemistry. Laboratory Manual: <u>https://bit.ly/3KHh63A</u>
- 4. Virtual lab for Chemistry <u>https://chemcollective.org/vlabs</u>
- 5. Periodic Videos by Tedex platform <u>https://ed.ted.com/periodic-videos</u>
- 6. Modern dynamic Periodic Table of Elements <u>http://bit.ly/3Z56Bf5</u>