NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Department of General Ecology, Radiobiology and Safety of Life Activity

"APPROVED"

The Faculty of Plant Protection, Biotechnologies and Ecology "21" May 2025

CURRICULUM OF ACADEMIC DISCIPLINE RADIOBIOLOGY AND RADIOECOLOGY

Field of knowledge <u>10 Natural sciences</u> Specialty <u>101 Ecology</u> Academic programme <u>"Ecology"</u> Faculty: <u>Plant Protection, Biotechnologies and Ecology</u> Author(s): <u>docent Illienko V.V., PhD on biology sciences</u>

Description of the discipline <u>RADIOBIOLOGY AND RADIOECOLOGY</u>

Radiobiology, or radiation biology, is a science about effects of ionizing radiations on living organisms and their groups. During the last decades in a radiobiology next to such traditional directions as a medical radiobiology, animal radiobiology, plant radiobiology, agricultural radiobiology, radiation ecology, et al some new directions was expressly selected. They are molecular radiobiology, radiation biochemistry, radiation cytology, radiation genetics. That means that the objects of study of radiobiology are not only living organisms and their groups, but also molecules, cells and cell populations, separate processes of metabolism. And new determination of radiobiology appears. Now it is the science about effects of ionizing radiations on the living systems of all of levels of organization. This formulation is not alternative to the first are they both correct.

Academic degree, specialty, academic programme					
Academic degree	Bachelor				
Specialty	101 Ecology				
Academic programme	"Ecology"				
Char	acteristics of the discipline				
Туре		Selective			
Total number of hours		120			
Number of ECTS credits		4			
Number of modules		3			
Form of assessment		Exam			
Inc for full-time and	Indicators of the discipline for full-time and part-time forms of university study				
	Form of obta	ining higher education			
	Full-time	Part-time			
Year of study	3	3			
Semester	1	5			
Lectures	30 hours	2 hours.			
Practical classes and seminars	- hours	- hours			
Laboratory classes	30 hours	6 hours			
Self-study	60 hours	112 hours			
Number of hours per week for full-time	4				
students					

1. Aim, objectives, competences and expected learning outcomes of the discipline

Primary purpose of study of discipline "Radiobiology and radioecology» is a capture thorough knowledge about influence of ionizing radiations on living organisms, mastering of the applied aspects of specialty, related to radiation safety, and also practical application of knowledge, for the solving of research and applied tasks.

Acquisition of competences:

Integral competence (IC): Ability to solve complex specialized problems and solve practical problems in the field of ecology, environmental protection environment and balanced environmental management, which involves the application of basic theories and methods of environmental sciences, characterized by complexity and uncertainty of conditions.

General competencies (GC):

GC1. Knowledge and understanding of the subject area and professional activity.

GC8. Ability to conduct research at an appropriate level.

Professional (special) competencies (SC):

SC5. Ability to assess the impact of technogenesis processes on the environment and identify environmental and radiation risks associated with production activities.

SC11. The ability to inform the public about the state of environmental security and balanced nature management.

Expected Learning Outcomes (ELO):

ELO9. Demonstrate skills in assessing unpredictable environmental problems and thoughtfully choosing ways to solve them.

ELO22. Participate in the development of projects and practical recommendations for environmental protection.

2. Programme and structure of the discipline

	Number of hours												
Names of content	Full-time form					Pa	rt-tim	e form	l				
modules and topics	weeks	total	total including		total		j	includi	ng				
1	2	2		p 5	lab	ind 7	self	0	1 10	p	lab	ind 12	self
			4		0 bogic	/ 	0 ••••••••••••••••••••••••••••••••••••	9 hiologra	10		12		14
Content Module 1. In		10 n. F	nysi				radio			rac	noeco	logy	
Topic 1. Introduction	1-2	18	4		4	10		15	1		2	10	
to radiobiology.													
History												1.0	
Topic 2. Physical		16	2		4	10		10				10	
basics of													
radiobiology													
Topic 3. Sources of		4	2		2	-		12				12	
radioactive													
substances and													
ionizing radiation													
Total for content module	38	1	8		10	20		35	1		2	32	
1													
	Content	Module	2. Bio	logic	cal effe	ects of	ionizir	ng radiatio	n				
Topic 4. Biological		14	2		2	10		13	1		2	10	
effects of ionizing													
radiation on plants													
and animals													
Topic 5.		14	2		2	10		10				10	
Radiosensitivity of													
plants, animals and													
other organisms													
Topic 6. Radiation		4	2		2	-		10				10	
protection and													
radiosensitization													
Topic 7. Post-		6	2		4	-		10				10	
radiation recovery													
of plants and													
animals													
Total for content module	38	l	8		10	20		43	1		2	40	
2													
Cont	ent Modu	le 3. Ag	ricultu	re in	n terms	of rac	lioactiv	ve contami	natio	n			
Topic 8. Migration of		16	4		2	10		12			2	10	

radionuclides in the										
environment and										
objects of										
agriculture										
Topic 9. Measures to		18	4	4	10	10			10	
reduce the										
accumulation of										
radionuclides into										
crop and livestock										
products										
Topic 10. Application		10	6	4	-	20			20	
of ionizing radiation										
in agricultural										
production and										
other fields of										
human activity and										
method of isotope										
indicators in										
biology and ecology										
Total for content module 3	44		14	10	20	42		2	40	
Total hours	120		30	30	60	120	2	6	112	

3. Topics of lections

N⁰	Topic title	Hours
1	Introduction to radiobiology. History	4
2	Physical basics of radiobiology	2
3	Sources of radioactive substances and ionizing radiation	2
4	Biological effects of ionizing radiation on plants and animals	2
5	Radiosensitivity of plants, animals and other organisms	2
6	Radiation protection and radiosensitization	2
7	Post-radiation recovery of plants and animals	2
8	Migration of radionuclides in the environment and objects of agriculture	2
9	Measures to reduce the accumulation of radionuclides into crop and livestock	4
	products	
10	Application of ionizing radiation in agricultural production and other fields of	4
	human activity and method of isotope indicators in biology and ecology	

4. Topics of laboratory classes

N₂	Topic title	Number of hours
1	Radiation safety standards and basic sanitary rules of radiation protection	4
2	Determination of the flow of β -particles from the radiation source	2
3	Determination of the β -radiation half-attenuation layer	2
4	Determination of the dose rate of γ -radiation created by the reference source ¹³⁷ Cs through protective materials	2
5	Measurement of the γ -background in the premises and on the territory using the SRP- 68-01 radiometer	4
6	Measurement of the specific and volume activity of β -emitting radionuclides using the "Beta" radiometer	4
7	Express determination by γ -radiation of cesium radionuclides in water, soil, food and agricultural products using the RUB-01-P6 radiometer	4
8	Determination of ¹³⁷ Cs contamination of the territory using the RUB-01-P6 radiometer	4

9	Determination of the content of ¹³⁷ Cs in the human body using the RUB-01-P6 radiometer	4
	In total	30

5. Topics for self-study

N⁰	Topic title	Number of hours
1	Classification and purpose of dosimetric control devices, their components. Devices	10
	of individual dosimetric control.	
2	Preparation for operation of general dosimetric control devices - X-ray and	10
	radiometers	
3	Units of measurement of doses and radioactivity, their relationship and conversion	10
4	Sampling of environmental objects and their preparation for radiometry	10
5	Calculation of the level of ¹³⁷ Cs contamination of plant products	10
6	Calculation of the level of ¹³⁷ Cs contamination of animal husbandry products	10
	In total	60

6. Tools for assessing expected learning outcomes:

- oral or written questioning;
- interview;
- testing;
- defence of laboratory, calculation/graphic works, projects;
- peer assessment, self-assessment.

7. Teaching methods:

- the method of problem-based learning;
- method of practice-oriented learning;
- case method;
- method of learning through research;
- method of educational discussions and debates;
- method of teamwork, brainstorming.

8. Assessment of learning outcomes:

The assessment of students' knowledge and skills is conducted by means of a 100-point scale and is converted into national grades of the current Exam and Credit Regulations at NULES of Ukraine.

Торіс	Hours (lectures/ practical works)	Results of study	Task	Evaluat ion
Module 1. Ir	troduction. Physic	cal foundations of radio	biology and radioecology	
Delivery of all practica	al works and perfo	rmance of independent	works takes place including	ng in the
		elearn platform		
Topic 1. Introduction to radiobiology. History	2/4	Know the main stages of development of world and domestic radiobiology	Assess the contribution of Ukrainian radiobiologists to world radiobiology and radioecology	6
Topic 2. Physical foundations of radiobiology	2/4	Understand the basic physical processes of interaction of ionizing radiation with substances of living cells	Solving problems on the translation of radioactivity units and doses in the SI system and non-system units	7
Topic 3. Sources of	2/2	Distinguish between	Analyze the	7

8.1. Distribution of points received by students

radioactive substances		natural and artificial	contribution of various	
and ionizing radiation		radionuclides;	sources in the	
		family-forming and	formation of the	
		non-family	radiation background	
			of the environment	
Total module 1				20
Module	2. Biological effe	ct of ionizing radiation	on living organisms	-
Delivery of all practica	al works and perfo	rmance of independent elearn platform	works takes place including	ng in the
Tonic 4 Biological	2/2	Analyze	Justify the stochasticity	5
effects of ionizing		radiobiological	of certain	e
radiation on plants		effects distinguish	radiobiological effects	
and animals		between somatic and	radiobiological effects	
and animals		genetic near and far		
		deterministic and		
		stochostic		
	2/2	Stochastic	Circo and and to a f	~
		Know the levels of	Give examples of	5
Radiosensitivity of		semi-lethal doses for	calculation of LD50	
plants, animals and		different species of	and LD100	
other organisms		organisms: plants		
		and animals,		
		humans, protozoa,		
		bacteria and viruses		
Topic 6. Radiation	2/4	Understand and	Give examples of CCU	6
protection and		know the basic	and FZD evaluation for	
radiosensitization		means of physical	the most effective	
		and chemical-	radioprotectors	
		pharmacological		
		means of radiation		
		protection		
Topic 7. Post-	2/2	Distinguish the main	Evaluate the	4
radiation recovery of		ways of post-	comparative	
plants and animals		radiation recovery of	contribution of	
r ····································		the organism.	individual pathways of	
			post-radiation recovery	
			to the overall recovery	
			of higher plants and	
			animals	
Total module ?			ammais.	20
Total moutle 2 Modulo	3 Agriculture in t	he conditions of radion	ualida contamination	20
Delivery of all practica	al works and perfo	rmance of independent	works takes place includi	ng in the
	4/2	elearn platform	A .1	-
Topic 8. Migration of	4/2	Know the trophic	Assess the contribution	6
radionuclides in the		chains of	of individual routes of	
environment and		radionuclides in	radionuclides to the	
agricultural facilities		plants, animals and	human body in	
		humans	different periods of the	
			Chernobyl accident	
Topic 9. Measures to	4/4	Know the basic	To evaluate the	7
reduce the inflow of		measures to	comparative	
radionuclides into		minimize the entry	effectiveness of	
crop and livestock		of radionuclides into	individual methods of	
products		the human body at	reducing the supply of	
•		all stages of the food	radionuclides in crop	
		chain	and livestock products	
			on the formation of the	

			human radiation dose.	
Topic 10. Application	6/4	Know the basic	To analyze the current	7
of ionizing radiation		techniques and	opportunities and	
in agricultural		technologies for the	prospects of Ukraine	
production and other		use of ionizing	for the widespread	
spheres of human		radiation in	introduction of	
activity and method		agriculture,	radiation and biological	
of isotopic indicators		medicine, food	technologies in various	
in biology and		industry and other	sectors of the economy.	
ecology.		areas of the		
		economy.		
Total module 3				20
Additional points				10
Total for the semester				70
Exam				30
Total for the course				100

8.2. Scale for assessing students 'knowledge and skills

Student's rating, points	National grading of exams and credits
90-100	excellent
74-89	good
60-73	satisfactorily
0-59	unsatisfactorily

8.3. Assessment policy

Deadlines and exam retaking policy:	Works that are submitted late without valid reasons will be assessed with a lower grade. Module tests may be retaken with the permission of the lecturer if there are valid reasons (e.g., a sick leave).
Academic integrity policy:	Cheating during tests and exams is prohibited (including using mobile devices). Term papers and essays must have correct references to the literature used
Attendance policy:	Attendance is compulsory. For good reasons (e.g., illness, international internship), training can take place individually (online by the faculty dean's consent)

9. Teaching and learning aids

1. https://elearn.nubip.edu.ua/enrol/index.php?id=835 Radiobiology and Radioecology

2. Gudkov I. M. Radiobiology and Radioecology (in English): Textbook for students of higher educational institutions. Вид. 2-е, переробл. та допов. К.: НУБіП України, Житомирська політехніка, 2019. 384 с.

3. Gudkov I. M. Radiobiology and Radioecology / I. M. Gudkov, M. M. Vinichuk. -

K. : NAUU, 2006. – 295 p.

4. Choppin G. R., Liljenzin J.-O., Rydberg J. Radiochemistry and nuclear chemistry. 4th ed., Academic Press, 2013, 858 p.

10. Recommended sources of information

- 1. Chernobyl: 30 Years of Radioactive Contamination Legacy. Report. Lead writer and coordination of report: Prof. Valerii Kashparov, Kyiv, 2016, 59 p.
- 2. Climate change and nuclear power. International Atomic Energy Agency, VIENNA, 2005, 112 p.
- 3. Natural and induced radioactivity in food. International Atomic Energy Agency, VIENNA, 2002, 136 p.
- 4. Gleyzes, C., Tellier, S. & Astruc, M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trac-Trends in Analytical Chemistry, 21 (6-7), 2002, p. 451-467.
- 5. International Atomic Energy Agency Safety Standards Series No. RS-G-1.8, Environmental and Source Monitoring for Purposes of Radiation Protection for protecting people and the environment, Safety Guide, IAEA, VIENNA, 2005, p.119.
- 6. Radiation biology: a handbook for teachers and students. International Atomic Energy Agency, VIENNA, 2010, 150 p.
- 7. Гродзинський Д.М. Радіобіологія. К.: Либідь, 2000. 448 с.
- 8. Гудков І.М. Радіобіологія: підручник. Херсон : Олді-Плюс, 2016. 504 с.
- 9. Гудков І.М., Гайченко В.А., Кашпаров В.О. Сільськогосподарська радіоекологія: підручник. К.: Ліра-К, 2017. 268 с.
- 10. Кіцно В.О., Поліщук С.В., Гудков І.М. Основи радіобіології та радіоекології. К.: Хай-Тек Прес, 2008 (2009). 316 с.
- 11.НРБУ-97/2000.
- 12. Хомутінін Ю.В., Кашпаров В.О., Жебровська К.І. Оптимізація відбору і вимірювань проб при радіоекологічному моніторингу, Монографія. К.: Український науково–дослідний інститут сільськогосподарської радіології, 2002, 160 с.
- 13. Паренюк О.Ю., Іллєнко В.В., Гудков І.М. Мікрофлора забруднених радіонуклідами грунтів. К.: Вид-во НУБіП України, 2018. 198 с.
- 14.Бондар О.І., Фещенко В.П., Гудков І.М., Гуреля В.В. Радіоекологічний термінологічий словник (україно-англійсько-російський). Житомир: ПП Експертний центр Укреколбіокон, 2018. 254 с.
- 15. Якість грунту. Методи відбору проб грунту для радіаційного контролю, СОУ 74.14-37-425:2006.
- 16. Якість ґрунту. Визначення щільності забруднення території сільськогосподарських угідь радіонуклідами техногенного походження, СОУ 74.14-37-424:2006
- 17. Якість продукції рослинництва. Методи відбору проб для радіаційного контролю, СОУ 01.1-37-426:2006.
- 18. Якість продукції тваринництва. методи відбору проб для радіаційного контролю, СОУ 01.2-37-427:2006.
- 19. Якість продукції тваринництва. Проведення прижиттєвого контролю тварин на територіях, забруднених радіонуклідами, СОУ 01.2-37-428:2006.