	Syllabus « Geoinformation systems and databases » Educational-qualification level - Bachelor Specialty <u>193</u> . Geodesy and Land Management Educational program «Geodesy and Land management» Year of study 3, semester 5 Mode of study: full ECTS hours – 7,0 Language: English	
Instructor	Antonina Moskalenko, PhD, Associate Professor	
Contacts	Department Geoinformatics and Aerospace Research of the Earth	
	Build#6, room.129	
(e-mail)	moskalenko_a@nubip.edu.ua	
eLearn webpage	https://elearn.nubip.edu.ua/course/view.php?id=158	

Course Overview:

The course "Geoinformation systems and databases" consists of topics related to fundamentals of GIS technologies and concepts of database theory; their architecture and stages of construction. The features of the hierarchical, network, relational and object-oriented database models are considered. The design of relational databases, relational algebra, functional dependencies and normalization, the basic elements of SQL and the use of ER-diagrams and UML for building database structures are studied.

Students get practical experience in designing conceptual, logical and physical data models, attribute input into database, constructing spatial components of the vector-based topological model and queries application to the spatial components.

Aim of the discipline: The course "GIS and Database" provides the opportunity to use in program-technical complex for automated recording, storing, displaying, analyzing, modeling of spatially coordinated information and creating databases.

Tasks of discipline is forming as the specialist and subsequent practical use of technologies of GIS and databases is the task of study of discipline, in particular, geodatabase knowledge and practical skills of work on a computer in MS Access environment, and basic receptions of development and work, with the databases in MS Access.

The discipline provides the formation of a number of competencies:

- general competencies:

GC06 - Ability to use information and communication technologies.

- special competencies:

SC03. Ability to apply regulations, regulatory and technical documents, reference materials in professional activities.

SC04. Ability to select and use effective methods, technologies and equipment for professional activities in the field of geodesy and land management.

SC05. Ability to use modern information, technical and technological support to solve complex issues of geodesy and land management.

SC07. Ability to collect, update, process, critically evaluate, interpret, store, publish and use geospatial data and metadata on objects of natural and man-made origin.

learning results:

LR4. To know and apply in professional activity normative-legal acts, normative-technical documents, reference materials in the field of geodesy and land management and related branches.

LR5. Apply conceptual knowledge of natural and socio-economic sciences in performing tasks of geodesy and land management.

LR9. Collect, evaluate, interpret and use geospatial data, metadata on objects of natural and man-made origin, apply statistical methods of their analysis to solve specialized problems in the field of geodesy and land management.

LR14. Plan complex professional activities, develop and implement projects in the field of geodesy and land management under resource and other constraints.

		the course Program and Stru		
Торіс	Hrs (lectures /laboratory/ individual)	Education result	Tasks	Grade
	. ,	5 semestr		
SEMANTIC	MODULE	I. INTRODUCTION AND C	ONCEPTUAL MODELI	ING
Theme1.Introductionto	2/4/20	Know basics of the	Submitting in eLearn	30
Introduction to Geoinformation		geoinformation systems Understand the	Laboratory works: Interface of the	
science		possibilities of organization	geoinformation system.	
		of Information in a GIS	Basics of geospatial	
		Recognize differences	data sets Individual work:	
		between types of Information in a GIS	Individual work: Industrial GIS	
Theme 2.	2/6/10	Know the objects used in	Submitting in eLearn	25
Model of spatial	2/0/10	digital plans and maps	Laboratory works:	25
data: vector and		Be able to ArcGIS-ArcMap	Creating vector data	
object data		tools for creating vector	sets	
models		topological model	Individual work:	
models			Vector data model	
Theme 3.	2/4/10	Know data formats and be	Submitting in eLearn	25
Model of spatial	_, ., _ 0	able to use them correctly	Laboratory works:	
data. Mosaic		Apply ArcGIS-ArcMap	Editing graphical	
models		tools for editing vector	mistakes.	
		topological model	Individual work:	
			Mosaic data model	
Module control			Test	20
Total module 1	6/14/40			100
SEMAN'	TIC MODU	LE II. MODERN TECHNOI	LOGY OF DATABASES	
Theme 4. Basic	1/2/10	Know basic concepts and	Submitting in eLearn	20
concepts and		determination of database	Laboratory work:	
determination		theory	Adding of attribute data	
of database		Analyze possibilities and	Individual work:	
theory		application of geodatabase	Methods of data capture	
		in land management	for a database	
Theme 5.	1/2/5	Know basic stages of	Submitting in eLearn	15
Stages of		database design	Laboratory work:	
database design		Be able to model basic	Formation of technical	
		stages of planning,	specifications database	
		conceptual design, logical	design.	
		planning and physical	Individual work:	
		planning of database	Distributed database	
		Analyze sources of		
		information and their quality		
		to create database		
Theme 6.	2/0/10	Know database system	Submitting in eLearn	10
Database		Concepts and Architecture		

The course Program and Structure

system concepts and architecture		Be able to explain Extended model Highlight to classification of database management systems	Individualwork:Extendedmodel«Entity – relationship»	
Theme 7. Data modeling using the entity- relationship model	2/4/10	Know basic stages of data modeling using the entity- relationship model Be able to creating conceptual data models Use ER-diagrams for creating conceptual data models	Submitting on eLearn Laboratory work: Creating conceptual model DB Individual work: Data modeling	20
Theme 8. Relational database design	3/4/5	 Know basic of relation database design Be able to creating logical data models Use Domains, relationships, corteges, attributes for database design 	Submitting on eLearnLaboratorywork:Creating logical modelDBIndividualwork:Relationaldatabasedesign	15
Module control			Test	30
Total module 2	8/12/40			100
		FIC MODULE III. DATABA		
Theme 9. Normalization as way to control of database structure. Normal forms 1-3	2/2/5	KnowfunctionalDependenciesandNormalizationforRelational Databases.forBe able tofillthenormalizationsetUseFunctionaldependenciesinnormalizationset	Submitting on eLearn Laboratory work: Normalization Individual work: Functional dependencies	25
Theme 10. Normalization. The heist normal forms	2/2/5	Know basic stages of normalization Be able to fill the Normalization (next steps)	Submitting on eLearnLaboratorywork:Normalization(nextsteps)Individualwork:Transitivedependencies	25
Theme 11. Modern database methodology infological design	2/0/10	Know basic stages of infological design Highlight infological design for land management	Submitting on eLearn Individual work: Methodology infological design	20
Module control	,		Test	30
Total module 3	6/4/20			100
		C MODULE IV. OPERATIO		40
Theme 12. Relational algebra	2/6/15	Know relational Algebra and Relational Calculus Be able to realizing physical data model for land management	Submitting on eLearnLaboratoryworks:CreatingphysicalmodelDB.EnteringdataintoDataBaseIndividualwork:	40

Theme 13. Operation and query languages	2/7/10	Use MS Access to development of forms and queries Know SQL-Schema Definition, Constraints, and Queries Be able to use GIS and databases queries for land management Use ArcGIS-ArcMap to combining database and vector topological model	Relational algebra and calculus Submitting on eLearn Laboratory works: Export data into GIS. Combining database and vector topological model. Simple queries and GIS Individual works: Language SQL: determination of data/ Query processing	40
Module control			Test	20
Total module 4	8/13/25			100
Total 5 semester				70
Final test			Final exam	30
Total course				100

THE COURSE POLICY

Deadline and	Deadlines are defined in e-learn course. Works being submitted	
rearrangement policy:	after deadlines without a reason are evaluated at a lower grade.	
	Rearrangement of module tests takes place with the permission of	
	the lecturer in case of a specific reasons (for example, illness).	
Policy of Academic	Copying other materials during individual works, tests and final	
Plagiarism:	test (including the use of mobile devices) are forbidden. Abstracts	
	must have correct text references to the literature used.	
Policy of Attendance:	Attendance of lessons is mandatory. According to objective reasons	
	(for instance, illness, international internship) training can take place	
	individually (in distance form (on-line) by agreement with the dean	
	of the faculty)	

Student's rating	The Ukrainian National Grades		
points	exams	final tests	
90-100	"Excellent"	passed	
74-89	"Good"		
60-73	"Satisfactory"		
0-59	"Unsatisfactory"	fail	

STUDENT'S RATING SCALE