The National University of Life and Environmental Sciences of Ukraine

Faculty of Design and Engineering

Department of Material Technology and Material Science (MTMS)

APPROVE: Dean of Design and Engineering Faculty Ruzhylo Z. V. Sentry 1511 2020 **REVIEWED AND CONSIDERED**

2

at a meeting of the MTMS department

Protocol No 16 of " 19 "05 2020 Chief of Department

WORK PROGRAM OF THE EDUCATIONAL DISCIPLINE

"Technology of machine building"

Knowledge area 13 "Mechanical engineering " Speciality 133 "Sectoral mechanical engineering" Faculty of Design and Engineering

Developer: Gnyloskurenko S., Associate professor, Ph.D.

Kiev - 2020

1. Description of the discipline

The working curriculum of the discipline "Technology of machine building" is compiled in accordance with the typical program of the named discipline and contains the following main sections:

1. Fundamentals of technology engineering.

- 2. Fundamentals of technical valuation.
- 3. Design of technological processes of mechanical processing.
- 4. Devices for metalworking machine tools.
- 5. Typical technological processes of manufacturing parts
- 6. Fundamentals of technology of assembly processes.
- 7. Basis of designing workshops of agricultural machine-building plants.

Technology of machine building

(title)

Areas of knowledge, direction of training, speciality, education and qualification level					
Education and qualification level	Bachelor				
Education direction	13 «Mechanical engineering»				
Speciality	133 "Sectoral mechanical engineering"				
	-				
Specialization	-				
Discipline characterization					
Туре	Obligatory				
Total number of hours	315				
Number of credits ECTS	8				
Number of thematic modules	6				
Form of control	test/examination				

Indicators of the discipline for daily and distance learning

	daily learning	distance learning
Year of study (course)	2,3,4	
Semester	2	
Lectures	60/35 hours.	
Practical, seminar classes	-	
Laboratory lesson	150/75 hours.	
Independent study	<i>45/90</i> hours.	
Individual work	<i>90-</i> hours.	
Number of weekly classroom	4/2 hours.	
hours for daily learning		

2. The purpose and objectives of the course

Aim: To give the necessary knowledge to the future engineer-designer for the successful selection of technological methods for obtaining and processing billets to ensure high quality products, material savings, high productivity.

Objectives: the study of technological methods of obtaining and processing of billets, their technical and economic characteristics, the study of the basic schemes of equipment, design of workshops of machine-building plants, issues of technological design of blanks, taking into account the methods of their obtaining, technological methods to improve the reliability of machines.

As a result of studying the discipline the student must

know:

- the main technological processes of making blanks and machine-building products;

- Fundamentals of designing technological processes of mechanical processing of parts;

- bases of technology of assembly processes;

- bases of design of shops of machine-building plants;

be able:

- to choose a rational way of mechanical processing of workpieces, equipment, cutting tools, to calculate and assign treatment regimes, that is, to choose the rational technology of manufacturing parts;

- use methods to control the accuracy of machining parts of machines.

acquisition of competencies:

general competencies (GC):

The discipline lays the knowledge base for students for further study of a number of professional disciplines of technical and technological direction.

3. The program and structure of discipline for

- full term of daily and distance learning

	Hour numbers												
Title of thematic	Daily learning								Distance learning				
thomas	Weeks	Total	Including			Total	Including						
ulemes			1	р	lab	ind	i.s.		1	р	lab	ind	i.s.
1	2	3	4	5	6	7	8	9	10	11	12	13	14
The the	The thematic module 1. Basics, fundamentals of machine building.												
											-		
Theme 1. The	1-2	8	4	-	4	-	2	22	2	-	-	-	20
theory of alloys													
Theme 2.	3-5	12	6	-	6	-	3	22	-	-	2	-	20
Carbon steels													
and cast irons													
Total for	25		10	-	10	-	5	44	2	-	2	-	40
thematic module													

1													
The ther	The thematic module 2. Bases of heat treatment of metals and allovs												
Theme 1. The	6-8	12	6	-	6	-	2	22	2	-	-	-	20
theory of heat													
treatment													
Theme 2.	9-11	12	6	-	6	-	3	22	-	-	2	-	20
Technology of													
heat treatment													
Total for	29		12	-	12	-	5	44	2	-	2	-	40
thematic module													
2													
	The the	matic n	nodu	le 3	3. All	oyed	steel	s and a	lloys	5			
Theme 1. The	12-13	8	4	-	4	-	2	22	2	-	-	-	20
alloying theory													
Theme 2.	14-15	8	4	-	4	-	3	22	-	-	2	-	20
Classification of													
alloy steels,													
marking and													
their use in													
agriculture													
Total for	21		8	-	8	-	5	44	2	-	2	-	40
thematic module													
3													
The th	ematic m	nodule 4	4. Ste	eels	s and	alloy	s wit	h specia	al pr	oper	ties		
Theme 1.	1-2	4	2	-	2	-	2	20	-	-	-	-	20
Corrosion and													
heat resistant													
steels and													
magnetic alloys.													
Theme 2.	3-5	4	2	-	2	-	3	20	-	-	-	-	20
Amorphous,													
bimetallic and													
composite													
materials and													
materials with													
shape memory													
Total for	13		4	-	4	-	5	40	-	-	-	-	40
thematic module													
4													
T	he thema	tic mod	lule	<u>5. I</u>	Non-f	ferrou	is me	tals and	d allo	oys			
Theme 1.	6-8	8	4	-	4	-	2	20	-	-	-	-	20
Copper,													
aluminum,													
titanium,													

magnesium and													
their alloys													
Theme 2. Zinc,	9-11	6	3	-	3	-	3	20	-	-	2	-	20
lead. Solders.													
Antifriction													
alloys													
Total for	19		7	-	7	-	5	40	-	-	2	-	40
thematic module													
5													
The	thematic	modul	le 6.	No	nmet	allic	const	ruction	mat	erial	S	-	
Theme 1.	12-13	4	2	-	2	-	2	16	-	-	-	-	16
Polymers and													
plastics. Rubber.													
Glue materials.													
Inorganic glass.													
Theme 2. Paints	14-15	4	2	-	2	-	2	16	-	-	-	-	16
and insulating													
materials. Wood.													
Total for	12		4	-	4	-	4	40	-	-	-	-	40
thematic module													
6													
Total of hours	119		45	-	45	-	29	246	6	-	8	-	232

4. Lecture themes

N⁰	Theme title	Hour
		numbers
	3 semester	
1	The purpose and objectives of the course.	2
	(Classification. Atomic crystal structure of metals. Defects in the crystal structure of metals).	
2	Phase transformations of metals and alloys.	2
	(The concept of alloy crystallization and modification. The	
	temperature crystallization. The phenomenon of supercooling. The	
	concept of anisotropy. Allotropic transformation).	
3	Basic theory of alloys.	2
	(Definition of "Alloy", "Component", "Phase". "Solid solutions".	
	Regularities of cooling metals and alloys).	
4	State diagrams of binary alloys.	2
	(Main types of phase diagrams of two-component alloys.	
	Determination of the phase diagram of alloys. The conditions	
	building. State diagrams alloys of the type I. State diagrams alloys of	
	the type II. State diagrams alloys of the type III. State diagrams alloys	
	of the type IV. Kournakov rule. Section rule.)	
5	Diagram of the iron - cementite alloys.	2

	(Temperature curve heating and cooling of pure iron. Identification of	
	all lines of iron - cementite diagram. Characteristics of structural	
	components of iron-carbon alloys. Definitions of "eutectic" and "	
	eutectoid")	
6	Carbon steels. Classification and application.	2
	(Structure hypoeutectoid, eutectoid and hypereutectoid steels.	
	Labelling and application of carbon steels).	
7	Cast irons, classification, application.	2
	(Concept and classification of cast irons. The impurity influence on	
	the structure and properties of cast irons. Method, structure, labeling	
	and application of gray, ductile and high strength irons.)	
8	Theory of heat treatment.	2
	(Transformation of pearlite - carbide structure in austenite during	
	heating. Temperature influence on the grain size of austenite during	
	heating. The concept of inheritance structure. The influence of grain	
	size on the properties of steel. Methods for determining grain size).	
9	The basic structure and transformation during heat treatment of steels.	2
	(Pearlitic transformation. The mechanical properties of steels with	
	structures of perlite, sorbite, troostite (fine pearlite). Martensitic	
	transformation. The nature of the mechanism and kinetics of	
	transformation. Martensite properties. The Martensite transformation	
	at heating.)	
10	Diagram of austenite isothermal disintegration.	2
	(General characteristics of austenite transformation at supercooling.	
	Construction diagram of isothermal transformation of austenite to	
	0.8% carbon steel. The transformation of austenite under continuous	
	cooling.)	
11	The heat treatment technology of carbon steels.	2
	(Annealing, normalization, quenching, tempering and aging of steels).	
12	Chemical heat treatment of steels.	2
	(Basic processes occurring at the chemical and heat treatment.	
	cementation, nitriding)	
13	Bases alloying steels.	2
	(The influence of alloying elements on the properties of steel.	
	Features heat treatment of alloyed steels. Isothermal transformation of	
	austenite in alloy steels. The influence of temperature on the	
	properties of quenching steel alloy).	
14	Classification and labeling of alloy steels.	
	(Determination of class alloyed steel. Labelling structural and tool	
	alloy steel).	
15	Constructional alloyed steels. Spring and ball bearing steels. Tool	
	alloyed steels.	
	4 semester	
1	Steels and alloys with special properties.	2
	(High-strength and wear-resistant steel. Corrosion-resistant and heat-	

	resistant steel. Magnetic steel and alloys. Alloys with high electrical resistance. Steels with a given temperature coefficient of linear	
	expansion).	
2	Foreign labeling of alloy steels	2
3	Copper, aluminum and their alloys	2
4	Titanium, magnesium and their alloys. Bearing alloys	2
5	Amorphous materials and materials with shape memory	2
6	Composite and bimetallic materials	2
7	Polymers and plastics. Rubber. Glue materials. Inorganic glass.	2
8	Paints and insulating materials. Wood.	1

5. Laboratory work themes

N⁰	Theme title	Hour
		numbers
	3 semester	
1	Macrostructural analysis of metals and alloys	2
2	Microstructural analysis of metals and alloys.	2
3	The study diagrams of binary alloys	2
4	The thermal method of analysis of metals and alloys.	2
	Construction of diagrams of tin-zinc alloys.	
5	The analysis of state diagram of iron-carbon alloys	2
6	Study of the microstructure of carbon steels at equilibrium	2
	state	
7	Study of microstructure of cast irons	2
8	Structural changes in the carbon steel at heating.	2
9	Annealing and normalization of carbon steels. Study of	2
	microstructure and hardness changes	
10	Quenching of carbon steels	2
11	Tempering of quenching steels	2
12	Determination of critical temperatures of steels by method of	2
	test quenchings	
13	Determination of carbon steel microstructure in a	2
	nonequilibrium state	
14	Surface hardening steels by high frequency currents	2
15	Chemical heat treatment of steels	2
	4 semester	
1	Definition hardenability steels	2
2	Study of microstructure of alloy steels	2
3	Development of technological process of the heat treatment	2
	of parts of agricultural machines	
4	Study of the microstructure of copper alloys	2
5	Study of the microstructure of aluminum alloys	2
6	Study of microstructure babbits	2

7	Composite and bimetallic materials	2
8	Materials with shape memory	1

6. Test questions and test sets for determine of the level assimilation of knowledge by students.

- 1. Production (process) is the ...
- 2. What are the methods of product manufacturing ?
- 3. What is the <u>Single/job production</u>?
- 4. What are the Single/job production Characteristics?
- 5. What is the Batch/Serial production ?
- 6. What are the batch production Characteristics ?
- 7. What is the Mass or flow production?
- 8. What are the Mass or flow production Characteristics ?
- 9. Technological process is ...
- 10. Technological process consists of ...
- 11. Working place (working position) is ...
- 12. What is Set?
- 13.POSITION is ...
- 14.Transitions are ...
- 15.Service Transitions are ...
- 16.Move/Travel/Passages/Steps (stroke) are ...
- 17.Procedure is ...
- 18.Product is ...
- 19. Products can be ... (examples)
- 20.Part is ...
- 21.Assembly unit is ...
- 22.Complex is ...
- 23.Set (complete set)
- 24. The purpose of technological processes planning of machine part production is
- 25. Machine building products should match the requirements of: 1) ... 2).... 6) ...
- 26. The main tasks of technological process planning of machining are
- 27. Technological processes are usually developed when :
- 28. When planning new enterprise Technological process is the main basis for:
- 29.Data of the Technological process are used for
- 30.General requirements for development of technological processes are : 1)...9)
- 31.Technical and economical information used for development of technological processes are :
- 1)7)
 - 32. Typical order of development of technological processes of the machining (mechanical operation, treatment) of part, component includes (1)....13))
 - 33.Classification of part classes to be produced by typical technological processes includes:
 - 34. What are the main/basic principles of machine building ?

- 35. What are the stages of studying technological process
- 36. Typification results in ...
- 37. What are the classes of typical parts
- 38. What are the main/basic principles of machine building
- 39. Definition of parts "Shafts"
- 40. Definition of rigid and not rigid shafts.
- 41. What are the basic elements of shafts (groups).
- 42. What are the basic elements of shafts typical for this class.
- 43. What are the basic elements of shafts not typical for this class.
- 44. Technological processing of shaft is divided into two parts:
- 45. 3-4th class of accuracy of shafts intended for planting/attaching ... (list parts attached for such surface of shaft)
- 46. 2nd class of accuracy of shafts intended for planting/attaching ... (list parts attached for such surface of shaft)
- 47. What is the roughness of the contacting surfaces of shafts
- 48. What is the roughness of the not contacting surfaces of shafts
- 49. From which material shafts are made
- 50. What is the thermal treatment for shafts
- 51. Type of workpieces used to manufacture the shaft depends on
- 52. Which characteristics of shafts determine type of workpieces used to manufacture the shaft
- 53. What kind of workpieces are used for long stepped shafts and which equipment is used for their cutting
- 54. What operations are used for making short shafts with large difference in diameters
- 55. What processing steps are used in a typical route processing details of a class "shaft"
- 56. What additional operations can be introduced depending on the design features of the shaft and the technical requirements
- 57. What is the main technological base in the manufacture of shafts
- 58. What operations are used for pretreatment shafts billets/workpieces
- 59. What equipment is used for pretreatment shafts billets/workpieces in serial and mass production
- 60. What equipment is used for pretreatment shafts billets/workpieces in single and small-scale production
- 61. What structural elements are made on shafts for installation and mounting gears, sprockets etc.
- 62. Making structural elements on shafts such as gloss, grooves, slots and grooves are provided with equipment ... (list of equipment)
- 63. Two main types of the holes produced on the shafts are ...
- 64.Equipment for drilling operations of the holes and accuracy class and roughness of the holes.
- 65.Making thread (outer and inner) in the technological route of shaft processing depends on ...
- 66. What are the accuracy class and roughness of the thread

67.In small-scale, mass production cutting thread executed with ...(machines)

68.In large-scale production threading runs as a separate operation by ...(machines) 69.In mass production thread ...(machines) are used

70. Technique of making surfaces for slot, spline on the shafts depends on ...

- 71. What is the sequence of manufacturing operations of making surfaces for slot, spline on the shafts
- 72. What does the technical control of finished shafts includes :

7. Education methods.

1) Verbal:

-Lectures;

2) Visual:

-Slides, video, visual material (perts, charts, stands).

- 3) Practical:
 - Laboratory work;
 - Training and factory practices;
 - Independent work.

8. Forms control.

- control work;
- module control work;
- test;
- examination.
- 9. Distribution points that receive students. The student evaluation done in accordance with the provision «Про екзамени та заліки у НУБіП України» від 27.12.2020 р. протокол № 5 з табл. 1.

EVALUATION POLICY

Deadline	The student must submit the work within the time specified by the teacher.
and	Works that are submitted in violation of deadlines without good reason are
retake	evaluated at a lower grade. Rearrangement of modules takes place with the
policy:	permission of the lecturer if there are good reasons (for example, hospital).
Academic	Write-offs during tests and exams are prohibited (including the use of
Integrity	mobile devices). Course papers, abstracts must have correct text references
Policy:	to the literature used
Visiting	The student is obliged to attend classes of all kinds every day in
policy:	accordance with the established schedule, not to be late, to have the
	appropriate appearance. For objective reasons (for example, illness,
	international internship) training can take place individually (in online
	form in consultation with the dean of the faculty)

STUDENT EVALUATION SCALE

points	Exams	tests
90-100	Excellent	
74-89	Good	Accepted
60-73	Satisfactory	
0-59	Unsatisfactorily	Not accepted

The student rating (listener) of the discipline $\mathbf{R}_{\text{ДИС}}$ (up to 100 points) to determine as sum rating received at attestation \mathbf{R}_{AT} (up to 30 points) and the student (listener) rating for educational work \mathbf{R}_{HP} (up to 70 points):

10. Methodical provision

- Textbooks and manuals;
- Guidelineses for laboratory works;
- Stands, posters;
- Equipment and various device.

11. Recommended Literature

- Main:

1. – **main:**

- 1. Textbook of advanced machine work. Barlow. Boston. 2006, 316 p.
- 2. Аунапу Ф. Ф. и др. Технология сельскохозяйственного машиностроения. М.: Машиностроение, 1968.
- 3. Воробьев Л. Н. Технология машиностроения и ремонт машин. М.: «Высшая школа», 1981.
- 4. Зуев А. А., Гуревич М. Е. и др. Технология сельскохозяйственного машиностроения. М: Колос, 1980.
- 5. Егоров М.Е. и др. Технология машиностроения. М: Высшая школа, 1976. **ancillary:**
- Корсаков В.С. Основы конструирования приспособлений в машиностроении. – М., Машиностроение, 1986;
- 2. Косилова А.Г., Мещеряков Р.К., Калинин М.А. Точность обработки, заготовка и припуски в машиностроении: Справочник. М. Машиностроение, 1975.
- 3. Акимов В.Л. Технологические расчеты при проектировании процессов механической обработки заготовок. Л.: ЛПИ, 1980.
- 4. Скраган В.А., Амосов И.С., Смирнов А.А. Лабораторные работы по технологии машиностроения. Л.: Машиностроение, 1974.
- 5. Некрасов С.С., Гурьянов А. И. Лабораторные работы по курсу «Технология машиностроения». М.: 1973.
- 6. Медвідь М. В., Шабайкович В. А. Теоретичні основи технології машинобудування. Львів. "Вища школа", 1976.
- 7. Ботенко Л. І. Технологія машинобудування. К.: "Колос", 1996.
- 8. Методичні вказівки до лабораторних робіт з дисципліни " Технологія машинобудування", 1998.

12. Information Resources

- 1. Reference book.
- 2. Atlases.
- 3. Internet library.
 4. Magazines.