The National University of Life and Environmental Sciences of Ukraine

Faculty of Design and Engineering

Department of Material Technology and Material Science (MTMS)

APPROVE: Dean of Design and Engineering Faculty Ruzhylo Z. V. 2020

REVIEWED AND CONSIDERED at a meeting of the MTMS department

Protocol № <u>16</u> of "<u>19</u>"<u>(5</u>2020 Chief of Department

WORK PROGRAM OF THE EDUCATIONAL DISCIPLINE

"Technology of construction materials "

For ED "Bachelor"

Knowledge area 13 "Mechanical engineering "

Speciality 133 "Sectoral mechanical engineering"

Faculty of Design and Engineering

Developer: Aftandiliants I., Head of Department, professor.

Kiev - 2020

1. Description of the discipline Technology of construction materials

(title)

Areas of knowledge, direction of traini	ing, speciality, education and quali	fication level
For ED		chelor
Knowledge area	13 "Mechanical engineerin	g "
Speciality	133 "Sectoral mechanical e	engineering"
		-
Specialization		-
]	Discipline characterization	
Туре	Obl	igatory
Total number of hours		163
Number of credits ECTS		6
Number of thematic modules		6
Form of control	test /ex	amination
Indicators of the	e discipline for daily and distance l	earning
	daily learning	distance learning
Year of study (course)	2	1/2
Semester	2/3	2/3
Lectures	<i>30/15</i> hours.	2/6 hours.
Practical, seminar classes		-
Laboratory lesson	<i>15/15</i> hours.	2/8 hours.
Independent study	<i>30/15</i> hours.	-/356 hours.
Individual work	- hours.	- hours.
Number of weekly classroom	<i>3/2</i> hours.	<i>13/14</i> hours.
hours for daily learning		

2. The purpose and objectives of the course

Purpose is skills of Technology of construction materials and laying the basis for the study subjects: "Machine parts", "Hoisting machinery", "Tractors and cars", "Agricultural and meliorative machines", "The safety and repair of machines."

Objectives:

- Study methods of obtaining metals and alloys;
- Study of the structure, properties and destination of metals and alloys;

A result of studying of discipline the student should:

know:

- The basis of technology of obtaining construction materials (metal alloys)

- The basic of recycling technological processes of metals and alloys in billet and finished products by casting, welding, processing by pressure.

the main connections between the composition, structure and properties of metals and alloys, as well as patterns and changes in these properties under thermal, chemical or mechanical stress.

be able to:

based on knowledge of the working conditions to work of the machine parts to select of the construction material for their production, type of hardening ore softening treatment for obtaining of the certain the properties of parts and billets.

acquisition of competencies:

general competencies (GC):

professional (special) competencies (PC): The discipline lays the knowledge base of students of theoretical material in manufacture technologies necessary in engineering, as a means of educating future industrial engineers skills in scientific generalizations, the ability to use basic knowledge in solving problems in engineering. The discipline lays the knowledge base for students for further study of a number of professional disciplines of technical and technological direction.

3. The program and structure of discipline for

-full term daily/distance learning first year students in 2 and 3 semesters 2019/2020 academic year

	Hour numbers												
Title of thematic		Daily learning							Dist	ance	learni	ng	
modules and themes	Weeks	Total	[Includ	ling		Total		Ι	Including		
			1	р	lab	ind	i.s.		1	р	lab	ind	i.s.
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	The the	matic mo	dule	1. N	/letall	urgy o	of ferr	ous meta	ls				
Theme 1. Purpose													
and objectives of the	1	6	2	-	2	-	2	4	2	-	2	-	-
course. The source													
materials in													
metallurgy and													
obtaining methods													
metals from ores.													
Theme 2. Metallurgy													
of the pig iron.	2	4	2	-	-	-	2	-	-	-	-	-	-
Materials for the													
production of cast													
iron. Preparation													
ores. The structure													
and work of the blast													
furnace.													
Theme 3. Blast	3	6	2	-	2	-	2	-	-	-	-	-	-
furnace products and													
their using. Blast													
furnace cast iron													
classification. Blast													
furnace gas and slag													
and their using.													
Theme 4. Steel	4	4	2	-	-	-	2	-	-	-	-	-	-
metallurgy. The													
source materials for													
steel production, steel													
melting furnaces and													
steel melting													
technological													
processes.													

	-	-		r	•				1	1	<u> </u>		
Theme 5. The	5	6	2	-	2	-	2	-	-	-	-	-	-
influence of method													
of production on steel													
quality. Processes of													
deoxidizing steel.													
Steel production in													
open hearth furnaces													
and oxygen													
converters.													
Theme 6. Steel	6	4	2	-	-	-	2	-	-	-	-	-	-
production in electric													
furnaces. Special													
methods of obtaining													
high-quality steels.													
Theme 7. Pouring													
steel. Structure steel	7	6	2	-	2	-	2	-	-	-	-	-	-
ingots. Prospects for													
the development of													
steel production.													
Total for thematic	3	86	14	-	8	-	14	4	2	-	2	-	-
module 1													
	e themati	c module	2. To	echi	nolog	y of n	onfer	rous meta	llurg	у	1		
Theme 1. Nonferrous													
metallurgy. Copper.	8	4	2	-	-	-	2	-	-	-	-	-	-
The essence of the													
process of obtaining													
copper from ore.													
Matte receiving.													
Theme 2. Obtaining													
and refining of blister	9	6	2	-	2	-	2	-	-	-	-	-	-
copper. Marking and													
using copper in													
technics.													
Theme 3.													
Aluminium.	10	4	2	-	-	-	2	-	-	-	-	-	-
Aluminum receiving													
of ores. Alumina													
electrolysis and													
aluminum refining.			<u> </u>										
Theme 4. Titanium-					~								
magnesium	11	6	2	-	2	-	2	-	-	-	-	-	-
metallurgy.													
Production of													
refractory metals and													
nickel.	-			<u> </u>									
Total for thematic	2	20	8	-	4	-	8	-	-	-	-	-	-
module 2) T				 					
Thoma 1		natic mod			-	wder					1		20
Theme 1.	12-13	8	4	-	4	-	2	22	2	-	-	-	20
Introduction to													
powder metallurgy.													
Obtaining powders.													

				1		1			r –	<u> </u>	1	1	1
Preparation of													
powders to the													
formation.													
Theme 2. Pressing,	14-15	8	4	-	4	-	3	22	-	-	2	-	20
rolling, extrusion,													
slip casting.													
Sintering, additional													
and finishing													
treatment of powder													
products.													
Theme 3.	14-15	4	2	-	-	-	2	-	-	-	-	-	-
Classification,													
marking powders and													
their applications in													
engineering.													
Total for thematic	1	19	8	-	3	-	8	-	-	-	-	-	-
module 3													
		The th	nemat	ic m	odule	e 4. Fo	oundry	y			1		L
Theme 1.	1	4	2		2			54	2		2		50
Introduction.													
Technological													
scheme of casting													
manufacture.													
Methods of													
manufacturing													
castings and kinds of													
molds.													
Theme 2. Pouring,	2	6	3		3			52			2		50
knocking out mould													
and cores, clearing													
and cutting of													
castings.													
Theme 3. Special	3	4	2		2			50					50
methods of													
manufacture castings.													
Technological													
features castings													
manufacture from													
various alloys (cast													
iron, steel, non-													
ferrous metals and													
alloys).													
Total for thematic	1	4	7		7			156	2		4		150
module 4													
The th	hematic r	nodule 5	. Trea	tme	ent of	metal	s and	alloys by	pres	sure			
Theme 1. Physical	4	4	2		2			54	2		2		50
and technological				1									
bases of metal				1									
deformation.				1									
Temperature interval													
of steel treatment by				1									
pressure. Methods of				1									
-		1	1			i	i		·	·			

heating and heating furnaces													
Theme 2.	5	4	2		2			50					50
Classification of													
treatment methods by													
pressure. The													
processes forging,													
drawing, pressing of steel billet. Hot and													
cold volumetric sheet													
stamping.													
Total for thematic	8		4		4			54	2	_	2	_	50
module 5	0		-		-			54	2		2		50
	The t	hematic n	nodul	le 6.	The	weldi	ng tec	hnology	l				
Theme 1. Theoretical	6	6	2		2		2		2				50
basis of welding.	_	-											
Metallurgical and													
chemical-physical													
phenomena in the													
welding zone and													
their influence on the													
structure of ambient													
zone. The welding													
classification.													
Theme 2. Electric arc	7-8	7	2		2		3				2		56
and gas welding													
Total for thematic	1	3	4		4		5		2		2		116
module 6	410		17		20		4.5	074			10		256
Total of hours	419		45		30		45	374	8	-	10	-	356

4. Lecture themes

№	Theme title	Hour
		numbers
	2 semester	
1	The purpose and objectives of the course. The source materials in metallurgy and	2
	obtaining methods metals from ores.	
2	Manufacture of the cast iron in the blast furnace	2
3	Products of the blast furnace manufacture, their classification and using	2
4	The source materials of the steel making	2
5	The steel making. The technological processes of steel making in converters.	2
6	The technological processes of steel making in open hearth and electric furnaces.	2
7	Special methods of manufacture of high quality steels	2
8	Secondary steel making	2
9	Steel pouring	2
10	Copper manufacture	2
11	Aluminum manufacture	2
12	Titanium-Magnesium metallurgy and its features	2
13	Methods of powder receiving (mechanical, chemical). Preparation of powder	2
	charge.	
14	Billet formation. Pressing, rolling, extrusion, slip casting. Sintering.	2

15	Classification, marking powders and their applications in engineering.	2
	3 semester	
1	Technological scheme of manufacture castings. Casting production of in	2
	temporary mold. Gating system. Molding and core materials, their composition,	
	properties and preparation. Pattern equipment.	
2	Pouring, mold and core knock out, casting cleaning and cutting.	2
3	Special methods of casting manufacture.	2
4	Physical and technological bases of metal deformation. Temperature range of steel	2
	treatment by pressure. Heating furnaces and heating methods	
5	Classification of treatment methods by pressure. The processes forging, drawing,	2
	pressing of steel billet. Hot and cold volumetric sheet stamping.	
6	Theoretical basis of welding. Metallurgical and chemical-physical phenomena in	2
	the welding zone and their influence on the structure of ambient zone. The	
	welding classification.	
7	Electric arc and gas welding	2
8	Special methods welding (electroslag, plasma, electron beam, mechanical friction,	1
	ultrasound, explosion, welding in protective gases and under water).	

5. Laboratory work themes

N⁰	Theme title	Hour
		numbers
	2 semester	
1	Study of the source materials of the blast furnace manufacture	2
2	Blast furnace products	2
3	The source materials of the steel making	2
4	The steel making products	2
5	Rolled-formed sections	2
6	The source materials and products of nonferrous metallurgy	2
7	Determination of the properties of властивостей metallic powders	2
8	Hardness determination of the steel and alloys	2
	3 semester	
1	Determination of properties of molded materials	2
2	Designing of the technological process of casting manufacturing	3
3	Designing of the technological process of manufacturing steel forgings	2
4	The influence of cold plastic deformation on properties and structure of steel	2
5	Construction of the characteristics of the electrical welding transformer	2
6	Determination of the regimes and technological coefficients at electric arc	2
	welding	
7	Welded seam defects and control methods	2

6. Test questions and test sets for determine of the level assimilation of knowledge by students.

1	Technology of construction materials is
2	Powder metallurgy is
3	Acid fluxes is
4	Complex ores contain
5	Basic fluxes is
6	Agglomeration is the sintering of

7	Magnetite base is
8	Charge is a mixture of
9	Segregation is
10	Red iron base is
11	Gas bubbles are allocated at
12	Non-metallic inclusions
13	Technology of construction materials" consists of the following major sections:
14	The ore consists of
15	Main iron reducer in blast furnace is
16	Shrinkage cavity forms in
17	Ironstone is
18	Slag is
19	The ingot structure of killed steel consists of
20	Siderite is
21	Metallurgy industry is
22	Metals are in minerals in the states
23	Blast-furnace products are
24	Steel pouring into the iron mold
25	For increasing of metallurgical productivity of raw ore is
26	Cast irons divided into
27	Ladle can be
28	Refractory materials are melting point
29	Blast furnace slag is material which are formed by
30	Foundry is
31	Iron ore can content
32	High fire resistance refractory materials are melting point
33	Blast furnace slag is used as
34	Acidic refractories are
35	Steel is an alloy of
36	Basic refractories are
37	Steel content carbon between
38	The converter is
39	Treatment of metals by pressure is
40	Manganese ores consist of
41	Neutral refractories are
42	Cast iron is alloy of iron and carbon with carbon mass portion
43	Deoxidation is
44	Cast iron produced by reduction of ores by
45	Main deoxidizers are
46	Siderite is
47	Welding is
48	Metals are called
49	Waste rock consists of
50 51	Higher fire resistance refractory materials are melting point Metals are divided
51	Impurities are
52	Steel content carbon between
53 54	
54	Ferrous metals are Helpful impurities of iron ore are
56	Nonferrous metals are
17	The harmful impurities of iron ore are
1/	

58	Metallurgical fuel divided into
59	Metals are extracted from ores the following methods:
60	Coke obtained by
61	Pyrometallurgical or fire method is
62	Black oil is
63	Hydrometallurgical method is
64	Natural gas is
65	Electro melting method is
66	Coke oven gas is

7. Education methods.

- 1) Verbal:
 - -Lectures;
- 2) Visual:
 - -Slides, video, visual material (perts, charts, stands).
- 3) Practical:
 - Laboratory work;
 - Training and factory practices;
 - Independent work.

8. Forms control.

- control work;
- module control work;
- test;
- examination.
- 9. Distribution points that receive students. The student evaluation done in accordance with the provision «Про екзамени та заліки у НУБіП України» від 27.12.2020 р. протокол № 5 з табл. 1.

EVALUATION POLICY

Deadline	The student must submit the work within the time specified by the teacher.
and	Works that are submitted in violation of deadlines without good reason are
retake	evaluated at a lower grade. Rearrangement of modules takes place with the
policy:	permission of the lecturer if there are good reasons (for example, hospital).
Academic	Write-offs during tests and exams are prohibited (including the use of
Integrity	mobile devices). Course papers, abstracts must have correct text references
Policy:	to the literature used
Visiting	The student is obliged to attend classes of all kinds every day in
policy:	accordance with the established schedule, not to be late, to have the
	appropriate appearance. For objective reasons (for example, illness,
	international internship) training can take place individually (in online
	form in consultation with the dean of the faculty)

Student rating,	Evaluation results on national exam tests	
points	Exams	tests
90-100	Excellent	Accepted
74-89	Good	
60-73	Satisfactory	
0-59	Unsatisfactorily	Not accepted

STUDENT EVALUATION SCALE

The student rating (listener) of the discipline \mathbf{R}_{AUC} (up to 100 points) to determine as sum rating received at attestation \mathbf{R}_{AT} (up to 30 points) and the student (listener) rating for educational work \mathbf{R}_{HP} (up to 70 points):

10. Methodical provision

- Textbooks and manuals;
- Guidelineses for laboratory works;
- Stands, posters;
- Equipment and various device.

11. Recommended Literature

- Main:

1. Афтанділянц Є.Г., Зазимко О. В., Лопатько К.Г. Технологія конструкційних матеріалів і матеріалознавство. Частина I (А-О). Російсько – англійсько – український термінологічний словник. К.: Вид. Центр НАУ, 2005. - 346 с.

2. Афтанділянц Є.Г., Зазимко О. В., Лопатько К.Г. Технологія конструкційних матеріалів і матеріалознавство. Частина II (П-Я). Російсько – англійсько – український термінологічний словник. К.: Вид. Центр НАУ, 2005. - 282 с.

3. Афтанділянц Є.Г., Зазимко О. В., Лопатько К.Г. Технологія конструкційних матеріалів і матеріалознавство. Курс лекцій. Частина II. Металознавство. Київ, НАУ, 2010.- с.356.

4. Афтанділянц Є.Г., Зазимко О.В., Лопатько К.Г. Матеріалознавство: Підручник (Гриф надано Міністерством освіти і науки, молоді та спорту України, лист №1/11-18055 від 20 листопада 2012 р.). Херсон, Видавець Грінь Д.С., 2013.- с 612.

5. Практикум з матеріалознавства. Навчальний посібник. (гриф МОН (лист № 1/11-4472 від 27.02.2013 р.))/ Котречко О. О. Зазимко, К.Г. Лопатько, Є.Г. Афтанділянц, Гнилоскуренко В. В.// Херсон: Олді Плюс, 2013.-с. 500.

6. Матеріалознавство і технологія конструкційних матеріалів: Підручник (Гриф надано Міністерством освіти і науки України, лист №1/11-9794 від 10.06.2013р.)/Опальчук А.С., Афтанділянц Є.Г., Роговський Л.Л., Семеновський О.Є //Ніжин, ПП Лисенко М.М, 2013.- с 752.

- ancillary:

1. Опальчук А.С., Котречко О.О., Роговський Л.Л. Лабораторний практикум з технології конструкційних матеріалів і матеріалознавства. Навч. посібник/ За ред. А.С. Опальчука. – К.: Вища освіта, 2006.- 287 с.: іл.

- 2. Сологуб М.А. "Технологія контрукційних матеріалів", К:Вища школа, 2002, 373с.
- 3. Хільчевський В.В. та ін. "Матеріалознавство і технологія конструкційних матеріалів", К:Либідь, 2002, 326с.
- 4. Попович В. Технологія конструкційних матеріалів і матеріалознавство. Книга І. Львів. 2000.-с.264.
- 5. Гуляєв А.П. "Металознавство", 1985 р.
- 6. Усова Л.Ф. "Технологія металів та матеріалознавство", 1987 р.

12. Information Resources

- 1. Reference book.
- 2. Atlases.
- 3. Internet library.
- 4. Magazines.