

Лектор курсу Контактна інформація лектора (e-mail) Сторінка курсу в eLearn

СИЛАБУС ДИСЦИПЛІНИ «Biological methods in radiation research »

Ступінь вищої освіти - Master Спеціальність – 101 «Ecology» Освітня програма « Ecology and Environmental Protection» Рік навчання - 1-st, семестр 1-st Форма навчання - full-time education Кількість кредитів ЄКТС - 3 Мова викладання - English

Ph.D., senior lecturer Volodymyr Illienko illienkovv@gmail.com

COURSE DESCRIPTION

The goal of teaching "Biological Methods in Radiation Research" is to d provide students with knowledge about the possibilities of using living organisms to determine the ability of radioactive isotopes migration in the environment and living organisms (income, output, accumulation) and the use of labeled isotopes in biological research.

The task is to provide opportunities for using the acquired knowledge and skills to describe, analyze and predict the accumulation of radioactive isotopes and their migration in the environment under conditions of limited information, as well as for the implementation of master's thesis.

The student should know the characteristics of ionizing radiation and the physico-chemical basis of the interaction of ionizing radiation with substances, methods of radiometry and spectrometry of ionizing radiation, physical and chemical properties of natural and artificial radioactive isotopes of chemical elements, the basis of statistical processing of experimental data.

Торіс	Hours (lectures/ practical works)	Results of study	Task	Evaluation
Module 1. Migration	on of radioact	ive substances in the environme	ent and microorga	nisms
Topic 1. Features of the	2/6	Know foliar uptake of	Delivery of	10 point
radionuclides migration		radionuclides into plants.	practical work	
in the environmental		Receipt of soluble	Nº1.	
objects		radionuclides in plants from		
		the air. Influence of physico-		
		chemical properties of		
		radionuclides on their		
		transition from soil to plants		
		through the roots. Influence		
		of biological characteristics		
		of plants, phases of their		
		development and		
		physiological state on the		
		transition of radionuclides		
		from the soil to plants.		
		Understand features of		
		migration of radionuclides in		

STRUCTURE OF COARSE

Topic 2. Metabolism of uranium and products of its disintegration in contaminated natural ecosystems Topic 3. Features of cesium and strontium migration in the environment	2/4	forest biogeocoenoses. Ways of radionuclides uptake into the body of animals. Quantitative indices of accumulation of radionuclides in the animal body: concentration factor (CF), absorption coefficient (Ca), biological elimination half-life of radionuclides (Tbiol). The main ways of radionuclides withdrawal from the body of animals. Know interaction of microorganisms with elements of nuclear fuel. Extremely radio-resistant microorganisms. Understand mechanisms of various interactions of bacteria and uranium: bioreduction, biosorption and bioaccumulation. Know metabolism of strontium in natural contaminated ecosystems. Biogeochemistry of cesium and its interaction with soil microorganisms.	Delivery of practical work №2. Delivery of practical work №3.	10
		Understand accumulation of ¹³⁷ Cs by bacteria and		
		their effect on the biological availability of radionuclides.		
Total module 1				30
Module 2. Influence	e of microorg	anisms on the state of radionucl accumulation by plants	lides in the soil an	d their
Topic 4. The role of microorganisms in the fixation and migration of ¹³⁷ Cs and ⁹⁰ Sr in soil	2/4	Know dependence between type of soil, mineral content and rate of radionuclide migration. Bacteria and actinomycetes as factors of influence on the redistribution of isotopes in the soil. Understand symbiosis of plants and fungi - ectotrophic and endotrophic mycorrhiza.	Delivery of practical work №4.	10
Topic 5. Changing the bioavailability of ¹³⁷ Cs under the influence of soil microflora	2/0	Know bacteria-components of bio-fertilizers and their application in agriculture. Inoculation and	Delivery of practical work №5.	10

	2/4	bacterization of seeds to reduce the accumulation of radionuclide in biomass of plants under different growing conditions.		10
Topic 6. The method of isotopic indicators in biology and ecology	2/4	Know labeled atoms. Radioactive and stable isotopes. Labeled compounds. Indicative dose. Basic ways of using isotopic indicators in research with plants. Investigation of transport and distribution of separate elements in plant. Understand features of the use of radioactive isotopes in vegetative and field studies. Radioautography. Features of the use of stable isotopes.	Delivery of practical work №6.	10
Total module 2				30
Module 3. Radiosensitivi	ty of micro	organisms and their diversity in radionuclides	territories contamin	nated with
Topic 7. Radiosensitivity of microorganisms	2/2	Know extremely radioresistant bacterium <i>Deinococcus radiodurans,</i> <i>Arthrobacter radiotolerans.</i> Isolation of strains of radiosensitive bacteria in an environment with extreme conditions of existence. Understand radiosensitivity of micromycetes.	Delivery of practical work №7.	10
Topic 8. Classical approaches to estimating the diversity of bacterial microflora in radionuclide contaminated soil	2/4	 Know assessment of microbial cenosis of territories contaminated by radioactive isotopes after the Chernobyl accident. Level of radioactivity of soil and biodiversity of soil microflora. Determination of soil cellulosic activity. Understand dynamics of ecological and trophic groups of soil microorganisms on contaminated radionuclide territories. 	Delivery of practical work №8.	10
Topic 9. New technologies in the evaluation of soil microflora diversity	2/4	Know Metagenomics as a complex branch of knowledge. Metageno data analysis. Sequencing metagenoids. Bioinformatics analysis of 16s rRNA metagenome	Delivery of practical work №9.	10

Topic 10. Selection of methodology for bioinformatic processing of DNA sequencing results from soils contaminated with radionuclides	2/2	data. Metadata in metagenome analysis and their integration. Determination of the main metrics of biodiversity. Check the quality of the sequencing data by the FastQC program. Understand MetaGenom data preprocessing in the QIIME software package. Clustering metagenome data in QIIME. Know Concentration of the isolated DNA. The general biodiversity of microbial soils of the Chornobyl NPP exclusion zone. Biodiversity metrics. Calculation of alpha microbioma diversity. Calculation of microbial beta diversity. Understand Functional microbial reconstruction. Working with PICRUSt. Working with HUMAnN. Visualization of clusters.	Delivery of practical work №10.	10
Total module 3				40
Additional points				10
Total for the semester (3	0+30+40)*0,7		Γ	70
Exam				30
Total for the course				100

EVALUATION POLICY

Deadline and	Works that are submitted in violation of the deadlines for more		
recompilation policy:	than a week without good reason are evaluated at a lower score		
	(maximum - 20% of the maximum). Rearrangement of modules		
	takes place with the permission of the lecturer if there are good		
	reasons (for example, hospital or family problems).		
Academic Integrity	Writing while writing modular test papers and the final exam is		
Policy:	prohibited. The use of mobile devices during these periods is also		
	prohibited.		
Visiting policy:	Attendance is mandatory. For objective reasons (for example,		
	illness, international internship) training can take place individually		
	(in online form in consultation with the dean of the faculty). In case		
	of violations and abuses (non-attendance more than 50% of the		
	time - non-admission to the exam)		

STUDENT EVALUATION SCALE

Rating of the	The assessment is national for the results of examinations		
applicant of higher	exams	offsets	

education, points		
90-100	perfectly	credited
74-89	good	
60-73	satisfactorily	
0-59	unsatisfactorily	not credited