NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of General Ecology, Radiobiology and Safety of Life Activity

"APPROVED" The Faculty of Plant Protection, Biotechnologies and Ecology "21" May 2025

CURRICULUM OF ACADEMIC DISCIPLINE RADIOBIOLOGY AND RADIOECOLOGY

Field of knowledge <u>16 «Chemical and Bioengineering »</u>

Specialty 162 Biotechnology and bioengineering

Academic programme <u>"Biotechnology and bioengineering</u>"

Faculty: Plant Protection, Biotechnologies and Ecology

Author(s): docent Illienko V.V., PhD on biology sciences

Kyiv - 2025

Description of the discipline <u>RADIOBIOLOGY AND RADIOECOLOGY</u>

Radiobiology, or radiation biology, is the science of the effects of ionizing radiation on living organisms and their groups. In recent decades, the objects of study of radiobiology have become not only living organisms and their groups, but also biologically important molecules, cells and cell populations, and individual metabolic processes. And a new definition of radiobiology has emerged - the science of the effects of ionizing radiation on living systems at all levels of the organization. This wording is not an alternative to the first - they are both correct.

Academic degree, specialty, academic programme						
Academic degree	Bachelor					
Specialty	162 Biotechnology and bio	oengineering				
Academic programme "Biotechnology and bioengineering"						
Chai	racteristics of the discipline					
Туре	(Compulsory				
Total number of hours		90				
Number of ECTS credits		3				
Number of modules	2					
Form of assessment	Exam					
	Indicators of the discipline for full-time and part-time forms of university study					
		ining higher education				
	Full-time	Part-time				
Year of study	3	3				
Semester	5	5				
Lectures	15 hours	2 hours.				
Practical classes and seminars	- hours	- hours				
Laboratory classes	15 hours	6 hours				
Self-study	90 hours	82 hours				
Number of hours per week for full-time students	2					

1. Aim, objectives, competences and expected learning outcomes of the discipline

Primary purpose of study of discipline "Radiobiology and radioecology» is a capture thorough knowledge about influence of ionizing radiations on living organisms, mastering of the applied aspects of specialty, related to radiation safety, and also practical application of knowledge, for the solving of research and applied tasks.

Acquisition of competences:

Integral competence (IC): Ability to solve complex specialized tasks and practical problems characterized by complexity and uncertainty in biotechnology and bioengineering, or in the process of learning that involves the application of biotechnology and bioengineering theories and methods.

General competencies (GC):

GC1. Ability to apply knowledge in practical situations.

GC5. Ability to learn and master modern knowledge.

GC6. Safe activity skills.

GC9. Ability to preserve and multiply moral, cultural, scientific values and achievements of society based on understanding the history and patterns of development of the subject area, its place in the general system of knowledge about nature and society and in the development of

society, technology and engineering, to use various types and forms of physical activity for active recreation and leading a healthy lifestyle.

Professional (special) competencies (SC):

Expected Learning Outcomes (ELO):

ELO4. Be able to apply the provisions of regulatory documents that regulate the procedure for product certification, production certification, requirements for the organization of quality management systems at enterprises, rules for drawing up technical documentation and maintaining a technological process, based on the knowledge gained during practical training.

ELO10. Be able to conduct experimental research to determine the influence of physicochemical and biological factors of the external environment on the vital activity of cells of living organisms.

ELO22. Be able to take into account social, environmental, ethical, economic aspects, requirements of labor protection, industrial sanitation and fire safety when forming technical solutions. Be able to use various types and forms of physical activity for active recreation and leading a healthy lifestyle.

	Number of hours												
Names of content		Full-time form				Pa		e form					
modules and topics	weeks	total		-	includi	_ <u> </u>	1	total	including				
			1	р	lab	ind	self		1	p	lab	ind	self
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Content Modu	ile 1. Inti		1	ysic		ics of				lioec	ology		10
Topic 1. Introduction		13	1		2	-	10	11	1		-	-	10
to radiobiology.													
History													
Topic 2. Physical		14	2		2	-	10	13	1		2	-	10
basics of													
radiobiology													
Topic 3. Sources of		9	2		2	-	5	10	-		-	-	10
radioactive													
substances and													
ionizing radiation													
Topic 4. Physical		9	2		2		5	12	-		2		10
bases of interaction													
of ionizing													
radiations with													
substances of cells													
of living organisms													
Total for content module		45	7		8		30	46	2		4		40
1													
	Content l			logic		ects of		ng radiatio	n	1	1		
Topic 5. Biological		14	2		2		10	10	-				
effects of ionizing													
radiation on plants													
and animals													
Topic 6. Radiation		14	2		2		10	12	-		2		
protection and													

2. Programme and structure of the discipline

radiosensitization										
Topic 7. Migration of	9	2	2		5	10		-		
radionuclides in the										
environment and										
objects of										
agriculture										
Topic 8. Measures to	8	2	1		5	12		-		
reduce the										
accumulation of										
radionuclides into										
crop and livestock										
products										
Total for content module	45	8	7	30		43	1	2	40	
2										
Total hours	90	15	15	60		90	2	6	82	

3. Topics of lectures

No.	Торіс	Hours
1	Introduction to radiobiology. History	1
2	Physical basics of radiobiology	2
3	Sources of radioactive substances and ionizing radiation	2
4	Physical bases of interaction of ionizing radiations with substances of cells of	2
	living organisms	
5	Biological effects of ionizing radiation on plants and animals	2
6	Radiation protection and radiosensitization	2
7	Migration of radionuclides in the environment and objects of agriculture	2
8	Measures to reduce the accumulation of radionuclides into crop and livestock products	2

4. Topics of laboratory classes

No.	Торіс	Number of hours
1	Rules for working with ionizing radiation sources in radiological laboratories	2
2	Determination of the dose rate of γ -radiation created by the reference source ¹³⁷ Cs through protective materials	2
3	Determination of the flow of β -particles from the radiation source	2
4	Measurement of the γ -background in the premises and on the territory using the SRP- 68-01 radiometer	2
5	Measurement of the specific and volume activity of β -emitting radionuclides using the "Beta" radiometer	2
6	Determination of the β -radiation half-attenuation layer	2
7	Express determination by γ -radiation of caesium radionuclides in water, soil, food and agricultural products using the RUB-01-P6 radiometer	2
8	Determination of the content of ¹³⁷ Cs in the human body using the RUB-01-P6 radiometer	1
	In total	15

5. Topics for self-study

No.	Торіс	Number of hours
1	Ionizing radiation and the history of radiobiology	10
2	Nuclear fission reactions	10
3	Biological effects of ionizing radiation on living organisms and biocenoses	5
4	Forecasting environmental pollution in cases of radiation accidents	5
5	Sampling of soil, forest litter, herbaceous vegetation, shrubs, trees	10
6	Preparation of selected samples for laboratory testing	10
7	Determination of ¹³⁷ Cs content in soil, forest litter, herbaceous vegetation, bushes and	5

	trees using the RUB-01-P6 radiometer and assessment of its migration ability in forest	
	ecosystems	
8	Assessment of the state and quality of natural and anthropogenically modified	5
	ecosystems	
	In total	60

6. Tools for assessing expected learning outcomes:

- oral or written questioning;
- interview;
- testing;
- defence of laboratory, calculation/graphic works, projects;
- peer assessment, self-assessment.

7. Teaching methods:

- the method of problem-based learning;
- method of practice-oriented learning;
- case method;
- method of learning through research;
- method of educational discussions and debates;
- method of teamwork, brainstorming.

8. Assessment of learning outcomes:

The assessment of students' knowledge and skills is conducted by means of a 100-point scale and is converted into national grades of the current Exam and Credit Regulations at NULES of Ukraine.

0.1. 1	istribution of points received by students	
Educational activity	Results	Assessm ent
Module 1. Introduction. Pl	hysical foundations of radiobiology and radioecology	Unt
Lecture 1 Introduction. Radiobiology and radioecology as a continuous science	Know the main stages of development of world and domestic radiobiology	-
Laboratory work 1. Rules for working with ionizing radiation sources in radiological laboratories	Assess the contribution of Ukrainian radiobiologists to world radiobiology and radioecology	10
Self-study 1.		5
Lecture 2. Radioactivity, types of ionizing radiation and their dosimetry	Understand the basic physical processes of interaction of ionizing radiation with substances of living cells	-
Laboratory work 2. Determination of the dose rate of γ -radiation created by the reference source ¹³⁷ Cs through protective materials	Solving problems on the translation of radioactivity units and doses in the SI system and non-system units	15
Self-study 2.		5
Lecture 3. Sources of radioactive substances and ionizing radiation	Distinguish between natural and artificial radionuclides; family-forming and non-family	-
Laboratory work 3. Determination of the flow of β -particles from the radiation source	Analyze the contribution of various sources in the formation of the radiation background of the environment	15
Self-study 3.		5
Lecture 4. Physical bases of interaction of ionizing radiations with substances	Analyze radiobiological effects, distinguish between somatic and genetic, near and far, deterministic and	-

8.1. Distribution of points received by students

of cells of living organisms	stochastic	
Laboratory work 4. Physical bases of	Justify the stochasticity of certain radiobiological	10
interaction of ionizing radiations with	effects	
substances of cells of living organisms		
Self-study 4.		5
Module control work 1.		30
Total for module 1		100
	iation on living organisms and production in radionuclide	;-
	contaminated areas	
Lecture 5. Biological effects of	Analyze radiobiological effects, distinguish between	-
ionizing radiation on plants and	somatic and genetic, near and far, deterministic and	
animals. Radiosensitivity of plants,	stochastic. Know the levels of semi-lethal doses for	
animals and other organisms	different species of organisms: plants and animals,	
	humans, protozoa, bacteria and viruses	
Laboratory work 5. Measurement of the	Justify the stochasticity of certain radiobiological	10
specific and volume activity of β -emitting	effects. Give examples of calculation of LD50 and	
radionuclides using the "Beta" radiometer	LD100	
Self-study 5.		5
Lecture 6. Radiation protection and	Understand and know the basic means of physical	-
radiosensitization	and chemical-pharmacological means of radiation	
	protection	
Laboratory work 6. Determination of the	Evaluate the comparative contribution of individual	15
β -radiation half-attenuation layer	pathways of post-radiation recovery to the overall	
Self-study 6.	recovery of higher plants and animals	5
Lecture 7. Atmosphere and soil as	Know the migration routes of radionuclides in the	_
starting points of radionuclide	environment. Factors influencing the accumulation of	
migration in the natural environment.	radionuclides by living organisms	
Receipt of radionuclides from the soil	radionactices by fiving organisms	
into plants and animals, biological		
action of incorporated radionuclides		
Laboratory work 7. Express determination	Calculate the projected level of contamination of	15
by γ -radiation of caesium radionuclides in	Calculate the projected level of contamination of	15
water, soil, food and agricultural products	livestock and crop products at a certain level of	
using the RUB-01-P6 radiometer	radionuclide contamination of the territory	
Self-study 7.		5
Lecture 8. Measures to reduce the	Understand the possibilities of various	-
inflow of radionuclides into crop and	countermeasures to reduce the entry of radionuclides	
livestock products and its purification	into products. Know how to process radionuclide-	
from radionuclides by primary	contaminated products	
technological processing		
Laboratory work 8. Assessment of the	Assess the suitability of products for consumption by	10
state and quality of natural and	the level of radionuclide contamination	10
anthropogenically modified ecosystems		
Self-study 8.	۱	5
Module control work 2.		30
Total for module 2		100
Class work	(M1 + M2)/2	
Exam/credit	30	. —
Total for year	(Class work + exa	m) ≤ 100

8.2. Scale for assessing students 'knowledge and skills

Student's rating, points	National grading of exams and credits
90-100	excellent

74-89	good
60-73	satisfactorily
0-59	unsatisfactorily

8.3. Assessment policy

Deadlines and exam retaking policy:	Works that are submitted late without valid reasons will be assessed with a lower grade. Module tests may be retaken with the permission of the lecturer if there are valid reasons (e.g., a sick leave).
Academic integrity policy:	Cheating during tests and exams is prohibited (including using mobile devices). Term papers and essays must have correct references to the literature used
Attendance policy:	Attendance is compulsory. For good reasons (e.g., illness, international internship), training can take place individually (online by the faculty dean's consent)

9. **Teaching and learning aids**

1. <u>https://elearn.nubip.edu.ua/enrol/index.php?id=2402</u> Radiobiology and Radioecology

2. Gudkov I. M. Radiobiology and Radioecology (in English): Textbook for students of higher educational institutions. Вид. 2-е, переробл. та допов. К.: НУБіП України, Житомирська політехніка, 2019. 384 с.

3. Gudkov I. M. Radiobiology and Radioecology / I. M. Gudkov, M. M. Vinichuk. -

K. : NAUU, 2006. – 295 p.

4. Choppin G. R., Liljenzin J.-O., Rydberg J. Radiochemistry and nuclear chemistry.4th ed., Academic Press, 2013, 858 p.

10. Recommended sources of information

- 1. Chernobyl: 30 Years of Radioactive Contamination Legacy. Report. Lead writer and coordination of report: Prof. Valerii Kashparov, Kyiv, 2016, 59 p.
- 2. Climate change and nuclear power. International Atomic Energy Agency, VIENNA, 2005, 112 p.
- 3. Natural and induced radioactivity in food. International Atomic Energy Agency, VIENNA, 2002, 136 p.
- 4. Gleyzes, C., Tellier, S. & Astruc, M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trac-Trends in Analytical Chemistry, 21 (6-7), 2002, p. 451-467.
- 5. International Atomic Energy Agency Safety Standards Series No. RS-G-1.8, Environmental and Source Monitoring for Purposes of Radiation Protection for protecting people and the environment, Safety Guide, IAEA, VIENNA, 2005, p.119.
- 6. Radiation biology: a handbook for teachers and students. International Atomic Energy Agency, VIENNA, 2010, 150 p.
- 7. Гродзинський Д.М. Радіобіологія. К.: Либідь, 2000. 448 с.
- 8. Гудков І.М. Радіобіологія: підручник. Херсон : Олді-Плюс, 2016. 504 с.
- 9. Гудков І.М., Гайченко В.А., Кашпаров В.О. Сільськогосподарська радіоекологія: підручник. К.: Ліра-К, 2017. 268 с.

- 10. Кіцно В.О., Поліщук С.В., Гудков І.М. Основи радіобіології та радіоекології. К.: Хай-Тек Прес, 2008 (2009). 316 с.
- 11.НРБУ-97/2000.
- 12. Хомутінін Ю.В., Кашпаров В.О., Жебровська К.І. Оптимізація відбору і вимірювань проб при радіоекологічному моніторингу, Монографія. К.: Український науково–дослідний інститут сільськогосподарської радіології, 2002, 160 с.
- 13. Паренюк О.Ю., Іллєнко В.В., Гудков І.М. Мікрофлора забруднених радіонуклідами грунтів. К.: Вид-во НУБіП України, 2018. 198 с.
- 14.Бондар О.І., Фещенко В.П., Гудков І.М., Гуреля В.В. Радіоекологічний термінологічий словник (україно-англійсько-російський). Житомир: ПП Експертний центр Укреколбіокон, 2018. 254 с.
- 15. Якість ґрунту. Методи відбору проб ґрунту для радіаційного контролю, СОУ 74.14-37-425:2006.
- 16. Якість ґрунту. Визначення щільності забруднення території сільськогосподарських угідь радіонуклідами техногенного походження, СОУ 74.14-37-424:2006
- 17. Якість продукції рослинництва. Методи відбору проб для радіаційного контролю, СОУ 01.1-37-426:2006.
- 18. Якість продукції тваринництва. методи відбору проб для радіаційного контролю, СОУ 01.2-37-427:2006.
- 19. Якість продукції тваринництва. Проведення прижиттєвого контролю тварин на територіях, забруднених радіонуклідами, СОУ 01.2-37-428:2006.