HYBIT	DISCIPLINE SYLLABUS «Computers and computer technologies» Higher Education Degree - Bachelor Specialty 192 "Construction and civil engineering" Educational program "Construction and Civil Engineering" Year of study1_, semester1, 2 Form of education full-time(full-time, part-time) Number of ECTS credits7 Language of instruction Ukrainian_(Ukrainian, English, German)
Lecturer of the discipline	<u>Nesvidomin Viktor</u>
Contact information of the	<u>v_nesvidomin@nubip.edu.ua</u>
lecturer (e-mail)	https://elearn.nubip.edu.ua/course/view.php?id=2754
Course page in eLearn	https://elearn.nubip.edu.ua/course/view.php?id=2155

DESCRIPTION OF THE DISCIPLINE

Computers and computer technologies are a scientific discipline that studies the principles of construction and functioning of computers, the organization of computing processes on personal computers, their algorithmization, PC software, as well as the effective use of modern information and communication technologies in construction activities.

The purpose of discipline is to obtain students theoretical knowledge of the basics of computer technology, to acquire practical skills in working on personal computers using existing CAS and CAD technologies on a PC in solving engineering problems in construction.

The study of the discipline will allow you to know:

- 1. elements of programming in a programming language, to form and solve engineering problems using modern computer mathematics systems;
- 2. work on a PC with modern computer graphics systems.

As a result of studying the discipline, the specialist should be able to:

- 3. decompose the task and implement program codes for their recording on the PC, implement numerical methods;
- 4. use the capabilities of computer graphics systems in the formation of 2 D and 3 D-models of building structures.

Acquisition of competencies:

• integral competence (IC):

IC - Ability to solve complex specialized problems of construction and civil engineering in the learning process, which involves the use of a set of theories and methods for determining strength, stability, modeling, strengthening of building structures; further safe operation, reconstruction, erection and installation of buildings and engineering structures; application of computer-aided design systems in the field of construction.

- General competencies (GC):
 - 1 Ability to abstract thinking, analysis and synthesis.

2 - Knowledge and understanding of the subject area, understanding of the professional activities of the construction industry.

4 – Ability to communicate in a foreign language.

5 – Ability to use information and communication technologies.

6 – Ability to apply knowledge in practical situations.

7 – Ability to evaluate and ensure the quality of work performed.

• Professional (special) competencies:

4 – Ability to select and use appropriate equipment, materials, tools and methods for the design and implementation of technological processes of construction production.

5 – Ability to apply computerized design systems and specialized application software to solve engineering problems of construction and civil engineering.

6 - Ability to engineering activities in the field of construction, preparation and use of technical documentation.

7 – Ability to take responsibility for the development and decision-making of architecture and construction in unpredictable work contexts.

11 – Possess methods of design, modeling and construction using computeraided design and calculation of building structures of buildings and engineering structures of industrial, agro-industrial, transport and civil objects.

• Program learning outcomes:

1 – Demonstrate knowledge of fundamental and general engineering disciplines at the level necessary to understand the processes of design, construction, operation and reconstruction of construction objects.

3 – Present the results of their own work and argue their position on professional issues to specialists

6 – Apply modern information technologies to solve engineering and management problems of construction and civil engineering.

7 -Collect, interpret and apply data, including through the search, processing and analysis of information from various sources.

STRUCTURE DICH LINS				
Theme	h. (lectures, lab., himself)	Results teaching	Task	Evaluation (lab.+lessons+counter. +himself.+test)
	· · · ·	Semester 1		
		Meaningful mod	ule 1	
Topic 1.		Understand the	Lab. 1.	3+3
Hardware	2/2/4	structure and	By oneself. 1.	
		functioning of PC	Hardware and	
		hardware	software analysis	
Topic 2.		Understand the	Lab. 2.	3+3+3
Software	2/2/4	multivariate nature	By oneself. 1.	
		of existing software	Units of	
		and its choices	measurement of	
			information	
Topic 3.		Be able to create	Lab. 3.	3+3+3+10
Basics of	2/2/4	linear algorithms for	By oneself. 2.	
algorithmization		solving problems	Linear algorithms	
Topic 4.		Be able to create	Lab. 4.	3+3+3+5
Computer	2/2/4	branched and cyclic	By oneself. 3.	
Mathematics		algorithms	Branched and	
Systems		-	cyclic algorithms	
Topic 5.		Be able to write	Lab. 5.	3+3+3+10

STRUCTURE DICIPLINS

Maple operators	2/2/4	programs mate.	By oneself. 3.	
Muple operators		Computing in the	Writing programs	
		Maple environment	of linear, branched	
			and cyclic	
			algorithms	
Topic 6.		Be able to write	Lab. 6.	3+3+3+5
Functions and	2/2/4	user functions	By oneself. 4.	5151515
procedures in	2/2/7	solving mat.	Writing a program	
Maple. 2D graphics		problems	for constructing	
Maple. 2D graphies		problems	plane curves	
Topic 7.		Be able to write	Lab. 7.	3+3+3+10
3D graphics.	2/2/4	graphing functions	By oneself. 4.	5+5+5+10
Animation		on a plane and in	Writing a surface	
7 miniation		space	building program	
Total per module	14/14/28	space	building program	100
	1 1/1 1/20	Meaningful mod	ule 2	100
Topic 8.		Be able to write	Lab. 8.	3+3
Vector computing	2/2/4	vector computing	By oneself. 5.	
in Maple	_, _, .	programs	Writing procedures	
		Pro Branno	with vector	
			operations	
Topic 9.		Be able to write	Lab. 9.	3+3+3
Matrix computing	2/2/4	matrix calculation	By oneself. 5.	
in Maple		programs, solving	Writing procedures	
1		systems of linear	with matrix	
		equations	operations	
Topic 10.		Be able to write	Lab. 10.	3+3+3+10
Data processing.	2/2/4	numerical data	By oneself. 6. Data	
Interpolation		processing	processing.	
1		programs	Interpolation	
Topic 11.		Be able to process	Lab. 11.	3+3+3+5
Approximation	2/2/4	numerical data by	By oneself. 6.	
		approximation	Approximation	
		methods		
Topic 12.		Be able to write	Lab. 12.	3+3+3+10
Approximate	2/2/4	procedures for an	By oneself. 7.	
methods for solving		approximate	Analysis of	
problems		solution of	functions. Solving	
		nonlinear equations	nonlinear equations	
Topic 13.		Be able to write	Лаб. 13.	3+3+3+5
Programming	2/2/4	procedures for an	Сам. 7.	
differential and		approximate	Approximate diff	
integral calculus		solution of	methods. and	
		differential and	integral calculus	
		integral equations		
Topic 14.		Be able to write	Лаб. 14.	3+3+3+10
Optimization	2/2/4	procedures for one-		
		dimensional		
l l		methods		
	1 4 / 4 4 / 4 0	optimization		100
Total per module	14/14/28	optimization		100
Total per module In just a semester Passed	14/14/28	optimization		100 70 30

		Semester 2		
		Meaningful mod	1	1
Topic 1.	24	Understand the	Lab. 1.	3+3
Types of graph	2/4	properties of graphs	By oneself. 1. Pipe	
		– vector and pixel	connection	
Tonia 2		Understand the	execution Lab. 2.	3+3+3
Topic 2.	2/4	Autodesk Inventor	By oneself. 1.	3+3+3
Systems comp. Graphics. Autodesk	2/4	interface	Thumbnails of	
packages		Interface	connection fittings	
Topic 3.		Be able to create	Lab. 3.	3+3+3+10
Three-dimensional	2/4	models of parts with	By oneself. 1.	5+5+5+10
graphics	2/1	basic operations	Models of	
grupines		busic operations	connection parts	
Topic 4.		Be able to set the	Lab. 4.	3+3+3+5
Elements of parts	2/4	elements of parts –	By oneself. 1.	5151515
Elements of purts	2/ 1	chamfers, cuts	Forming grooves	
Topic 5.		Be able to work	Lab. 5.	3+3+3+10
Standard parts	2/4	with libraries of	By oneself. 1.	
Standard parts	2/ 1	standard parts	Parametric	
		Stundard Parts	modeling of parts	
Topic 6.		Be able to create	Lab. 6.	3+3+3+5
Assembly products	2/4	assembly units	By oneself. 1.	5151515
rissemery produced	_, .		Create a pipe	
			connection	
Topic 7.		Be able to perform	Lab. 7.	3+3+3+10
Paperwork	2/4	the functions of	By oneself. 1.	5+5+5+10
r up or to orig	_, .	constructing	Execute pipe	
		drawings	connection	
		a.a.,	drawings	
Total per module	14/28		8-	100
		Meaningful mod	ule 2	
Topic 8.		Be able to read	Lab. 8.	3+3
Detailing	2/4	assembly drawings	By oneself. 2.	
C			Rotation part	
			model execution	
Topic 9.		Be able to create	Lab. 9.	3+3+3
3D Simulation in	2/4	models of simple	By oneself. 2.	
SW		parts	Execution of the	
			model of the body	
			part	
Topic 10.		Be able to create	Lab. 10.	3+3+3+10
Kinematic	2/4	models of complex	By oneself. 2.	
connections		parts	Kinematic part	
			model execution	
Topic 11.		Be able to create	Lab. 11.	3+3+3+5
Associative	2/4	product drawings	By oneself. 2.	
drawings			Assembly of the	
			product	
Topic 12.		Be able to create	Lab. 12.	3+3+3+10
Assembly drawings	2/4	general type	By oneself. 2.	
		drawings,	Formation of a	
		specification	general drawing	
Topic 13.		Be able to form	Lab. 13.	3+3+3+5

Presentation of products	2/4	product presentation scenes	By oneself. 2. Shape a presentation scene	
Topic 14. Kinematic study	2/4	Be able to perform kinematics and deformation analysis	Lab. 14. By oneself. 2. Self protection	3+3+3+10
Total per module	14/28			100
In just a semester			·	70
Exam				30
Total per course				100

EVALUATION POLICY

Deadlines and	Works that are submitted in violation of deadlines without good reason are
Rebuild Policy:	evaluated for a lower rating. Retaking of modules takes place with the
	permission of the lecturer in the presence of valid reasons (for example, sick
	leave)
Academic	Cheating during tests and exams is prohibited (including using mobile
Integrity Policy:	devices)
Attendance	Attendance of classes is mandatory. For objective reasons, training can take
Policy:	place online in agreement with the Dean of the Faculty

Applicant rating, points	National score for the results passing exams, tests;		
	Examinations	credits	
90-100	Perfectly	credited	
74-89	Well		
60-73	Satisfactory		
0-59	Disappointing	not credited	

STUDENT GRADING SCALE

Recommended Sources

Base

- 1. <u>https://www.maplesoft.com</u>
- 2. https://www.autodesk.com
- 3. <u>https://www.solidworks.com</u>
- 4. Інформатика: Комп'ютерна техніка. Комп'ютерні технології: Підручник для студентів вищих навчальних закладів/ За ред. О.З.Пушкаря.- К.: Видавничий центр "Академія", 2002. -704 с.
- 5. Чисельні методи: Навчальний посібник. / Волонтир Л.О, Зелінська О.В., Потапова Н.А., Чіков І.А. Вінниця: ВНАУ, 2020 322 с.
- 6. Алгоритми та методи обчислень [Електронний ресурс]: навч. посіб. / М. А. Новотарський. Київ : КПІ ім. Ігоря Сікорського, 2019. 407 с.
- 7. Числові методи: навч. посібник / О.І. Ярошенко, М.В. Григорків. Чернівці : Чернівецький нац. ун-т, 2018. 172 с.

Secondary

8. Нелюбов В. О., Куруца О. С. Основи інформатики. Microsoft Excel 2016: навчальний посібник. Ужгород: ДВНЗ «УжНУ». - 2018. - 58 с.

9. Ляшенко Б.М., Кривонос О.М., Вакалюк Т.А. Методи обчислень: навчально-методичний посібник для студентів фізико-математичного факультету. – Житомир: Вид-во ЖДУ, 2014. – 228 с.

Normative documents

- 10. Стандарт вищої освіти за спеціальністю 122 «Комп'ютерні науки» для першого (бакалаврського) рівня вищої освіти. URL: https://mon.gov.ua/ storage/app/media/vishcha-osvita/zatverdzeni%20standarty/2019/07/12/122-kompyut. nauk.bakalavr-1.pdf.
- 11. Нові інформаційні технології, Електронний посібник, Режим доступу http://www.eduforme.org/mod/page/view.php?id=13