The National University of Life and Environmental Sciences of Ukraine Faculty of Design and Engineering

Department of Material Technology and Material Science (MTMS)

REVIEWED AND CONSIDERED at a meeting of the MTMS department

Protocol No 16 of "15" 23 2020

Chief of Department

I. Aftandiliants

WORK PROGRAM OF THE EDUCATIONAL DISCIPLINE

"BUILDING MATERIAL SCIENCE and WELDING in CONSTRUCTION"

For ED "Bachelor"

Knowledge area 19 "Architecture and building"

Speciality 192 "Building and civil engineering"

Developer: Aftandiliants I., Head of Department, professor.

1. Description of the discipline "Building material science and welding in construction"

(title)

Areas of knowledge, direction of training,	speciality, education and qualif	ication level
For ED	Bac	chelor
Knowledge area	13 "Mechanical engineering	j "
Speciality	133 "Sectoral mechanical e	ngineering"
Specialization		-
Disc	cipline characterization	
Туре	Obli	gatory
Total number of hours	2	240
Number of credits ECTS		6
Number of thematic modules		6
Form of control	test /exc	amination
Indicators of the dis	scipline for daily and distance le	
	daily learning	distance learning
Year of study (course)	2	1/2
Semester	3/4	2/3
Lectures	<i>30/15</i> hours.	2/4 hours.
Practical, seminar classes	-	-
Laboratory lesson	<i>30/15</i> hours.	2/6 hours.
Independent study	10/19 hours.	-/232 hours.
Individual work	- hours.	- hours.
Number of weekly classroom	4/2 hours.	<i>13/14</i> hours.
hours for daily learning		

2. The purpose and objectives of the course

Purpose is skills of Materials Science and laying the basis for the study subjects: "Machine parts", "Hoisting machinery", "Tractors and cars", "Agricultural and meliorative machines", "The safety and repair of machines."

Objectives:

- Study methods of obtaining metals and alloys;
- Study of the structure, properties and destination of metals and alloys;
- Studying the basic theory of heat treatment of carbon and alloy steels, their technology heat and chemical-heat treatment, as well as specific details and working of agricultural machines;
- The study of the structure, properties and appointment of non-metallic construction materials.

A result of studying of discipline the student should:

know:

the main connections between the composition, structure and properties of metals and alloys, as well as patterns and changes in these properties under thermal, chemical or mechanical stress.

be able to:

based on knowledge of the working conditions to work of the machine parts to select of the construction material for their production, type of hardening ore softening treatment for obtaining of the certain the properties of parts and billets.

acquisition of competencies:

general competencies (GC):

professional (special) competencies (PC): The discipline lays the knowledge base of students of theoretical material in material science necessary in engineering, as a means of educating future industrial engineers skills in scientific generalizations, the ability to use basic knowledge in solving problems in engineering. The discipline lays the knowledge base for students for further study of a number of professional disciplines of technical and technological direction.

3. The program and structure of discipline for

- full term of daily and distance learning

		Hour num					numl	bers					
Title of thematic	Daily learning								Distance learning				
modules and themes	Weeks	Total			Includ	ling		Total	Including				
			1	p	lab	ind	i.s.		1	p	lab	ind	i.s.
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	The them	atic 1	noc	lule 1.	Meta	ıl scie	nce					
Theme 1.	1-2	24	4	-	10	-	10	22	2	-	-	-	20
Classification,													
structure and													
composition of													
building materials													
Theme 2. Carbon	3-5	18	4	-	4	-	10	22	-	-	2	-	20
steels and cast irons													
Total for thematic	25		8	-	14	-	20	44	2	-	2	-	40
module 1													
Th	e themati	c module	2. H	[eat	treatn	nent o	f buil	ding mate	erials	S			
Theme 3. The theory	6-8	13	1	-	2	-	10	22	2	-	-	-	20
of heat treatment													
Theme 4.	9-11	13	1	-	2	-	10	22	-	-	2	-	20
Technology of heat													
treatment													
Total for thematic	26	-	2	-	4	_	20	44	2	-	2	_	40
module 2													

The thematic modul		y and nor							nic b	oinde	rs, agg	gregat	es,
Theme 5. The alloying theory	12-13	20	4	-	6	-	10	22	2	-	-	-	20
Theme 6. Non-	14	9	2	_	2	_	5	22	-	<u> </u>	2	_	20
ferrous metals and	17		2		2						2		20
alloys													
Theme 7. Inorganic	15	23	14		4	_	5						
and organic binders,	13	23	17		7	_							
aggregates,													
concretes, ceramic													
and polymeric													
materials													
Total for thematic	52		20	_	12	_	20	44	2	<u> </u>	2	_	40
module 3	32		20		12		20	' '			_		
	l he thema	tic modul	e 4 N	Vel	ding t	echno	logy i	in constri	uction	1 1			
Theme 8. Formation	1-2	12	2	_	2	_	8	20	_	<u> </u>	Ι_	I _	20
of welded joints and	1-2	14		_				20		-	_	_	20
weldability of metal.													
Classification of													
welding methods in													
construction													
Theme 9. Arc	3-5	12	2	_	2	_	8	20	<u> </u>	-	_	_	20
welding: manual arc		12	_					20					20
welding with a													
fusible electrode,													
automatic arc													
welding with a													
fusible electrode, arc													
welding in shielding													
gases, arc welding													
with a non-fusible													
electrode, special													
types of arc welding.													
Theme 10. Plasma		12	2	_	2	_	8						
welding. Electroslag													
welding. Gas													
welding.													
Theme 11. Hot		12	2	-	2	-	8						
welding tools. Cold													
welding tools.													
Radiation welding.													
Inspection of welded													
joints													
Total for thematic	48		8	-	8	-	32	40	-	-	-	-	40
module 4													
		hematic	modu	le 5		ding							
Theme 12.	6-8	12	2	-	2	-	8	20	-	-	-	-	20
Classification of													
welded structures.													
Features of welding													
of different types of													

metals. Basic types of welded joints. Operation of welded joints under different load conditions.													
Theme 13. Construction welded metal structures: frames of industrial buildings, welded beams, trusses and columns, sheet solid building structures	9-11	10	2	1	2	1	6	20	-	-	2	-	20
Theme 14. Machine- building welded structures and pipelines		12	2	-	2	-	8						
Theme 15. New technologies in construction.		8	1	1	1	-	6						
Total for thematic module 5	42		7	-	7	-	28	40	-	-	2	-	40
Total of hours	119		45	-	45	-	29	246	6	-	8	-	232

4. Lecture themes

№	Theme title	Hour numbers
	3 semester	
1	The purpose and objectives of the course. (Classification. Atomic crystal structure of metals. Defects in the crystal structure of metals).	2
2	Phase transformations of metals and alloys. (The concept of alloy crystallization and modification. The temperature crystallization. The phenomenon of supercooling. The concept of anisotropy. Allotropic transformation).	2
3	Basic theory of alloys. (Definition of "Alloy", "Component", "Phase". "Solid solutions". Regularities of cooling metals and alloys).	2
4	State diagrams of binary alloys. (Main types of phase diagrams of two-component alloys. Determination of the phase diagram of alloys. The conditions building. State diagrams alloys of the type I. State diagrams alloys of the type II. State diagrams alloys of the type IV. Kournakov rule. Section rule.)	2
5	Diagram of the iron - cementite alloys. (Temperature curve heating and cooling of pure iron. Identification of all lines of iron - cementite diagram. Characteristics of structural components of iron-carbon alloys. Definitions of "eutectic" and " eutectoid")	2
6	Carbon steels. Classification and application. (Structure hypoeutectoid, eutectoid and hypereutectoid steels. Labelling and	2

	application of carbon steels).	
7	Cast irons, classification, application.	2
	(Concept and classification of cast irons. The impurity influence on the structure	
	and properties of cast irons. Method, structure, labeling and application of gray,	
	ductile and high strength irons.)	
8	Theory of heat treatment.	2
	(Transformation of pearlite - carbide structure in austenite during heating.	
	Temperature influence on the grain size of austenite during heating. The concept	
	of inheritance structure. The influence of grain size on the properties of steel.	
	Methods for determining grain size).	
9	The basic structure and transformation during heat treatment of steels.	2
	(Pearlitic transformation. The mechanical properties of steels with structures of	
	perlite, sorbite, troostite (fine pearlite). Martensitic transformation. The nature of	
	the mechanism and kinetics of transformation. Martensite properties. The Martensite transformation at heating.)	
10	Diagram of austenite isothermal disintegration.	2
10	(General characteristics of austenite transformation at supercooling. Construction	2
	diagram of isothermal transformation of austenite to 0.8% carbon steel. The	
	transformation of austenite under continuous cooling.)	
11	The heat treatment technology of carbon steels.	2
	(Annealing, normalization, quenching, tempering and aging of steels).	_
12	Chemical heat treatment of steels.	2
	(Basic processes occurring at the chemical and heat treatment. cementation,	_
	nitriding)	
13	Bases alloying steels.	2
	(The influence of alloying elements on the properties of steel. Features heat	
	treatment of alloyed steels. Isothermal transformation of austenite in alloy steels.	
	The influence of temperature on the properties of quenching steel alloy).	
14	Classification and labeling of alloy steels.	
	(Determination of class alloyed steel. Labelling structural and tool alloy steel).	
15	Constructional alloyed steels. Spring and ball bearing steels. Tool	
	alloyed steels.	
	4 semester	
1	Steels and alloys with special properties.	2
	(High-strength and wear-resistant steel. Corrosion-resistant and heat-resistant	
	steel. Magnetic steel and alloys. Alloys with high electrical resistance. Steels	
	with a given temperature coefficient of linear expansion).	
2	Foreign labeling of alloy steels	2
3	Copper, aluminum and their alloys	2
4	Titanium, magnesium and their alloys. Bearing alloys	2
5	Amorphous materials and materials with shape memory	2
6	Composite and bimetallic materials	2
7	Polymers and plastics. Rubber. Glue materials. Inorganic glass.	2
8	Paints and insulating materials. Wood.	 1
U	1 and mounting materials. 11 000.	1

5. Laboratory work themes

No	Theme title	Hour
2 1-	Theme title	IIOui

		numbers		
	3 semester			
1	Macrostructural analysis of metals and alloys	2		
2	Microstructural analysis of metals and alloys.	2		
3	The study diagrams of binary alloys	2		
4	The thermal method of analysis of metals and alloys.	2		
	Construction of diagrams of tin-zinc alloys.			
5	The analysis of state diagram of iron-carbon alloys	2		
6	Study of the microstructure of carbon steels at equilibrium	2		
	state			
7	Study of microstructure of cast irons	2		
8	Structural changes in the carbon steel at heating.	2		
9	Annealing and normalization of carbon steels. Study of	2		
	microstructure and hardness changes			
10	Quenching of carbon steels	2		
11	Tempering of quenching steels	2		
12	Determination of critical temperatures of steels by method of	2		
	test quenchings			
13	Determination of carbon steel microstructure in a	2		
	nonequilibrium state			
14	Surface hardening steels by high frequency currents	2		
15	Chemical heat treatment of steels	2		
	4 semester			
1	Definition hardenability steels	2		
2	Study of microstructure of alloy steels	2		
3	Development of technological process of the heat treatment			
	of parts of agricultural machines			
4	Study of the microstructure of copper alloys			
5	Study of the microstructure of aluminum alloys 2			
6	Study of microstructure babbits 2			
7	Composite and bimetallic materials 2			
8	Materials with shape memory	1		

6. Test questions and test sets for determine of the level assimilation of knowledge by students.

- 1. Ferrous metals are differentiated into
- 2. Non-ferrous metals are subdivided
- 3. Body-centered cubic lattice
- 4. Face-centered cubic lattice
- 5. The main parameters of the crystal lattices
- 6. Defects in the crystal structure
- 7. What is alloy, system, component, phase?
- 8. The mechanical mixture

- 9. Chemical compounds
- 10. Solid solutions
- 11. State (phase, equilibrium) diagram of alloys
- 12. Mechanical properties
- 13.Toughness
- 14. Anisotropy and isotropy
- 15. Carbon, manganese, silicon, sulphur and phosphorus in steel
- 16. The classification of carbon steels
- 17. Structure of hypoeutectoid steel
- 18.Structure of eutectoid steel
- 19.Structure of hypereutectoid steel
- 20. Plain carbon steel classification according with quality
- 21. Ordinary plain carbon steels
- 22. Quality plain carbon steels
- 23. High quality carbon steels
- 24. Carbon steel classification according with the forming methods of shape and size
- 25. Carbon steel classification according with application
- 26. Carbon tool steels
- 27.Free-cutting (automatic) steels
- 28. Carbon boiler steels
- 29.SAE AISI system (USA)
- 30. Composition and destination of USA carbon steels
- 31. Material science is ...
- 32. Material science consists of the following parts ...
- 33.Metals is ...
- 34. Ferrous metals are ...
- 35. Non-ferrous metals are
- 36. Amorphous materials are
- 37. Crystalline materials are characterized
- 38. Elementary crystal lattice called
- 39. Ionic bond
- 40.Covalent bond
- 41.Metal bond
- 42. Structural imperfections of polycrystals
- 43. Polymorphic (allotropic) transformations
- 44. Polymorphic transformation of iron
- 45.DIN is marking of carbon steels in ...
- 46.JIS is marking of carbon steels in...
- 47.BS is marking of carbon steels in...
- 48.AFNOR is marking of carbon steels in...
- 49.UNI is marking of carbon steels in...
- 50.SS14 is marking of carbon steels in...
- 51.SAE AISI system was developed in ...
- 52. Steel quality is determinated by quantity of ...
- 53. Ordinary plain carbon steels content ...

54. Quality plain carbon steels content... 55. High quality carbon steels content... 56. Ordinary plain carbon steels are marked by... 57. Quality steels are marked by... 58. High quality steels have ... 59. Which is hardened layer color? 60. Macrostructural analysis carry out on 61. Etching liquid solutions content 62. Segregation is 63. Macro-analysis is 64. Etching of samples for laboratory work happening by 65. Preferred microsection area is ... 66. Etching liquid solutions content..... 67. Magnification is set by combination of the...... 68. Microstructural analysis is 69. What is ferrite? 70. What is the austenite? 71. What is cementite? 72. What is the pearlite? 73. What is ledeburite? 74. Hardness is 75.Brinell hardness is determined 76. Rockwell hardness is determined..... 77. Shore hardness is defined... 78. Poldi hardness is determined

7. Education methods.

- 1) Verbal:
 - -Lectures;
- 2) Visual:
 - -Slides, video, visual material (perts, charts, stands).
- 3) Practical:
 - Laboratory work;
 - Training and factory practices;
 - Independent work.

8. Forms control.

- control work;
- module control work;
- test;
- examination.
- **9. Distribution points that receive students.** The student evaluation done in accordance with the provision «Про екзамени та заліки у НУБіП України» від 27.12.2020 р. протокол № 5 з табл. 1.

EVALUATION POLICY

Deadline	The student must submit the work within the time specified by the teacher.					
and	Works that are submitted in violation of deadlines without good reason are					
retake	evaluated at a lower grade. Rearrangement of modules takes place with the					
policy:	permission of the lecturer if there are good reasons (for example, hospital).					
Academic	Write-offs during tests and exams are prohibited (including the use of					
Integrity	mobile devices). Course papers, abstracts must have correct text references					
Policy:	to the literature used					
Visiting	The student is obliged to attend classes of all kinds every day in					
policy:	accordance with the established schedule, not to be late, to have the					
	appropriate appearance. For objective reasons (for example, illness,					
	international internship) training can take place individually (in online					
	form in consultation with the dean of the faculty)					

STUDENT EVALUATION SCALE

Student rating,	Evaluation results on national exam tests					
points	Exams	tests				
90-100	Excellent					
74-89	Good	Accepted				
60-73	Satisfactory					
0-59	Unsatisfactorily	Not accepted				

The student rating (listener) of the discipline $\mathbf{R}_{\text{ДИС}}$ (up to 100 points) to determine as sum rating received at attestation \mathbf{R}_{AT} (up to 30 points) and the student (listener) rating for educational work \mathbf{R}_{HP} (up to 70 points):

10. Methodical provision

- Textbooks and manuals;
- Guidelineses for laboratory works;
- Stands, posters;
- Equipment and various device.

11. Recommended Literature

- Main:

- 1. Афтанділянц Є.Г., Зазимко О. В., Лопатько К.Г. Технологія конструкційних матеріалів і матеріалознавство. Частина І (А-О). Російсько англійсько український термінологічний словник. К.: Вид. Центр НАУ, 2005. 346 с.
- 2. Афтанділянц Є.Г., Зазимко О. В., Лопатько К.Г. Технологія конструкційних матеріалів і матеріалознавство. Частина ІІ (П-Я). Російсько англійсько український термінологічний словник. К.: Вид. Центр НАУ, 2005. 282 с.

- 3. Афтанділянц Є.Г., Зазимко О. В., Лопатько К.Г. Технологія конструкційних матеріалів і матеріалознавство. Курс лекцій. Частина ІІ. Металознавство. Київ, НАУ, 2010.- с.356.
- 4. Афтанділянц Є.Г., Зазимко О.В., Лопатько К.Г. Матеріалознавство: Підручник (Гриф надано Міністерством освіти і науки, молоді та спорту України, лист №1/11-18055 від 20 листопада 2012 р.). Херсон, Видавець Грінь Д.С., 2013.- с 612.
- 5. Практикум з матеріалознавства. Навчальний посібник. (гриф МОН (лист № 1/11-4472 від 27.02.2013 р.))/ Котречко О. О. Зазимко, К.Г. Лопатько, Є.Г. Афтанділянц, Гнилоскуренко В. В.// Херсон: Олді Плюс, 2013.-с. 500.
- 6. Матеріалознавство і технологія конструкційних матеріалів: Підручник (Гриф надано Міністерством освіти і науки України, лист №1/11-9794 від 10.06.2013р.)/Опальчук А.С., Афтанділянц Є.Г., Роговський Л.Л., Семеновський О.Є //Ніжин, ПП Лисенко М.М, 2013.- с 752.

- ancillary:

- 1. Опальчук А.С., Котречко О.О., Роговський Л.Л. Лабораторний практикум з технології конструкційних матеріалів і матеріалознавства. Навч. посібник/ За ред. А.С. Опальчука. К.: Вища освіта, 2006.- 287 с.: іл.
- 2. Сологуб М.А. "Технологія контрукційних матеріалів", К:Вища школа, 2002, 373с.
- 3. Хільчевський В.В. та ін. "Матеріалознавство і технологія конструкційних матеріалів", К:Либідь, 2002, 326с.
- 4. Попович В. Технологія конструкційних матеріалів і матеріалознавство. Книга І. Львів. 2000.-с.264.
- 5. Гуляєв А.П. "Металознавство", 1985 р.
- 6. Усова Л.Ф. "Технологія металів та матеріалознавство", 1987 р.

12. Information Resources

- 1. Reference book.
- 2. Atlases.
- 3. Internet library.
- 4. Magazines.