NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of General Ecology, Radiobiology and Safety of Life Activity

"APPROVED"

The Faculty of Veterinary Medicine "_____ 2025

CURRICULUM OF ACADEMIC DISCIPLINE VETERINARY RADIOBIOLOGY

Field of knowledge <u>21 Veterinary Science</u> Specialty <u>211 Veterinary Medicine</u> Academic programme <u>"Veterinary Medicine"</u> Faculty: <u>Veterinary Medicine</u> Author(s): <u>docent Illienko V.V., PhD on biology sciences</u>

Description of the discipline Veterinary Radiobiology

Veterinary radiobiology has become a mandatory component of educational programs in agricultural universities after the Chernobyl radiation accident in 1986, when 12 regions (47 districts) of Ukraine were contaminated, more than 300 thousand hectares of agricultural production stopped, more than 100 thousand cattle were sent for forced slaughter and about 10 thousand tons of raw meat are buried as radioactive waste. Veterinary radiobiology provides basic concepts on the effects of ionizing radiation on various species of farm animals, classification of radiobiological effects, protection of animals from IP, obtaining good quality livestock products in radionuclide-contaminated areas, and studies the patterns of behavior of radionuclides in farm animals. The study of the discipline "Veterinary Radiobiology" provides the acquisition of such general competencies as the ability to use modern knowledge about the patterns of ionizing radiation on the body of farm animals to effectively manage livestock production processes in contaminated areas.

Academic degree, specialty, academic programme			
Academic degree	master's		
Specialty	211 Veterinary Medicine		
Academic programme	" Veterinary Medicine "		
Characte	eristics of the discipline		
Туре	comp	ulsory	
Total number of hours	1	20	
Number of ECTS credits		4	
Number of modules		3	
Course project (work) (if any)			
Form of assessment	ex	am	
Indica for full-time and pa	tors of the discipline art-time forms of university stu	ıdy	
	Full-time	Part-time	
Year of study	2		
Semester	4		
Lectures	15 hours	hours	
Practical classes and seminars		hours	
Laboratory classes	30 hours	hours	
Self-study	75 hours	hours	
Number of hours per week for full-time students	3 hours		

1. Aim, objectives, competences and expected learning outcomes of the discipline The aim of studying the discipline "Veterinary Radiobiology" is to train a specialist who will be able to highly assess the radiation situation and develop measures to ensure the safety of animal husbandry in contaminated areas and obtaining "clean" from radionuclides livestock products.

Acquisition of competences:

Integral competence (IC): ability to solve complex tasks and problems in the field of veterinary medicine, which involves research and/or innovation and is characterised by uncertainty of conditions and requirements.

General competencies (GC):

GC03. Knowledge and understanding of the subject area and profession.

GC09. Ability to make informed decisions.

Special (professional) competences (SC):

SC16. Ability to protect the environment from contamination by livestock waste, as well as materials and veterinary products.

SC21. Ability to develop and implement measures to manage and prevent radiation damage and contamination of domestic animals and cenosis in general with radionuclides.

Expected Learning Outcomes (ELO):

ELO10. Propose and use appropriate innovative methods and approaches to solving problem situations of professional origin.

ELO21. Develop measures to prevent radiation damage and contamination of livestock and cenosis with radionuclides.

Number of hours full-time part-time Modules including weeks including total total and topics 1 lab ind 1 lab ind p s.st s.s p t 5 7 9 10 11 12 1 2 3 4 6 8 13 14 Module 1. Introduction. Physical foundations of radiobiology Topic 1. Introduction 1 8 1 2 5 Radiobiology and radioecology as a complete science Topic 2. Radioactivity, 2 16 2 4 10 types of ionising radiation and their dosimetry Topic 3. Sources of 3 8 2 1 5 ionising radiation on the Earth Topic 4. Physical 4 8 1 2 5 basis of interaction ionising radiation with substances of cells of living organisms Total for module 1 40 5 10 25 Module 2. Effects of ionising radiation on living organisms Topic 1. Biological 5 14 2 10 2 effects of ionising radiation in plants and animals Topic 2. Radiosensitivity 8 1 2 5 6 of plants, animals and other organisms Topic 3. Anti-radiation 7 9 1 2 6 biological protection and radiosensitisation Topic 4. Methods of 8-9 9 1 4 4

2. Programme and structure of the discipline

protecting agricultural animals											
from the effects of ionising radiations											
Total for module 2		40	5		10		25				
Мо	dule 3. N	Aigratio	on of r	adion	uclides	s in the	e envir	onment	t		
		in the	enviro	onmen	t. Con	ductin	g				
lives	tock far	ming in	areas	conta	minat	ed wit	h radio	onuclid	es		
Topic 1 Atmosphere and	10	6		erritor	ies		5				
soil as initial links in the	10	0	1				3				
migration of radionuclides											
in the natural environment											
Topic 2. Uptake of	10-12	10	1		4		5				
radionuclides from	10 12	10	-				2				
soil into plants and											
animals,											
biological effect											
of incorporated											
radionuclides											
Topic 3. Measures to	13	8	1		2		5				
reduction											
of radionuclides intake in											
products livestock					_						
Topic 4. Cleaning of	14	8	1		2		5				
products											
livestock products from											
hy magne of primary											
technological											
processing											
Topic 5. The use of	15	8	1		2		5				
ionising	10	Ũ	-		-		5				
radiation in the biological											
and natural sciences											
human activity and											
method of isotopic											
indicators in biology											
and ecology.											
Total for module 3		40	5		10		25				
Total hours		120	15		30		75				

3. Topics of lections

N⁰	Topic title	Hours
1	Introduction. Radiobiology and radioecology as a complete science	1
2	Radioactivity, types of ionizing radiation and their dosimetry	2
3	Sources of ionising radiation on the Earth	1
4	Physical basis of interaction ionising radiation with substances of cells of living	1
	organisms	
5	Biological effects of ionising radiation in plants and animals	2
6	Radiosensitivity of of plants, animals and other organisms	1
7	Anti-radiation biological protection and radiosensitisation	1
8	Methods of protecting agricultural animals from the effects of ionising radiations	1

9	Atmosphere and soil as initial links in the migration of radionuclides in the natural	1
	environment	
10	Uptake of radionuclides from soil into plants and animals, biological effect of	1
	incorporated radionuclides	
11	Measures to reduction of radionuclides intake in products livestock	1
12	Cleaning of products livestock products from radionuclides by means of primary	1
	technological processing	
13	The use of ionising radiation in the biological and natural sciences human activity and	1
	method of isotopic indicators in biology and ecology	

4. Topics of laboratory classes

N⁰	Topic title	Hours
1	Radiation safety standards and sanitary rules for working with ionising	4
	radiation sources	
2	Classification of dosimetric monitoring devices and their components.	2
	Preparation for operation of general	
	general dosimetric monitoring devices - radiometers and roentgenometers	
3	Calculations of absorbed and equivalent doses of external and internal	2
	exposure of the body of humans and animals at different levels of	
	contamination of the territory by radionuclides	
4	Determination of total β -activity of various environmental objects and	2
	agricultural products by express methods	
5	Types of ionising radiation doses, their measurement units, calculation and	2
	application	
6	Determination of γ -radiation dose rate on the ground, indoors, from control	2
	sources and compliance of the results with radiation safety standards (NRBU-	
	97)	
7	Determination of the density of ¹³⁷ Cs contamination of the territory	2
8	Determination of ¹³⁷ Cs in water, soil, feed, livestock, bee and fish products	4
	using modern radiometric equipment and compliance of the research results	
	with the requirements of current regulatory documents	
9	In vivo determination of ¹³⁷ Cs content in animals and humans	2
10	Forecast of contamination levels of crop and livestock products with main	8
	dose-forming radionuclides	

5. Topics for self-study

N₂	Topic title	Hours
1	Radiation safety standards and sanitary rules for working with ionising	5
	radiation sources in Ukraine and in developed countries	
2	The history of nuclear weapons and its consequences for the radiation state of	10
	the environment.	
	Dynamics of changes in the radiation state after nuclear tests	
3	Calculations of absorbed and equivalent doses of external and internal radiation in real conditions of radioactive contamination of the territory after the Chornobyl accident	10
4	Determination of total β -activity of various environmental objects and agricultural products by express methods	10
5	Why there are several types of radiation doses in radiobiology	5
6		10
	Determination of γ -radiation dose rate on the ground, indoors, from control sources and compliance of the results with radiation safety standards	
7	Methods for determining the density of contamination of the territory with artificial radionuclides	10
8	Peculiarities of determination of ¹³⁷ Cs in water, soil, feed, livestock, bee and	10
	fish products using modern radiometric installations and compliance of	
	research results with the requirements of current regulatory documents	
9	In vivo determination of ¹³⁷ Cs content in animals and humans	5
10	Forecast of contamination levels of crop and livestock products with main dose-forming radionuclides	10

6. Tools for assessing expected learning outcomes:

- oral or written questioning;
- interview;
- testing;
- defence of laboratory, calculation/graphic works, projects;
- peer assessment, self-assessment.

7. Teaching methods:

- the method of problem-based learning;
- method of practice-oriented learning;
- case method;
- method of learning through research;
- method of educational discussions and debates;
- method of teamwork, brainstorming.

8. Assessment of learning outcomes:

The assessment of students' knowledge and skills is conducted by means of a 100-point scale and is converted into national grades of the current Exam and Credit Regulations at NULES of Ukraine.

Type of learning activity	Learning outcomes	Assessment
Module 1. Introduct	ion. Physical foundations of radiobiology	
Lecture 1 Introduction. Radiobiology	Know the basic concepts of the nature of ionizing	5
and radioecology as a complete science	radiation, the structure of the atom and its basic	
Laboratory class 1. Radiation safety	physical characteristics. The structure of	5
standards and sanitary rules for working	electronic shells and the nucleus of the atom.	
with ionising radiation sources	Nuclear forces, mass defect. The phenomenon of	
Self-study 1.	radioactivity, sources of ionizing radiation of	5
Lecture 2 Radioactivity, types of ionizing	natural and artificial origin. Types of ionizing	5
radiation and their dosimetry	radiation - electromagnetic and corpuscular, their	
Laboratory class 2. Classification of	physical characteristics. Types of nuclear	10
dosimetric monitoring devices and their	transformations and the law of radioactive decay.	
components. Preparation for operation of	Be able to characterize the phenomena of	
general dosimetric monitoring devices -	radioactivity, use units of measurement of	
radiometers and roentgenometers	radioactivity, determine the specific activity.	
Self-study 2.		5
Lecture 3 Sources of ionising radiation on		5
the Earth		
Laboratory class 3. Calculations of		10
absorbed and equivalent doses of external		
and internal exposure of the body of		
humans and animals at different levels of		
contamination of the territory by		
radionuclides		
Self-study 3.		5
Lecture 4 Physical basis of interaction		5
ionising radiation with substances of cells		
of living organisms		
Laboratory class 4. Determination of total		5
β-activity of various environmental objects		
and agricultural products by express		
methods	 	_
Self-study 4.		5

8.1. Distribution of points received by students

Module test 1		30
Total for Module 1		100
Module 2 Effects	of ionising radiation on living organisms	100
Lecture 5 Biological effects of ionising	Know the patterns of biological action of	5
radiation in plants and animals	ionizing radiation on biological structures and	5
Laboratory class 5 Types of ionising	the body as a whole, classification of	5
radiation doses, their measurement units.	radiobiological effects and their dependence on	U
calculation and application	the dose of ionizing radiation, modern ideas	
Self-study 5.	about the causes of different radiosensitivity of	5
Lecture 6 Radiosensitivity of of plants.	organisms, theoretical foundations of radiation	5
animals and other organisms	sickness in farm animals and methods of	
Laboratory class 6. Determination of γ -	farming.	10
radiation dose rate on the ground, indoors,	Understand the patterns of formation of absorbed	
from control sources and compliance of	doses of ionizing radiation in the body of animals	
the results with radiation safety standards	and individual organs.	
(NRBU-97)	Be able to calculate radiation doses and predict	
Self-study 6.	the severity of radiation damage to animals.	5
	Use laboratory equipment to determine dose	
Lecture 7 Anti-radiation biological	criteria	5
protection and radiosensitisation	-	
Laboratory class 7. Determination of the 1377		10
density of ¹³ /Cs contamination of the		
territory	-	-
Self-study /.		5
Lecture 8 Methods of protecting		5
agricultural animals from the effects of		U
ionising radiations		
Laboratory class 8. Determination of ¹³⁷ Cs		5
in water, soil, feed, livestock, bee and fish		
products using modern radiometric		
equipment and compliance of the research		
results with the requirements of current		
regulatory documents		
Self-study 8.		5
Module test 2.		30
Total for Module 2		100
Module 3. Migration of radionucli	des in the environment in the environment. Co	nducting
livestock farming in area	as contaminated with radionuclides territories	C
Lecture 9 Atmosphere and soil as initial	To know the patterns of behavior of the main	5
links in the migration of radionuclides in	dose-forming radionuclides in agricultural	
the natural environment	ecosystems and ways of their entry into the body	
Laboratory class 9. In vivo determination	of farm animals, the danger of incorporated	10
of ¹³⁷ Cs content in animals and humans	radionuclides.	
Self-study 9.	Understand the hazard criteria for incorporated	10
Lecture 10 Uptake of radionuclides from	radionuclides and the principles of	5
soil into plants and animals, biological	standardization of levels of radioactive	
effect of incorporated radionuclides	Pa able to determine the presence of radioactive	4.0
Laboratory class 10. Forecast of	contamination of form animals and livesteels	10
contamination levels of crop and livestock	products	
products with main dose-forming	Producis. Use laboratory equipment modern laboratory	
radionuclides	devices to study the content of radionuclides in	10
Sen-stuav 10.	actices to study the content of fudiofidendes III	10

	animals and products of animal origin.	
Lecture 11 Measures to reduction of	To know the basics of radiation protection from	10
radionuclides intake in products livestock	ionizing radiation, the main directions of	
Lecture 12 Cleaning of products livestock	introduction of radiation technologies in	5
products from radionuclides by means of	agricultural production, to have an idea of the	
primary technological processing	mechanisms and basic advantages of radiation	
Lecture 13 The use of ionising radiation in	technologies in terms of their application in	5
the biological and natural sciences human	animal husbandry and veterinary medicine.	
activity and method of isotopic indicators	Understand the main processes occurring under	
in biology and ecology	the influence of radiation and the registration of	
	radioactive indicators in biological objects.	
	Use laboratory equipment for registration of	
	radioactive indicators.	
Module test 3.		30
Total for Module 3		100
Educational work	(M1 +	- M2+M3)/3*0,7
	≤ 70	
Examination	30	
Total for the course	$(Academic work + examination) \le 100$	

8.2. Scale for assessing students 'knowledge and skills

Student's rating, points	National grading of exams and credits
90-100	excellent
74-89	good
60-73	satisfactorily
0-59	unsatisfactorily

8.3. Assessment policy

Deadlines and exam retaking policy:	Works that are submitted late without valid reasons will be assessed with a lower grade. Module tests may be retaken with the permission of the lecturer if there are valid reasons (e.g., a sick leave).
Academic integrity policy:	Cheating during tests and exams is prohibited (including using mobile devices). Term papers and essays must have correct references to the literature used
Attendance policy:	Attendance is compulsory. For good reasons (e.g., illness, international internship), training can take place individually (online by the faculty dean's consent)

9. Teaching and learning aids

1. <u>https://elearn.nubip.edu.ua/course/view.php?id=667</u> Veterinary Radiobiology

2. Gudkov I. M. Radiobiology and Radioecology (in English): Textbook for students of higher educational institutions. Вид. 2-е, переробл. та допов. К.: НУБіП України, Житомирська політехніка, 2019. 384 с.

3. Gudkov I. M. Radiobiology and Radioecology / I. M. Gudkov, M. M. Vinichuk. – K. : NAUU, 2006. – 295 p.

4. Choppin G. R., Liljenzin J.-O., Rydberg J. Radiochemistry and nuclear chemistry. 4th ed., Academic Press, 2013, 858 p.

10. Recommended sources of information

- 1. Chernobyl: 30 Years of Radioactive Contamination Legacy. Report. Lead writer and coordination of report: Prof. Valerii Kashparov, Kyiv, 2016, 59 p.
- 2. Climate change and nuclear power. International Atomic Energy Agency, VIENNA, 2005, 112 p.
- 3. Natural and induced radioactivity in food. International Atomic Energy Agency, VIENNA, 2002, 136 p.
- 4. Gleyzes, C., Tellier, S. & Astruc, M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trac-Trends in Analytical Chemistry, 21 (6-7), 2002, p. 451-467.
- 5. International Atomic Energy Agency Safety Standards Series No. RS-G-1.8, Environmental and Source Monitoring for Purposes of Radiation Protection for protecting people and the environment, Safety Guide, IAEA, VIENNA, 2005, p.119.
- 6. Radiation biology: a handbook for teachers and students. International Atomic Energy Agency, VIENNA, 2010, 150 p.
- 7. Гродзинський Д.М. Радіобіологія. К.: Либідь, 2000. 448 с.
- 8. Гудков І.М. Радіобіологія: підручник. Херсон : Олді-Плюс, 2016. 504 с.
- 9. Гудков І.М., Гайченко В.А., Кашпаров В.О. Сільськогосподарська радіоекологія: підручник. К.: Ліра-К, 2017. 268 с.
- 10. Кіцно В.О., Поліщук С.В., Гудков І.М. Основи радіобіології та радіоекології. К.: Хай-Тек Прес, 2008 (2009). 316 с.
- 11.НРБУ-97/2000.
- 12. Хомутінін Ю.В., Кашпаров В.О., Жебровська К.І. Оптимізація відбору і вимірювань проб при радіоекологічному моніторингу, Монографія. К.: Український науково–дослідний інститут сільськогосподарської радіології, 2002, 160 с.
- 13. Паренюк О.Ю., Іллєнко В.В., Гудков І.М. Мікрофлора забруднених радіонуклідами грунтів. К.: Вид-во НУБіП України, 2018. 198 с.
- 14.Бондар О.І., Фещенко В.П., Гудков І.М., Гуреля В.В. Радіоекологічний термінологічий словник (україно-англійсько-російський). Житомир: ПП Експертний центр Укреколбіокон, 2018. 254 с.
- 15. Якість грунту. Методи відбору проб грунту для радіаційного контролю, СОУ 74.14-37-425:2006.
- 16. Якість грунту. Визначення щільності забруднення території сільськогосподарських угідь радіонуклідами техногенного походження, СОУ 74.14-37-424:2006
- 17. Якість продукції рослинництва. Методи відбору проб для радіаційного контролю, СОУ 01.1-37-426:2006.
- 18. Якість продукції тваринництва. методи відбору проб для радіаційного контролю, СОУ 01.2-37-427:2006.
- 19. Якість продукції тваринництва. Проведення прижиттєвого контролю тварин на територіях, забруднених радіонуклідами, СОУ 01.2-37-428:2006.