NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF **UKRAINE** AGROBIOLOGICAL FACULTY DEPARTMENT OF ANALYTICAL AND BIOINORGANIC CHEMISTRY & WATER QUALITY "APPROVED" Dean of Faculty of Plant Protection, Biotechnology and Ecology, Dr.Agr.Sc., Prof. Y.V.KOLOMIEC 05 2024 "REWIED AND APPROVED" At the meeting of the department of Analytical and Bioinorganic Chemistry & Water Quality Protocol#11"23 "05 2024 Head of the Department Dr.Chem.Sc., Prof. V.A. Kopilevich "REWIED"

CURRICULUM OF ACADEMIC DISCIPLINE

INORGANC AND ANALYTICAL CHEMISTRY

Field of knowledge <u>20 - Agricultural sciences and food</u>
Specialty –<u>202"Plant protection and Quarantine"</u>
Education program <u>Plant protection and Quarantine</u>
Faculty of the <u>Plant Protection</u>, <u>Biotechnology and Ecology</u>
Author :<u>Assoc. Prof. R. Lavryk</u>, <u>Ph.D in Chemistry</u>

Description of the discipline INORGANIC AND ANALYTICAL CHEMISTRY

Field of knowledge, direction, specialty, education and qualification level						
Educational and Qualification level	bachelor					
qualification						
Specialty	202 "Plant protection	on and Quarantine"				
Branch of knowledge	20 - Agricultural s	sciences and food				
Characteris	tics of training programme					
Type	ordii	nary				
The total number of academic hours	120					
Number of ECTS credits allocated	4					
Number of modules	<u>4</u>					
Forms of control	Exam					
Indicators of academic discipline for	or full-time and part-time fo	orms of training course				
	Full-time	Part-time				
Year (course)	1	-				
Semester	1	-				
Number of lectures	45	-				
Number of seminars, practical classes		-				
Laboratory sessions (activities)	60	-				
Independent study	15	-				
Number of weekly in-class academic	8	-				
hours for full-time forms of training	1					

1. Aim, objectives, competenteces and expected learning outcomes of the discipline

Aim is to build a good foundation in chemical knowledgethat allows to make qualitative and quantitative inquiries into topics in natural science.

Learning **Objectives are**:

- name ionic and covalent compounds;
- know the properties of acids, bases and salts;
- apply stoichiometry in determining quantityrelationships for compounds and chemical reactions;
- demonstrate an understanding of chemical equilibrium;
- understand the structure of matter on atomic and molecular levels and its correlation to chemical and physical properties;
- describe the concentration of a solution in the way that is most appropriate for a particular problem or application;
- use laboratory equipment and make observations to identify chemical and physical changes.

Competencies of the educational programme:

Integrative competency (IC):Ability to solve complex specialized problems and practical problems of professional activity with protection and quarantine of plantsand apply theoretical knowledge and methods of phytosanitary monitoring, review, analysis, expertise, which are characterized complexity and uncertainty of conditions___
General competencies (GC):

- GC1. Ability to abstract thinking, analysis and synthesis
- GC2. Ability to apply knowledge in practical situations___
- Professional (special) competencies (PC):__

Program learning outcomes (ELO) of the educational programme: _

- ELO_4_Have knowledge of the fundamental sections of higher mathematics, biophysics,
- chemistry (analytical, organic, inorganic, physical and colloid), botany andagrozoology to the extent necessary for understanding the processes of the specialty protection and plant quarantine

2. Programme and structure of the discipline for full-time form of training

	Number of hours											
Themes and		ı	Full-				Part-time					
modules to be	Total		including			Tota						
covered		lect.	pract.	lab.	ind.	ind.	1	lect	pract	lab.	ind.	ind.
1	2	3	4	5	6	7	8	9	10	1 1	1 2	1 3
Theme module 1. Theoretical foundations of inorganic chemistry												
Theme 1.	6	2		4								
Introduction.												
General laws of												
stoichiometryand												
types of												
chemicalreactions.												
Theme 2.Atomic	6	4		2								
structure of												
chemical elements.												
Theme 3.The	8	3		5		5						
Periodic Law and						3						
Periodic Table of												
chemical elements.												
Theme4.Chemical	6	2		4								
bonding and												
structure of												
molecules.												
Theme5. Chemical	2	2		-								
kinetics and												
equilibrium.												
Total with theme	38	13		15		5						
module 1.	1	1 2 0	1	47.								
	ne modu		<u>olution</u>		natu	re and	l prope	ertie	S	1		1
Theme1. Solutions,	6	3		2								
their nature and												
properties.		2		4				-				
Theme2.	6	3		4								
Electrolytes and												
reactions in their						3						
solutions.	0	4		4					-			
Theme 3.	8	4		4								
Hydrolysis of salts. Theme	6	2		4					-			
1 neme 4.Coordination	0			4								
compounds. Total with theme	36	12		14		3			-			
module 2.	30	14		14		3						
	e modul	e3 D 4	dov ra	actions	Char	 mictr	v of Ala	mer	te			
Theme module3. Redox reactions. Chemistry of elements												

	T		,	1	,		1			
Theme1.Redox	8	3		4						
reactions.										
Theme 2.Elements	7	3		2						
of VII-A sub-										
group.										
Theme 3.Elements	2	2		2						
of VI-A sub-				2		2				
group.	-			2						
Theme4.Elements	7	2		3						
of V-A sub-group.										
Theme6.General	8	2		2						
properties of										
metals.										
Total with theme	34	12		13		2				
module3.										
	The	me mo	dule 4.	Analy	tical C	hemi	stry			
Theme1.Analytical	4	2		2						
chemistry as a										
science										
Theme2.	7	3		6		5				
Qualitative analysis										
Theme3.Quantitativ	11	3		10						
e analysis										
Total with theme	27	8		18		5				
module4.		0		10						
Totally	120	45		60		15				
	140	TJ	1	UU	1	13	ı	ı	I	

3. Topic of laboratory classses

#	Name of theme	Number of
		hours
1	General rules of activity in chemical laboratory. Rules of laboratory	4
	research. Control test – level of the secondary school knowledge.	
2	Principles of classification of inorganic compounds and these ranges.	2
3	Studying of the chemical properties of different types of inorganic compounds.	4
	Control test – classification and properties of inorganic compounds.	
4	Rules of composition of electronic formulas of the chemical elements,	4
	determination of their possible valence and oxidation numbers.	
5	Types of chemical bonding and structure of molecules of acids, bases,	2
	salts, oxides.	
	Control test – compilation of electronic formulas and determination of	
	types of chemical bonding.	
6	Solutions, their nature and properties. Units of concentration.	2
7	The rules of the chemical reactions compilation in the solutions of	4
	electrolytes.	
	Control test: ionic reactions.	
8	The rules of the chemical reactions compilation of the salts hydrolysis	2
	and determination of pH.	

	Lecture's control test: hydrolysis of salts.	
9	Rules of compilation of red-ox reactions. Control test.	4
10	Rules of compilation of coordinative compounds formulas and reactions	2
	with their participation. Studying of their properties. Control test.	
11	Halogens and their compounds on the example of chlorine and bromine.	4
12	Oxygen, sulfur and their compounds.	4
13	Nitrogen, phosphorus and their compounds. Control Test.	2
14	Chemical properties of the same metals of main and secondary sub-	4
	groups. ControlTest. The first analytical group of cations	
15	The second analytical group of cations The third analytical group of	3
	cations	
16	The forth analytical group of cations. The first analytical group of	4
	anions. The second analytical group of anions.	
17	The third analytical group of anions. Analysis of unknown substances	4
18	Determination of alkali solution normality. Complexometric titration	4
	.Permanganatometric determination of Iron(II) content in Mohr's salt.	
	Totally	60

4. Topic for self-study

#	Name of theme	Number of hours
1	Molar ratios, molar masses, balancing and interpreting equations, conversions between grams and moles. The electronic arrangements and dots-and-crosses diagrams. Atomic number as the basis for the Periodic Law. Long form periodic table.	
2	Lewis Structures. Exceptions to Regular Lewis Structures - resonance structures. Catalysts and catalysis. Dynamic equilibria. Colligative properties of solution.	3
3	Dilute concentrations units: ppm, ppb,ppt. Use of Hydrolysis in the "Real World". Lewis Acid-Lewis base approach to bonding in complexes. Half-reactions. Nernst Equation.	2
4	Metal halides. Interhalogen compounds. Allotropes of Oxygen and Sulfur. Occurrence of pnictogens. Properties of alkali and alkali-earth	5
	Totally	15

5. Tools for assessing expected learn outcomes:

- Exam;
- Module test:
- Referates;
- Laboratory works;
- Abstracts.
- Presentation of laboratory works.

6. Teaching Methods

- Verbal methods (lecture, interview)
- Practical methods (Laboratory works)
- Visual methods(demonstration methods)
- Independent work (task performance)

7. Assessment methods

Forms of control:

- -exam
- -test
- -control work
- -module test
- -laboratory work.

8. Distribution of points received by students

Distribution of points received by students. The student's knowledge is assessed on a 100-point scale and translated into national assessments according to the table. 1 "Regulations on examinations and assessments at NUBiP of Ukraine" (order on implementation dated 26.04.2023, protocol No. 10)

The assessment of students' knowledge and skills is conducted by means of a 100-point scale and is converted into national grades according to Table 1 of the current *Exam and Credit Regulations at NULES of Ukraine*.

Student's rating,	National grading of exams and credits			
points	exams	credits		
90-100	excellent			
74-89	good	pass		
60-73	satisfactorily			
0-59	unsatisfactorily	fail		

To determine a student's rating in the discipline R_{DIS} (up to 100 points),

the received assessment rating R_A (up to 30 points) is added to the academic performance raiting R_{AP} (up to 70 points): $R_{DIS} = R_{AP} + R_A$.

9. Technology and methodological requirements

- 1. Inorganic Chemistry. Manual. Voytenko L., Kopilevich V., Prokopchuk N. Kyiv: NUBiP of Ukraine., 2019. 148 p.
- 2. Workbook on Inorganic Chemistry. Voytenko L., Kopilevich V., Prokopchuk N. Kyiv: NUBiP of Ukraine., 2019. 85 p.
- 3. LABORATORY MANUAL ON GENERAL AND INORGANIC CHEMISTRY FOR BACHELOR STUDENTS SPECIALTY 162 "BIOTECHNOLOGY AND BIOENGINEERING Voytenko L., Kopilevich V., Prokopchuk N. Kyiv: NUBiP of Ukraine., 2024. 203 p.
- 4. https://elearn.nubip.edu.ua/course/view.php?id=1185

10. Recommended sources of information

- 1. Introduction in General, Organic and Biochemistry, 7th Edition, by Morris Hein, Leo R. Best, Scott Pattison and Susan Arena, Brooks/Cole Publishing Co., 2020, 872 pp.
- 2. Inorganic an analytical Chemistry, second edition, D. F. Shriver, P. W. Atkins, and C.H. Langford; W. H. Freeman and Co., New York, 2023, 913 pp.
- 3. https://elearn.nubip.edu.ua/course/view.php?id=1185